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Abstract

Let G = (V,E) be a graph. Then § C V is an excess-t global powerful alliance if
IN[¥)Jn S| > |N[v)n(V = S)| 4t for every v € V. If t = 0 this definition reduces to that
of a global powerful alliance. Here we determine bounds on the cardinalities of such sets
S.
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1 Introduction

The concept of alliances in graphs has been developed in the past few
years in order to model situations in which entities such as nations or
businesses unite for mutual benefit in thwarting common enemies. Sev-
eral different types of alliances have been introduced to achieve varying
goals. Two, defensive and offensive, are mentioned briefly here and this
paper concentrates on a combination of these called powerful alliances.
We employ the following notation. Let G = (V, E) be a graph. For
any v € V, N(v) = {w € V : vw € E} is its open neighborhood and
N[v] = {v} UN(v) is its closed neighborhood. The closed neighborhood of
S C Vis N[S] = (UyesN[v]). The boundary of S, denoted 88, is the set
N[S]N (V — S). The subgraph induced by S is denoted (S).

Set S C V is a defensive alliance if [N[v]JN S| > |[N[v] N (V — S)| for
all v € S and is an offensive alliance if [IN[vJN S| > |N[v] N (V -~ S)| for
all v € S. A defensive alliance S can successfully defend. every member
from an attack by the vertices of S and an offensive alliance can prevail
in an attack on any vertex of 4S. An alliance S is minimal if S - {v}
is not an alliance of the same type for every v € S, and is critical if no
proper subset of S is an alliance of the same type. It is possible for an
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alliance to be minimal but not critical [10]. Finally, S is a global alliance if
it also is a dominating set. Defensive and offensive alliances are discussed
in [4, 5,7, 8,9, 10, 12, 13, 14).

Set S C V is a powerful alliance if it is both defensive and offensive,
that is, if [N[v)N S| > [N[vJNn (V = S)| for all v € SU S = N[S]. For a
given graph G, the smallest cardinality of a powerful alliance is the powerful
alliance number which is denoted by a,(G), and the smallest cardinality
of a global powerful alliance is the global powerful alliance number which
is denoted by v,,(G). Powerful alliances of these cardinalities are called
ap-sets and v, ,-sets, respectively, and similar definitions will apply to other
parameters. The abbreviation gpa will be employed for the phrase global
powerful alliance. Notice that ap-sets and v,,-sets are both minimal and
critical and that the concepts of minimal and critical are the same for
gpa’s. Powerful alliances have been studied in Brigham, Dutton, Haynes
and Hedetniemi [1].

Powerful alliances can be generalized as follows. Set § C V is an excess-t
powerful alliance if |IN[v]NS| > [N[v]JN(V —S)|+t for every v € SUAS. This
definition makes sense if —6(G) < t < 6(G) where §(G) is the minimum
degree of G. Values of ¢ in this interval are termed feasible. We mainly
shall be concerned with this concept when G is d-regular in which case
—d <t < d. Since S = V satisfies the definition for an excess-t gpa, we
have that a minimum one exists for each ¢ such that —d < ¢ < d. Note that
t = d implies V —S must be empty. This special case is of little interest and,
unless otherwise noted, we therefore assume ¢ < d. It is straightforward
to show that S C V is an excess-t gpa of d-regular graph G if and only if
every vertex of V — .S has at least [ﬁ';ifl neighbors in S and every vertex
of S has at most | 4L=t | neighbors in V — S.

We will employ the notation a,(G,t) for the smallest cardinality of an
excess-t powerful alliance of arbitrary graph G, and a,(G,d,t) if G is d-
regular. The corresponding notations for gpa’s are v,,(G,t) and v,, (G, d, ),
respectively. Thus, for arbitrary graphs, a,(G,0) = a,(G) and 7,,(G,0) =
Ya,(G) while, for d-regular graphs, a,(G,0) = a,(G,d,0) = ¢,(G) and
Ya,(G,0) = 74,(G,d,0) = ¥,,(G). In addition to minimum (global) pow-
erful alliances, we also shall be concerned with minimal (global) powerful
alliances of largest cardinality, and, in a straightforward extension of the
notation, this cardinality is written ', (G,t) or I'4,(G, d, t). For given val-
ues of n and ¢ (respectively n, d, and t), it is of interest to find the smallest
value of v,,(G,t) (resp. 74,(G,d,t)) and the largest value of I's,(G,t)
(resp. T4,(G,d,t)) taken over all graphs (resp. d-regular graphs) hav-
ing n vertices. We denote these values in an obvious manner by 7(n,t),
7(n,d,t), T(n,t), and T(n,d,t). Note that an earlier comment implies
Ye,(G,d,d) = 7(n,d,d) = T4,(G,d,d) = T(n,d,d) = n where G is any d-
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regular graph on n vertices. We call a triple (n, d,t) feasible if it is possible
to find an n vertex d-regular graph having an excess-{ gpa. Suppose S is
a minimal powerful alliance and v € S. Then removing v from S destroys
the degree requirements for at least one vertex w of G. Vertex w may be v
itself, a neighbor of v in S, or a neighbor of v in V' — S. We shall refer to
w as a critical vertex.

We present bounds, including Nordhaus-Gaddum types, for the above
parameters, and determine exact values for 7(n,d,t) and T(n,d,t) for all
feasible triples (n,d,t). Chellali and Haynes [3] have found a sharp bound
on v,,(G) for trees.

2 Lower Bounds for Global Powerful Alliance
Numbers

Lower bounds for gpa numbers are developed in this section. The symbol
A(G) represents the maximum degree of graph G. The argument G often
is omitted from this invariant, and others, if the graph in question is clear.
We employ deg(z) for the degree of vertex z and, for M C V, degm(z)
represents |N(z) N M]|.

Observation 1 For any graph G and feasible integert, v,,(G,t) > 7(n,t)
> [854] (14,(G) 2 7(n,0) 2 [4£]).

Proof: Let = be a vertex of degree A. If z € S, the requirements for an
. excess-f powerful alliance dictate |S| > degs(z) +1 > deg(z) — degs(z) +1
so 2degs(z) > A+t — 1 and the result follows. On the other hand, if
z €V -5, |S| > degs(z) > deg(z) — degs(z) +t + 1 and again the result
is obtained. O

Observation 2 Let G be a d-regular graph of order n and (n, d, t) be a fea-

sible triple. Then va, (G, d,t) > r(n,d,t) > [iu o ] (Ya, (G) > 7(n,d,

0) > [2] ifd is odd and v,,(G) > 7(n,d,0) > [;A(%}] if d is even).

Proof: The result is trivially true if (d,t) = (0,0), (1,-1), (1,0), and (1,1)
so we assume d > 2. Let S be a v,,(G, d,t)-set of d-regular graph G, and
let e be the number of edges of G with exactly one end point in S. Then
(n = 74,(G,d,t)) [4HH] < e < 7,,(G,d,t) [4]=t]. Simplifying yields

v G2 [ o

d+1

We will show later that the bound of Observation 2 is best possible. The
observation sometimes aids in determining the value of v,,(G) for certain
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graphs. For example, with { = 0, consider the 4-regular graph shown in
Figure 1. The circled seven vertices form a gpa. Observation 2 yields
Ya, (G) > 171(%) which implies v,,(G) > 7, and hence v,,(G) = 7.

