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Abstract

We present algebraic constructions yielding incidence matrices for all
finite Desarguesian elliptic semiplanes of types C, D, and L. Both basic
ingredients and suitable notations are derived from addition and multiplica-
tion tables of finite fields. This approach applies also to the only elliptic
semiplane of type B known so far. In particular, the constructions provide
intrinsic tactical decompositions and partitions for these elliptic semiplanes
into elliptic semiplanes of smaller order.

1 Introduction: Finite Elliptic Semiplanes

A partial plane is an incidence structure S = (X, L, |) such that any two distinct
points in X are incident with at most one line in L. If p|l, in abuse of lan-
guage we say that p lies on [ and that ! goes through p. In particular, S is called
non-degenerate if both X and L contain at least three elements. Dembowski [7]
defines a semiplane to be a non-degenerate partial plane satisfying the following
axiom of parallels:

Given a non-incident point line pair (po,ly), there ezists at most one
line l; through po and "parallel” to ly (i.e. there is no point incident with
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both ly and ly) and, dually, at most one point p; on ly and "parallel” to po
(i.e. there is no line incident with both po and p; ).

A semiplane is elliptic of order n if there are n + 1 points on each line and
n + 1 lines through each point.

A Baer-subset of a finite projective plane P (of order n + 1, say) is either
a Baer-subplane of P or, for any point line pair (p,l) of P, incident or not, the
partial sub-plane B(p,!) made up by p, I, and all points lying on I as well as
all lines going through p. It was known already to Dembowski [7] that P\Bis an
elliptic semiplane (of order n). (We call any such elliptic semiplane Desarguesian
if P is so0.) Dembowski proved the following partial converse:

Theorem 1.1 IfS = (X, L, |) is an elliptic semiplane of order n, then all parallel
classes in X and L have the same size, say m. Moreover, m divides n(n + 1), the
total number of points (lines) is n(n + 1) + m, and exactly one of the following
cases holds true:

(0) m = 1 and S = P is a projective plane of order n;

(C) m = nand S = P — B(p,l) for some incident point line pair pll, see
also Cronheim [6];

(L)ym =n+ 1land S = P — B(p,l) for some non-incident point line pair
(p,1), see also Liineburg [14]; :

(D)ym=n+1-+n+1andS =P — B for some Bear subplane BofP;

(B) m < n+ 1 — v/n+ 1 and there exists a symmetric balanced incomplete
block design with parameters

v=b=(n(n+1)+m)mt, k=r=nmn+1-m)m™*,
and A=(n-m)(n+1-m)m™'.

Dembowski left the existence of elliptic semiplanes of type B as an open
problem. In 1977 Baker [1, 2] found such an elliptic semiplane, which has 45
points, order n = 6, and parallel class size m = 3; the corresponding BIBD with
parameters (v, k, \) = (15,7, 3) is isomorphic to the point plane structure of the
projective space PG(3,2).

2 Constructions and Algebraic Criteria for
Linearity of (0,1) block matrices

A partial plane £ = (X, L, |) gives rise to a (0, 1)-matrix, the incidence matriz.
fix some labelings X = {po,...,pr} and L = {lo,...,ls}, and define M =
(ms ;) with m; ; = 1 or O whether or not one has p;|!;. The incidence matrix is
unique up to re-ordering of rows and columns since relabeling the points (lines)
of L results in a permutation of the rows (columns) of M.
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The forbidden substructure characterizing partial planes is a di-gon, made up
by two distinct points p;, p2 and two distinct lines {1, 15 such that for all i,j €

{1, 2} one has p;|l;. Its incidence matrix would read ( } i ) This implies the

following criterion.

Lemma 2.1 A (0, 1)-matrix is the incidence matrix of some partial plane if, and
only if, it does not contain any 2 x 2 submatrix all of whose entries are 1.

We call such a (0, 1)-matrix linear.

Big (0, 1)-matrices are difficult to handle, in particular when checking lin-
earity. In favorable situations, however, the (0, 1)-matrix M under consideration
reveals an appropriate block matrix structure with square blocks. Our approach
consists in constructing 1 — 1 correspondences between square (0, 1)-blocks of
M and elements of a finite field GF(q) in such a way, that checking linearity in
M can be translated into inspecting algebraic equations over GF'(q).

Additive correspondence

Let ¢ > 3 be a prime power and consider the additive group (GF'(q), +) and
fix a labeling for its elements, say go, g1, - - - , §g—1 such that go = 0. Let (a; ;) be
the GF'(q)-matrix of order q defined by

a;; = (-gi)+g; fori,j=0,...,q—-1.
Note that (a; ;) is an addition table for GF'(g) where the elements

90=0:_gls_g21-“1_gq—1 and 90,91,925---,9q9-1

correspond to the 1%¢,27¢, ... g*h rows and the 1°¢,27¢, ... " columns, re-
spectively. In particular, all the entries in the main diagonal are equal to 0. For
each g € GF(q), let P, be the (0, 1)-matrix of order ¢ whose entry in position
(%,7) is defined by

o 1 if Q=9
(Podig = { 0 otherwise.
Since the element g appears in each