Figure 1: Graph G having 7,,(G) =7

The final lower bound employs the following theorem that, with its
corollary, is of independent interest. For the remainder of this section we
assume t = 0.

Theorem 3 Let G = (V,E) be a graph. If f € E, then 7,,(G) -1 <
Ya,(G — ) £ 76, (G) + 2.

Proof: To show the first inequality let S be a v4,-set of G — f where
f = zy € E. The possible locations of the end vertices of f are now
considered.

1. {z,y} € S. Then S also is a gpa of G 50 75,(G) < ¥4, (G — f).

2. z€SandyeV —S. Here SU{y} is a gpa of G implying v,,(G) <
7a,,(G_f)+1-

3. {z,y} €V — S. Here either of SU {z} or SU {y} is a gpa of G so
again we have 7,,(G) < 74,(G - f) + 1.

These cases exhaust all possibilities and thus establish the result.
A similar approach establishes the second inequality. Let S be a v,,-set
of G where f = zy € E. Again we consider the locations of the end vertices

of f,

1. {z,y} C S. Let z and y have neighbors Z and g, respectively, in V—-S.
Then SU{%,9} isagpaof G—f. If& =g, SUZisagpaof G- f. If
z (resepectively y) has no neighbor in V' — S, there is no need to add
& (respectively §) into S. In any event, v,,(G — f) < 7,,(G) + 2.

2.z€SandyeV—-S. Now SU{y}isagpaof G—fs0v,,(G-f) <
Ya, (G) + 1.
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3. {z,y} CV—S. Set S remains agpaof G—f and ¥,,(G—f) < ¥4, (G).

Again all possibilities have been examined and the proof is complete. 0O

Corollary 4 Let G = (V,E) be a graph. If f ¢ E, then v,,(G) — 2 <
Ya, (G + f) £ 74, (G) + 1.

Let us now consider all graphs on a fixed number of vertices n for which
Ya, is as small as possible. Let G = (V, E) be such a graph that has the
minimum number of edges. Thus f € E implies 7,, (G — f) > 74,(G). We
have the following observation.

Observation 5 Let G = (V, E) be a graph on n vertices for which v,, is
as small as possible and which, among all such graphs, has the minimum
number of edges. Let S be a v4,-set. Then

1. V — S is an independent set.
2. Forz €V — S, deg(z) = 1.

_ | deg(z
3. Ifz€S, IN(z)nS| = [—-gi-lj
4. V contains at most one vertex of even degree.

Proof:

1. Suppose edge f has both end vertices in V — S. Then S also is a gpa
of G — f implying v4,(G — f) £ 7a,(G), a contradiction.

2. Suppose z € V — S, deg(z) > 1, and f is an edge having z as an end
vertex. Then, since V — S is independent, S remains a gpa of G — f
and again we obtain the contradiction v,,(G ~ f) < 74,(G).

3. For any vertex z € S, let a; be the number of neighbors it has in
S and b; the number in V — S. Suppose a, > I_%QJ so by =
deg(z) — ag < ["—gzﬁﬂ] Let y be a neighbor of z in (S). Since S is a
gpa, az +1 > b; = deg(z) — ar and ay, + 1 > by, = deg(y) — ay. The
latter inequality implies a, > I.g%ﬂj. If edge f = zy is removed,
we have |[N[e]NS| = o, > | %92 | +1> b, = |N[z] - S]. Since S no
longer is a gpa, we must have ay < by, = deg(y) — ay so 2ay < deg(y)
which implies a, < luz”l J which in turn implies a, = I_%QJ.

This means y has a neighbor z in V — S. Construct a new graph G’
from G — f by removing edge yz and adding edge zz. In G’ vertex
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z has a; — 1 neighbors in S and b; + 1 in V — S. Furthermore, in
G',|N[z]nS| =a; > I-%[I > b, +1=|N[z]- S|. Therefore S
is also a gpa of G’ 50 7a,(G’) < 74, (G), a contradiction that shows z
has exactly I.%QJ neighbors in S.

4. All vertices of V — S have odd degree since they are monovalent. The
vertices in S of even degree form an independent set since, if two
were adjacent, the edge joining them could be removed and S would
remain a gpa, a contradiction. Suppose z € S is a vertex of even
degree, y € S is a neighbor of odd degree, z is a degree one neighbor
of y, and w € S is a second vertex of even degree. Then S remains
a va,-set for the graph obtained from G by removing edge yz and
adding edge wz. Now S has adjacent even degree vertices z and y, a
contradiction that yields the result. O

Observation 5 can be employed to find a sharp lower bound on 7,4, (G).

Before proceeding, it is necessary to describe a family of graphs of even
order n that will be employed in showing sharpness both here and later.
These graphs, denoted G, where s is a parameter, have a gpa number that
is small as a fraction of n, and the gpa number of its complement, G,, has a
value of 3. Start with a K, with vertices vy, vs,...,v,. Append s vertices
Wi1, Wiz, . . ., Wis of degree one to vertex v; for 1 < i <s. Then n =52 +s.
Proposition 6 14,(G,) =s= 5.
Proof: The maximum degree of G, is A = 2s — 1 so, by Observation 1,
Yap(Gs) = 5. Let S = {v1,va,...,v,}. Then z € V — S has degree 1 and
[N[z] 0S| = 1. Also z € S has degree 2s — 1 and |N[z]N S| = 5. Thus S
is a dominating powerful alliance. O

Now consider G,. It is constructed from a K »2 with vertices {w;;:1<
i,j < s}, an independent set {v;,vs,...,v,}, and edges from each v; to all
the vertices of the complete graph except for a set A; = {w;1, wia, ..., wis}
of cardinality s. Note the sets A; for 1 < ¢ < s partition the set {w;; : 1 <
i,j < s}. Each v; has degree s? — s and each w;; has degree 5% + s — 2.

Proposition 7 v,,(G,) = ’_2,;,!2 =1z,

Proof: Since A = 5%+ 52, Observation 1 implies 7,4, (G;) > ‘—aéﬁ Let S
be any set of ﬁ,ji vertices taken from the w;;’s, with the restriction that
at least one vertex of each A; is not included in S. This is possible if s > 3.
Then any w;; has all of these "2—;& vertices of S in its closed neighborhood.

Furthermore, any v; has at least %ﬂ -(s=-1)= ’22' 2 + 1 vertices of S in
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its closed neighborhood. Thus S is a dominating powerful alliance and the
result follows. O

Now we can proceed to the lower bound.

Theorem 8 For any graph G on n vertices,

@20z { {707 G

and these bounds are sharp.

Proof: Let t, = 7(n,0) = min{v,4,(G) : G has n vertices}. Select G so
it has n vertices, ¥,,(G) = s, and the minimum number of edges. From
Observation 5, G has n — t,, degree one vertices. Let S be the remaining
tn vertices which form a y,,-set of G. Each vertex of S has at most ¢, — 1
neighbors in S and hence at most ¢, neighbors in V —S. Thus n—t, < 2.
Solving this inequality yields t, > [v/n + .25 — .5] which is valid for all n.
A slight improvement can be made when » is odd. Again using Observation
5, the G in this case must have exactly one vertex of even degree. To
minimize ¢,,, we must maximize n—t,, which is accomplished by maximizing
the number of edges of (S). This in turn results when the even degree vertex
has t, — 1 neighbors in S and all other vertices of S have t,, — 2 neighbors
in S. Thus each of the {,, vertices of S has at most ¢, — 1 neighbors in
V — S. It follows that n — ¢, <1, (tn — 1) or t, > /n.

When n is even the bound is achieved by the graph G, described above.
When n is odd, S is formed by joining a vertex to all vertices of a K, minus
a one factor, where s is even, and then appending s monovalent vertices to
each of the s + 1 vertices of S. O

3 Upper Bounds

We begin with some straightforward results. Recall that, for general graphs,
t is an integer such that -4 <t < 4.

Observation 9 Let G be a graph. Then ay;(G,t) < 7,,(G,t) < n— [52;‘]
(ap(G) €74, (G) < n—[£]).

Proof: Let S be a subset of n — [L;i] vertices. Then any vertex of S has
at most [6%‘] vertices of its closed neighborhood in V — S and at least
| &£ + 1 in S. Furthermore, any vertex of V — S also has at most [25¢]
vertices of V — S in its closed neighborhood and at least [%‘—‘-J +1in S.
It is straightforward to show |2t] + 1 — [43£] > ¢. Thus S is an excess-t
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powerful alliance. It also dominates since each vertex of V — § has at least
|25¢] + 1 neighbors in S. O

The bound of Observation 9 is achieved for a, and v,, (when ¢ = 0) by
Cy4, Cs, and K. When equality exists in Observation 9, other points can
be made as the next two results show.

Observation 10 Let G be a graph. If v4,(G,t) = n — [‘5 ‘] then every
subset of [6“] + 1 vertices is dominated in G by a single vertez.

Proof: Let V — S be an arbitrary set of [5%‘] + 1 vertices. Then S,
the set of other vertices, is not an excess-t gpa. Thus there is a vertex z
such that [N[z]Nn(V = S)| > |[N[z]nS|—-t+1. Ifz e S, this means
degv-s(z) > deg(x) + 1 — degv_s(z) —t + 1 or degy_g(z) > [5 =t +1
so ¢ dominates V — S. A similar analysis shows, if = E V- S that
degv_s(z) > ["2;‘] so once again £ dominates V- S. 0O

The domination number of graph G is denoted ¥(G).
Corollary 11 Let G be a graph. If va,(G) = n — [45¢], then 4(G) <

et

An open question is if the bound of Corollary 11 holds in general, not
Just in this special case.

Observation 12 Let G be a graph. Ifay(G,t) < v,,(G, 1), then ap(G,t) <
n—40—1.

Proof: Since a minimum excess-t powerful alliance doesn’t dominate the
graph, the undominated vertex and all its neighbors, of which there are at
least 4, are not in the alliance. 0

Let N[z] be the closed neighborhood of vertex z in the complement G
of graph G. We explore relationships between v,,(G) and 7,4, (G).

Theorem 13 If 7,,(G) < [3] ~ 1, then 7,,(G) < | 3] + 1.

Proof: Let S be an arbitrary gpa of G for which 7,,(G) < s = |S] <
[2] — 1. Then, for any vertex z € V, with a, defined by a; =|N(z)N S|,
we have az+1 > deg(z)—a, when z € S, and a; > deg(z)+1—a, otherwise.
Therefore, 2a; — deg(z) + A > 0, where A\, = +1if z € S and d A\, = -1
otherwise. In G, for every z € V, |[N[z]—(V —S)| = s—az, and [N[z]n(V -

S)| = n—s—(deg(z) —a;). Since deg(z) —a, < az+Az <5< [7] -1, we
have that n—s— (deg(z) —a;) > n—s—([ 2]-1) = [”J+1—-s > [ 1-s.
That is, [2] — 5 > 1 vertices of the closed neighborhood of any vertex lie
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in V — S. Hence, a set obtained by removing any [%] — s — 1 vertices from
V — S is still a dominating set of G, a fact we employ below.

Using the identity s = n—s—n+2s and the fact a; > deg(z)—a,—A; we
have s—a, < n—s—~(deg(z)—a;)+2s—n+A;. Thatis, |N[z]-(V-8)| <
|N[z]N(V—8)|+2s—n+A,. Since 2s—n+A; < 0, and since V—S was shown
above to be a dominating set of G, V—S is a gpa of G. Thus the result holds
when 7,,(G) = [2] -1, since in this case [V -S| = n—([2] -1) = | 2] +1.

Let Q be a largest set of vertices from V — S that is not a gpa of G. That
is, there exists z € V such that [N[z]N@Q| < |[N[z]-Q)|. Let B = (V-5)-Q
and r = |B| > 1. With respect to G, let s, b, and ¢, be the number of
neighbors of vertex z in sets S, B, and @, respectively. We now bound r
depending upon the location of the vertex z.

1. z€S. Then b, <r, Ay = +1, and, since BUQ =V — S is a gpa of
G, s:+1 < by+¢-+2s—n+1. Since |[N[z]NQ| < |N[z]— Q| implies
9z < (52 + 1) +bz, ¢r <2b: +9gz +25—n+1,0r r > b, > [2] - .

2. £ € B. In this case by < r—1 and A\; = —1. As in the previous case,
since @ is not a gpa of G, g < 5+ 1+b,. Since BUQ is a gpa of G
and, here, since ¢ ¢ S, we have s; < by, +14 ¢, +2s—n — 1. Then
r>b:+1>[2]-s+1.

3. £ € Q. In this case b, < rand A\; = —1. Also s; < bz +¢r+14+2s—
n—1,and ¢z +1 < s; +b;. Together these imply r > b, > [%]—s+l.

Hence we must remove at least the minimum of the three cases, [%] —s
vertices, to obtain a subset of V — S which is not a gpa of G. From the
above, a set obtained by removing any set of [3]—s~1 vertices from V —$
is a dominating set of G. Therefore v,,(G) < n—s—([2]-s—1) = | 2] +1.
(]

Corollary 14 For any graph G either max{va,(G), 7a,(G)} < [2£] or
[2] < min{ye,(G), %, (G)}-

Surprisingly, determining useful upper bounds for a,(G) and v,,(G)
appears to be difficult, even if consideration is restricted to regular graphs.
We have been able to show such a bound for cubic graphs only, and we
close this section with that result. Let S be a v,,-set of a 3-regular graph
G. Let A; be the set of vertices in S having ¢ neighbors in $, 1 < i < 3, and
a; = |A;|. Similarly let B; be the set of vertices in V — S having i neighbors
inS,2<1i7<3, and b; = |B;|. Let £ € A3. Then, since S is minimal, z
must have a critical vertex neighbor y € A, and the sum of the degrees of
x and y in (S) is four, or an average of two per vertex. After finding such a
pair for all vertices in As, all remaining vertices have degree at most two in
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(S). Thus ) s deg(s)(z) < 2|S]. Since ) ¢ dege(z) = 3|5, it follows
that the number of edges ¢ between S and V — S is bounded as e > |S].

Next consider vertices v € B3. Every neighbor of such a v must either
be a critical vertex or be adjacent to a critical vertex, and the adjacent
critical vertex is not v since v € B3. There are two situations in which
we can interchange two vertices to create a new gpa S’ and which moves v
from B3 to B> with respect to S’. The two situations are:

1. v has a neighbor = which is a critical vertex, the remaining neighbor
of z that is in V — S is w, and the neighbor u of z that is in S is not
a critical vertex. Then create S’ = (S — {z}) U {w}. Observe that
|S’] = |S] and the degree rules for a gpa are true for S’. Thus S’ is
also a v,,-set. It is possible for u to be a second neighbor of v. The
transformation is illustrated in Part (1) of Figure 2 where vertices in
S (S') appear at the bottom of the figure. Directed edges mean that
the terminal vertex may be in either S or V — S.

2. v has a neighbor = which is not a critical vertex, exactly one of its
two neighbors in S, say s, is a critical vertex with neighbors ¢ and d
in V — S, and its other neighbor u in S, of course, is not a critical
vertex. As in the first case, the new 7y,,-set S’ is given by S’ =
(S — {z}) U{c}. Again it is possible for u to be a second neighbor of
v. This transformation is shown in Part (2) of Figure 2.

4 zZ —_— Z
w v X Vv
(1)

Figure 2: Transformations

Apply the above two transformations until it is no longer possible. For
convenience we call the v4,-set which results S. All comments and notation
will now be with respect to this set, including the unique association of
vertices in A; with vertices in As.

The next goal is to associate with each vertex remaining in B3 a unique
vertex of A; not associated with a vertex of Az. Since the transformations
can no longer be carried out, no neighbor of v € Bj; satisfies the conditions
of either of the two cases. Thus a neighbor & which is a critical vertex must
have its neighbor in S be a critical vertex. On the other hand, if z is not a
critical vertex, then its two neighbors in S must both be critical vertices.
Consider the latter situation and let the two neighbors in S be a and b. We
select one arbitrarily, say a, and let that be the unique vertex in A; that
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is associated with v. Since & € A2, a cannot already be associated with a
vertex of Az. Furthermore, no neighbor of a can be in Bj since then the
first transformation would have been applied. Thus vertex a can not be
required for another association.

The only remaining case is if each neighbor of v is a critical vertex
with its neighbor in S also a critical vertex. If z is such a neighbor of
v we see it has not previously been associated with any vertex of Az U
B3. We consider the three neighbors of v to be candidates for the desired
association. Construct a bipartite graph B = (X,Y, &) where X is the set
of vertices of B3 which have not yet received an associated vertex of A,
Y = Uyex N(v) and vz € £ if and only if £ € N(v). Let T be any subset
of X having k vertices, 1 < k < |X|. There are 3k edges between T and
N(T). The vertices of N(T) can be endpoints of at most two of the edges.
Thus |N(T)| > % > k = |T|. By Hall’s theorem (see [6]) there is a system
of distinct representatives for X and we take them as the unique associated
vertices from A;.

Since we have found a unique association between vertices of A; with
vertices of A3U B3, a; > ag+bs. Observe that |S| = a;+az+as, |[V-5| =
bo+b3, e =2by+3b3 = 2(1’1— |S|)+b3, and e =2a;+as = |S|+(11 —ag. It
follows that |S| = 2n—2|S|+b3— (a1 —a3) < 2n-2|S|+b3—-(az+bz—a3z) =
2n — 2|S| which gives the following theorem.
Theorem 15 For any 3-regular graph G, 74,(G) < %"

An unsatisfactory demonstration of sharpness is illustrated by the graph
" shown in Figure 3. The four top vertices form a v,,-set. However, we have
been unable to find other examples of sharpness, and we wonder if this is

unique.
2n

Figure 3: A graph for which v,, =

4 Nordhaus-Gaddum Results for v,,(G)

All results in this section correspond to ¢ = 0. Some lower bounds are given
first.

Theorem 16 Let G be a graph. Then va,(G)+7,(G) > I—M;MEM-I.
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Proof: From Observation 1, 74,(G) > [A(Gz)H] > ﬂ%)"'l and 7q, G) >
_ B4l neie - _
A(G2)+1'| > A(Gz)-H — n-l ;(G)+1‘ Thus g, (G)+¥a, (G) > A(G}+l-zl-n 5(G)

and the result follows. O

The graph G, defined earlier shows sharpness of the bound for Theorem
16. For it, 74,(Gs) + 7aP(G_,) =s+ ’—2;3 = "‘2+3' Furthermore, since
n=s?+s, A(Gs) = 2s — 1 and §(G,) = 1, we have [M&)_{j&&] =
“—""‘iﬂ!ﬁl—"’—l] = [‘—z‘*'g’—‘l.] . Since s? + 3s is even, this is the same as
The following theorem is better than Theorem 16 for some graphs.

Theorem 17 Let G be a graph. Then 7,,(G) + 74,(G) > 7(G) + 7(G) +
n—A(G)+6(G! ]

Proof: Let S be a smallest gpa of G and X any lﬂzglJ vertices of S. Let
v € V(G). fv ¢ S, it has at least [ﬂ%&-l > I.é—(glj neighbors in S
and hence at least one in S — X. If v € X, it has I-M;—L'l.l > I_ﬂzgl_'

neighbors in S and hence at least one in S — X. It follows that S — X is a
dominating set of G and ¥(G) < |S — X| £ 74,(G) - I_ﬂzﬂJ . Applying the

argument to 'C_iand combining, we have ¥(G) +v(G) < 74,(G) + 74, (G) -
(|22] + [22]) = 0, (4%, @) (| 2] + [ 2=22=2]) < 7, (@)
%4, (G) — [Mﬁgﬂﬁﬁ] and the result follows. O

Notice that Theorem 16 gives v4,(Ca) + 7a,(Cs) > 3 and 74,(Cs) +
Ya, (Cs) > 3. The corresponding bounds from Theorem 17 are both 5 while
the actual values are 5 and 8, respectively. The bound of Theorem 17

can be rewritten as y(G) +v(G) + ["'A(G)+6(G)'3] = [""'A(G)"S(G)"'l] +

v(G)+7(G) — (A(G) —8(G) +2) where the first term on the right hand side
is the bound of Theorem 16. Thus Theorem 16 represents an improvement
over Theorem 17 whenever ¥(G) + v(G) — (A(G) — 6(G) + 2) < 0. This
occurs, for example, in G = K}, when n > 3. In this case v(G)+v(G) = 3
and A(G)-46(G)+2=n+1.
The bound of Theorem 16 for regular graphs is [%"—1] . The next theo-
rem shows a greatly improved bound for such graphs.

Theorem 18 Let G be a d-regular graph of order n, d > 1. If n is odd,
let m = min{d + 1,n — d} and, if n is even, let m be whichever of d + 1
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and n —d is odd. Then v,,(G) + 7,,(G) > n+ [%] +cwheree=11ifn
ts odd and ¢ = 0 if n is even.

d+1t
Proof: Observation 2 shows that v4,(G) > [ﬂ“ill > [%] Applying

the same reasoning to the (n — d — 1)-regular graph G, we have a,(G) >

n—d
ey [2]. Consider first that n = 2k is even which implies exactly
one of d+1 and n—d is odd. Without loss of generality assume d+1 is odd.

—_ LTy =28 442
Then 7o, (G) + 7, (C) > [4‘%11]“: [2 ] +h= b+ 5] +4 =
2k+|—d+l-| =n+[s&]. If n=2k+1is odd, both d+ 1 and n — d are

odd. Again without loss of generality assume d + 1 < n — d. It follows

— 2k d41 —d dt2
i (@) 3, @) 2 [ 2521 ¢ [l e

(S5 = [k g ] + [or b ] 2 ks [] +
k + [%_,_ 22::_‘11)-, = 2k + [%'I + [§+ 2("—_‘,5]. It is easy to see that

EZHSn—dSn—lwhichimplies;<7"—<lso[l+7ﬁ—)]=2-
Therefore 74,(G) + 74, (G) > 2k + [Z] +2=n+[&] +1. O

The bound of Theorem 18 is sharp when = is even. To see this, consider
Cn where n = 12k for some positive integer k. Label the vertices in order
by 0,1,...,n— 1. Since d = 2, m = 3 and the theorem yields Ya, (Cn) +
Ya,(Cn) 2 n+[2] = 2. It is known that 74, (Cs) = 22 (see [1]) and, from
the proof to the theorem Ve, (Cn) > 3. We will show equahty holds in thls
latter case. Let S = {0, 1,4 5,8,9,...,n —4,n — 3}. Notice that |S} =

and for any vertex v, [N[p]N S| = % — 1 so S dominates. The degree of
every vertex of Cp isn—d—1=n— 3 so S will be a gpa if every vertex has
its closed neighborhood contain at least [254] = 2 — 1 vertices of S. We

have just seen that this is the case. Thus v,,(Cn) +7a, C)=% F+5= 76"

and the theorem’s bound is seen to be sharp. Similarly, C, = C;gk“ can
be used to show sharpness when n is odd. We know Ya, (Cn) [2"]
[4—"'*'—] = 8k + 1. Label the vertices on the cycle as before in order from
Oton—1andlet S={0,1,4,58,9,...,n~5,n—4,n—2 —2,n—1}. It is
easy to see that |S| = 6k + 2 and S is a gpa. Thus 7a,,(cl2k+l) < 6k+2.
Hence 74, (Cn) + 74,(Cr) < 8k + 1 + 6k 4+ 2 = 14k + 3. Using the result
of the Theorem 18 we calculate v,,(Cn) + ¥4, (Cr) > 12k + 2+ [—‘*’—] =
12k + 2 + 2k 4+ 1 = 14k + 3. Therefore the set S must be a minimum gpa
for C12k+1 and again we see the theorem is sharp.
We close this section with two simple upper bounds.
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Observation 19 Let G be a graph. Then ay(G) + a,(G) < 74,(G) +
— n _
7a,(G) < la +A§622 6!G)+1J.

Proof: From Observation 9 we have 7,,(G) < n— [ﬂzﬂ-l and 74, (G) <
n-[4Q] = - [2=22=L]. Thus 7%,(6) + 76, (G) < 2n - %F -
n-A(G)-1 _ 3n+A(G)-6(G)+1l

3 = 3 .

Corollary 20 IfG is a regular graph, ap(G)+ap(G) < ¥4,(G) +7a, (G) <
[21].

The bound of Corollary 20 is achieved for Cs.

5 Properties of Excess-t Global Powerful Al-
liances for Regular Graphs

Throughout this section all graphs are regular, with degree d, unless oth-
erwise stated. Let S be any minimal excess-t gpa of graph G. It fol-
lows from a comment in the Introduction that §({S)) > [4=3*%] and
AV = 8)) < d— [4H£t] = |4=1=t]. This means that each vertex of
V — S has at least [iﬂ%ﬂ] neighbors in S, so |S| > [1‘%—"'—'] Furthermore,
since S has at least one critical vertex, 6((S)) = [4=2£t]. Such a vertex
has exactly | 4t1=t| neighbors in V — S which implies [V - S| > | 4ti=t |
and |S| < n— | =]

The following observation and its corollary show that vs,(G,d,?) is
monotonic in %.

Observation 21 For any d-regular graph G and —d < t < d, S is an
ezcess-i gpa for any i such that —d <i <t

Proof: This is immediatq ift = —d, so assume t > —d. Obse_rve that
8((S)) = [4=3£t] > [ ] and A((V - 95)) < |4=1=t| < |43=|. Thus
S is an excess-i gpa. O

Corollary 22 For any d-regular graph G and —d < t < d, 74,(G,d, 1 —
1) S 70,(61 dst)'

We have noted that the definition of an excess-t gpa reduces to that of
a standard gpa when t = 0, s0 74,(G,d,0) = ¥4,(G). More generally, if
m = [4£1£t], 5, (G, d,t) > m(G) where v, is the m-domination number,
since every vertex of V — S has at least m neighbors in S. It follows that
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Ya, (G, d, —d) > 11(G) = v(G), the domination number of G. Recall that
Ya, (G, d,d) = n so we usually assume ¢ < d.

When t = d—1ort = d—2, m = [4£}££] = d which implies V — S is an
independent set. Thus, using Corollary 22, Y, (G d,d—1) > 7,,(G,d, d—
2) > 74(G) = ao(G), the vertez cover number of G. This suggests a
relationship to p(G), the packing number of G, which is the maximum
number of vertices that are pairwise at least distance three apart. See [11]
for more information on these parameters.

Theorem 23 For any d-regular graph G, 7,,(G,d,d — 1) = Ya,(G,d,d -
2) = n — p(G) > ao(G).

Proof: Let S be a Ya, (G, d, d— 2)-set. The paragraph preceding the theo-
rem shows V —$ is independent. Furthermore, §((S )) = d—1s0 no vertex of
S has two neighbors in V —$. It follows that each pair of vertices in V —$ is
at least distance three apart and hence 7o, (G, d,d - 1) > v,,(G,d,d—2) >
n — p(G). Also V — X for any maximum packing X is an excess-(d — 1)
gpa and, using Corollary 22, v,,(G,d,d—-2) < 7,,(G,d,d— 1) < n—p(G),
establishing the result. O

Corollary 24 For any d-regular graph G, 7,,(G) + p(G) < n. Ifd < 2,
7a,(G) +p(G) = n.

Proof: From Theorem 23, if d > 3, 74,(G) = 7,,(G,d,0) < Y, (G,d,d —
2) =n—p(G). When d = 1, 7,,(G) = p(G) = 5. When d =2, v,,(G) =
%, (G,d,0) = 7,,(G,d,d-2) =n—-p(G). O

Lemma 25 Let G be a d-regular graph. If —d+1 < t < d, then Ya, (G, d, t—
1) = %4,(G,d,t) if and only if d +1 is odd.

Proof: Suppose d+1 is even. Let S be a v,,(G, d,t)-set and z € S. Then
S((S) — z) 2 6((S)) =1 = [45#] — 1 = [d=lft=2] = [d=pt=l] where
the last equality follows since d + ¢ is even. Similarly, A((V — S) + z) <
|&=3=t] + 1 = |4=Lot+l | Therefore, S — {z} is an excess-(t — 1) gpa so
70;:(Gad1t— 1) < 7dP(G:d1 t) .

Assume next that d+1 is odd. Let S be a v,,(G, d,t—1)-set. Since d+1t
is odd, 6(($)) = [#14HE=0] = [4=at] and A((V - §)) < | 4250620 =
I_%J These imply S is an excess-t gpa from which it follows that
Ya, (G’ dvt) < 'Sl = 7ap(G,d,t - 1) [m]

Observation 21, Theorem 23, and Lemma 25 lead immediately to the
following result.
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Observation 26 Let G be a d-regular graph and i an integer such that 0 <
i < d—1. Thenv,,(G,d,2i—d) = Ya,(G,d, 2i—d+1) < Ya,(G,d, 2i—d+2).
Furthermore, ¥,,(G,d,—d) = 7(G) and 74,(G,d,d - 1) = n - P(G) <
Ye,(G,d,d) = n.

Corollary 22, Lemma 25, and Observation 26 have similar counterparts
for 7(n,d,t) and T'(n,d,t). The results for 7(n,d,t) are virtually identical.

Observation 27 Let (n,d,t) be a feasible triple.
1. Fort such that —d <t <d, t(n,d,t—1) < r(n,d,t).

2 If—d+1<t<d, then 7(n,d,t = 1) = 7(n,d,?) if and only ifd+1
is odd.

8. Let i be an integer such that 0 < i < d— 1. Then 7(n,d,2i - d)
r(n,d,2i—d+1) < 7(n,d,2i —d + 2). Furthermore, 7(n,d, —d)
min{y(G) : G is d-regular with n vertices}, and 7(n,d,d—1) =n —
max{p(G) : G is d-regular with n vertices} < 7(n,d,d) = n.

Proof: The proofs for 1, 2, and the first part of 3 follow directly from
those of Observation 21, Corollary 22, Lemma 25, and Observation 26,
respectively, where one now argues in tems of minimum values over all d-
regular graphs on n vertices. For the latter part of 3 we have to select the
smallest value of 7(G) and the largest value of p(G) in order to minimize
the value of 7,, over all d-regular graphs G on n vertices. 0O

A complete parallel is not possible for T'(n, d,t). The upper domination
number T'(G) (see [11]) of graph G is the cardinality of a largest minimal
dominating set of G.

Observation 28 Let (n,d,t) be a feasible triple.
1. Fort such that —d <t <d, T(n,d,t —1) < T(n,d,t).
2 If-d+1<t<d, then T(n,d,t—1) =T(n,d,t) ifd+1 is odd.

3. T(n,d,—d) = max{[(G) : G is d-regular with n vertices}, and T(n,d,
d—1) = n—min{p(G) : G is d-regular with n vertices} < T(n,d,d) =
n.

Proof: Again the proofs for 1 and 2 follow directly from those of Observa-
tion 21, Corollary 22, and Lemma 25, respectively, where the largest values
of minimal gpa’s are employed. For 3 we recognize I'(G) is an excess-(—d)
gpa. Therefore we select the largest value of I'(G) in order to maximize the
value of 'y, over all d-regular graphs G on n vertices. Similarly, we must
minimize the value of p(G) in order to maximize I';,. O
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The following corollary is an immediate consequence of Lemma 25, Ob-
servation 26, and the facts that Y(G) = 7a, (1, d, —d), 74,(G) = 74, (n, d,0),
and n — p(G) = Ya, (Tl, dv d— l) < Ya, (n) d: d)

Corollary 29 Let G be a d-regular graph withd > 2. Then v(G) + I_% _| <
Y0,(G) Sn—p(G) - [§] - 1.

6 Extremal Graphs for 7(n,d,?)

This section determines the value for 7(n, d,t) and constructs for each fea-
sible triple (n, d,t) a d-regular graph G such that v,,(G,d,t) = r(n,d,1).

dilil
From Observation 2 we have 7(n,d, t) > [ZL“+21—1] for any d-regular graph
G.

We define a graph with n vertices and m edges to be nearly regular if
the degree of each vertex is either [";—ej or fzn—"l The next lemma indicates
a construction technique for forming nearly regular graphs containing a
stated number of edges. It is based on the fact that KX, has an edge decom-
position into 2= 1 Hamiltonian cycles if n is odd and into 252 5= 2 Hamiltonian
cycles and a 1-factor if n is even (see [2], pp 203, 206).

Lemma 30 Let n and d be positive integers such that nd is even and d <
n—1, and e a nonnegative integer such that 2e < nd. Then a graph G having
n vertices and e edges can be constructed in such a way that § = I.zﬂ—e_l and
—I2
=[%]
Proof: Let e = mn + r where 0 < r < n—1. It is easy to see that

|_26_| { om + 1 :; g:; Z . Construct G as follows:

1. Create a 2m-regular graph on the vertices of G by incorporating m
of the Hamiltonian cycles in the decomposition.

2. If r < [2], add r independent edges taken from a remaining Hamil-
tonian cycle or 1-factor. Every vertex has degree 2m or 2m+ 1 (only
2m+1ifr = 2).

3.Ifr> I_"J there must be another Hamiltonian cycle in the decompo-
sition. Add in |_ J independent edges taken from that cycle. At this
point, every vertex has degree 2m + 1 except possibly one of degree
2m if n is odd. Now there are r — I.iJ -1- [—J [—] -1 edges
still to be included. These can be selected from the missing edges in
this last Hamiltonian cycle, taking care to have one, and only one,
of them incident to the vertex of degree 2m if it exists. Every vertex
has degree 2m+1or2m+2. O
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References in this and the following section to creating nearly regular
graphs refer to employing the technique of Lemma 30. We now construct
graphs which show that the lower bound for 7(n,d,t) given above can be
achieved except for one special case for which that bound must be increased
by one. Suppose S is an excess-t gpa of G = (V,E). Let s = |S]; es
and ey_s be the number of edges in (S) and (V — S), respectively; and
e be the number of edges joining a vertex of S and a vertex of V — S.
It is immediate that |[E| = 3% = es + ev_s + ¢, s6((S)) < 2es, and
2ey-s < (n—s)A((V — S)). Several preliminary results are given next.

Observation 31 Let S be an ezcess-t gpa of G.
1L 0SA(V-9) < |&5=).
8. [4=44] < 5((S)) < d.

3 (n—s)(d-A(V —-9)) < (n—5)d—-2ey_s = e = sd — 2e5 <
s(d—46((S)).

4. 86({S)) < 2e5 =2ev_s+2sd—nd < (n—s)A((V — S)) + 2sd — nd.

5.8 2 [ﬁ%vﬁ(%ym%%n-l + ¢ where € = 1 when both of §((S)) and

M_fg%v_(%,ﬁ:%ﬁ are odd integers and ¢ = 0 otherwise.
Proof: Parts 1 and 2 are requirements any excess-t gpa must satisfy. The
equalities of Part 3 reflect the fact that both S and V — S must have
the same number e of end points of the edges between them while the
inequalities provide obvious lower and upper bounds on this number. The
first inequality and the equality of Part 4 follow immediately from Part 3
and the final inequality arises since 2ey_s < (n—s)A((V —S)). For Part 5
we solve for s from the inequality between the first and last terms of Part 4
to produce the given lower bound, except for the e. When there is equality

throughout Part 4, both s6({S})) and (n — s)A({(V — S)) must be even.
n(d—A({V-5 nd—A V-5

Furthermore, s = sz=xrrv—sn—3f(syy- Alternatively, if s7—xm7—5 (S
is an integer, s will be equal to it and we have equality throughout Part
4. But if 55~ A"",A_ ;./ ’_i, syyand 6({S)) are both odd, we cannot have such
equality and it is impossible to construct a graph, Thus the lower bound
on s must be at least one larger in this case which accounts for the need of
e. O

We now can show the value of 7(n,d, t).

d+1+4t
Theorem 32 For feasible triples (n,d,t), 7(n,d,t) = ﬂw]-.l +¢ where

€ = 1 when both [4=1+£] and n[* . +51 ] are odd integers and € = 0 otherwise.
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Proof: The quantity [ 2d_"A“’"’}_S‘.’))'_36 s )] + ¢ is easily checked to be a
decreasing function as either A((V — S)) increases or §({S)) decreases. In

particular, then, the inequality of Observation 31 Part 5 must hold when
A({V — 5)) has its largest possible value of |4=1=t| and §((S)) has its
smallest possible value of [d‘—;ﬂ] Substituting these limiting values into

d+14t
Observation 31 Part 5 shows 7(n,d,t) > [ﬂ“_zll] + € where € = 1 when

d+1+4t
both [4=}£t] and ZLdz_.l. are odd integers and ¢ = 0 otherwise.

T
Next we show this Tower bound can be achieved by demonstrating the

existence of d-regular graphs on n vertices having an excess-t gpa with

ndll

+ € vertices. Suppose first that ¢ = 0 and let S be a set of

d+1
n d4-14-t .
s = = +’1 vertices. We attempt to construct a nearly regular graph
on S such that §((S)) = f"‘—;*—‘] For such a graph, es must satisfy

4#] 52e5<s([#]+1). (1)

Simultaneously we want a nearly regular graph on V —S where A((V-8)) =
I_%J and, because of Observation 31 Part 4, 2ey_s5 = nd — 2sd + 2egs.
Thus we need

(n—s)(l#J—l)<2ev-sS(n—s) l%_‘ (2)

A graph can be constructed if a value for es can be found satisfying
Equation 1 which also allows satisfaction of Equation 2. Observation 31
Part 4 shows the right inequality of Equation 2 is satisfied when 2es as-
sumes its minimum value of s I""—zlﬂ] If the left inequality also holds,
we will be able to construct a graph. If it doesn’t, increase es, always
maintaining the equality 2es = 2ey_s + 2sd — nd. Every increase of one
of es corresponds to an increase of one in ey_gs. We now show that the
left inequality of Equation 2 will hold when 2es = s ([4=1£] + 1) — 1, its
maximum possible value. This means that at some point in the increasing
of eg there is a value of it in the range of Equation 1 and a corresponding
value of 2ev_g5 = 2es — 2s5d + nd in the range of Equation 2.

By way of contradiction, assume 2ev - s = 2es — 2sd+nd = s ([4=1+L]
+1)~1-2sd+nd and 2ev_s < (n—s) (| 4=1=t| — 1). Combining these to

form s ([4=3#£] + 1) —1-2sd+nd < (n—s) (| 4=2=| - 1) and simplifying

+ i dilil
givesn—1< (d+1)(s—- M) Since s = [ﬂ——l , the multiplier

d41 a+1
of d+1 is less than one so it follows that the right hand side of the inequality
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d+1

that d = n — 1 which means that n [9t]+t] is divisible by d + 1 = n.

dt14t d414t
ﬁ[d_'_—llsod=n—1=(d+l) s—-n—[—d_—*—l—]-) = 0 which
is a contradiction for nontrivial graphs. Thus there is some value of eg
satisfying Equation 1 and 2ev_s = 2es — 2sd + nd which results in ey_s
satisfying Equation 2. Therefore an extremal graph can be constructed and
the theorem holds when ¢ = 0.

As indicated previously, it is not possible to construct an excess-t gpa
n d4141

isat most d. Thusd <n—-1<(d+1) (s - -"—m) < d. It follows

Therefore, s =

on vertices when ¢ = 1. However, since (s + 1) [4=1] is even,
d+14t

it is possible in this case to construct one having z a7 + 1 vertices in

the manner described above with s increased by one. O

d+1

As a corollary, there is an interesting relation between certain lower and
upper excess-t gpa numbers.

Corollary 33 Ift < d—2 and d+1t is odd, T(n,d,t) + 7(n,d,—t — 2) <
n < 7(n,d,t)+T(n,d,—t—2). Ift <d—3 and d+1 is even, 7(n,d,t) +
7(n,d,—t—-3) < n < 7(n,d,t)+T(n,d, -t - 3).

Proof: Interpret the set V — S resulting from the construction leading
to Theorem 32 as an excess-f gpa for some value of i. Let us actually
take £ to be the largest integer for which V — S is an excess-f gpa. Recall
S((V = S)) > |4=L=t] — 1 and A((S)) < [9=]}*t] + 1. The requirements
of an excess-i gpa will be most restrictive for vertices of V — S and S,
respectively, whose degrees are equal to these limiting values. Thus, for
vertices of minimum degree of V — S, we must have [=]=t| -1 +1 >
[ﬁ%ﬂ] + 1+ . Similarly for vertices of maximum degree of S we must
have [4=1=t| > [4=1#t] + 1+ 1+1{. Suppose d+1 is odd. Evaluating the
two inequalities shows that { < —t — 2. Thus V — S is an excess-(—t — 2)
gpa and we have 7(n,d,—t — 2) < n — 7(n,d,t) < T(n,d, -t — 2) which
gives the result in this case. The argument when d+1 is even is completely
analogous. 0O

7 Extremal Graphs for T'(n,d,t)

In this section we determine T'(n,d,t) for all feasible triples (n,d,t). Of
course the smallest possible value for n is d + 1 in which case G = Kq441,
|S| = [4£+L], and |V — S| = |44}=t]. Suppose graph G has an excess-t
gpa of cardinality n — k, that is, |V — S| = k. Since each vertex of V — S
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must have at least [i"%ﬂ] neighbors in S and each vertex of S can have
at most [ﬁ';—“J neighbors in V — S, the number of vertices in S must be

k d414t .
at least H rierT- | - The next lemma determines an upper bound for |S|.
2

Lemma 34 For a feasible triple (n,d,t), let G = (V,E) be an arbitrary
d-regular graph on n vertices and let S C V be any minimal excess-t gpa of

G. Then, withk=n—|S|, |S| < l.ﬁ]-J [dtlt],

Proof: Suppose ¢ is the number of vertices of V — S that are critical
vertices and have at least one neighbor in S that is not a critical vertex.
These vertices have a total of ¢ [ﬂ%ﬂ] edges to S. Suppose further that
o of these edges lead to critical vertices. Then these ¢ vertices can act as
critical vertices for at most ¢ | i‘%ﬁ] —a vertices of S other than ones that
are critical vertices. By the definition of ¢, each of the c vertices has at most
[%1 edges terminating at critical vertices in S. Thus a < ¢ f";;"—']
It follows from the above that the number of edges from V — S termi-
nating at critical vertices in S is at most (k—c)d+«, implying the number of

critical vertices in S is at most lgf%L f;f;"j" J . These allow (f:f;)‘_if'j’J [4433t]

vertices in S. Now we can compute an upper bound for |S| as follows:

ISl < _("[]cgffj'“J | e [ e

< -(kl-;_igi-jaJ [d+21+t] +c[w]

_ (k—c)d+a+cJ [M1

TR T
_ kd—cd+oa+c|S=t] | [d+1+1¢
- [t e
| kdta—c(d— B [ [d+1+1¢
i e I
_ | kd+a—c[E] l’d+1+t
- [#5=] 2 ]

IA

| []
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Lemma 34 allows determination of the value for T'(n,d, t).

Theorem 35 For a feasible triple (n,d,t),

T(n,d,t)=min{"‘ ld+;_tj ’ [l;-;iJJ [d+21+t]}

where m is the smallest integer for which n < m + lri.;_.-"idz_‘-]-J [i‘i%f_‘]
2

Proof: The fact that the first expression is an upper bound follows from
remarks in Section 5. The second is an upper bound because of Lemma
34. We now show that equality holds by describing the construction of
a d-regular graph on n vertices possessing a minimal excess-t gpa having

g=min{n— |42=t], [dt"‘;‘i.JJ [‘“’;'*"]} vertices.

Let S and V—S be sets of ¢ and k = n—q vertices, respectively. We have

seen that, if S is to be an excess-t gpa, at least k [ﬂ'—;ﬂ] edges must join S

and V' —S and at most ¢ [5:‘%"-] such edges can exist. This implies we must

k[ 2dltt . )
have ¢ > H ri=rT |- Suppose instead, for ¢ as determined above, that ¢ <
2

‘H:—]li:.: . When g = n—|4£=t| k = |¢]=t| and hence n < | 1=t |+

2

[¢4l+t] = d + 1, a contradiction. Now assume l[f";E‘LJ-J [d4l+t] = ¢ <

[ [dt14¢7 ]
'-}Lml . Since k = n— ¢ < m, we have I.-Em;__'lj [dHltt] = ¢ <

& [dtite ditt df14t ™
ldi;-t < mdila-t < i =t " Therefore, llailicJJ < ldiT-cJ
L

and implies m = 0 or d = 1, both of which lead to contradictions.
Partition S into Sy and S having ¢; and ¢, vertices, respectively, where

g1 = min {q, IJ.%IJ} and g2 = ¢—q;. Finally let d’ = min{gs,d}. This
situation is depicted in Figure 4. The symbols e, F, and D refer to the
number of edges placed between the indicated sets. The end points of such
edges always will be distributed as evenly as possible among the vertices of
a given set, and |D| < 1 always.

We make the following definitions:

l.Le=q I_i"'—;;‘J is the number of edges between S; and V — S. This
will never change if g2 > 2 so each of the q; vertices of S; will be
a critical vertex in that case. If g2 < 1, at most one vertex of S)

may change from being a critical vertex. Suppose q1 = h&f‘l
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g2 vertic
es edges

Figure 4: Notation for Theorem 35

Then e = [lﬁ-{ |¢t1=t|. Again letting c = |¢H=t] kd > e =
[&]c= [M=etl]c > kd—c+ 12 kd—k(c—1) = k(d+1—¢) =
k [“—12“[' which is required. Furthermore, the inequality is strict

unless ¢ = 1 in which case e = kd so kd — e = 0, an even integer. We
have seen earlier in the proof that, if g; = ¢, then e > k [ ﬂ%l .

Furthermore, if g = n— |#H=t| e > k [%ﬂ] unless ¢ = [ﬁ%)-.l
and then we again have kd —e = 0. If ¢ = lf"@f,-J and e =
q I_ﬁg_—t_l =k [i'%[', then l—f"@‘i,- < l—@, a contradiction.

2. ey_g=kd—e.

3. e, = qa2(d' — 1). Note eh = 0if g2 < 1.

4. F' = qod — ¢,

5. el =q [d;zlﬂ] - F.

6. €1 = 11if €] is odd and 0 otherwise.

7. e2=1if e},_g = kd — e is odd and 0 otherwise.

Now G can be constructed as follows. When edges are placed in V — $,
S1, and S,, they are done so as to make the resultant subgraphs nearly
regular.

1. If g2 < 1 (S2 either is empty or contains a single vertex having all d
of its neighbors in S):
' | d1—t
inV-_8.

edges are placed
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(b) €1 = e'l-;e: - q[E=3E])-F'te — a1 [ 4513 ] -gad+ga(d' - 1)+ea edges

are placed in (S ). chte that one vertex of Slzis no longer a crit-
ical vertex if e = 1. However, since it is adjacent to another
vertex of S; and the vertex of Sy, if there is one, is adjacent to
d vertices of Sy, there is no problem.

(c) ez = 0 edges are placed in (Sz).
(d) D =0 edges are placed between S; and V — S.
(e) e — €2 edges are placed between Siand V—3S. If 2 = 1, the

comments in part 1 of the definitions above show e > k [ 4t14t]
so this reduction is acceptable.

(f) F = F' = g2d — g2(d’ — 1) edges are placed between S; and S;.
2. If g2 > 2:

' - e kd— d41—1 —€
(a) eyos = Y=5=2 = kd=g=a LL S 2 edges are placed
inV-3_S.
_dlma _ o[ SH]-Fea _ o] S ] -adie(d-1)
(b) €1 - - 2

~° edges

are placed in (Sy).
(c) e2 = °”"(‘2'+") = "’(d"l)z_(“"'") edges are placed in (S3).

(d) D = ez edges are placed between Sz and V — S.

(¢) e edges are placed between S; and V — S.
(f) F = F'+ ¢, = gad — q2(d’ — 1) + €1 edges are placed between 53
and Si.

It is straightforward to verify that the e, D, and F edges can be placed
so that the resultant graph is d-regular. Set S is an excess-t gpa since it
dominates the graph and every vertex of S either is a critical vertex or is
adjacent to a critical vertex in S. O
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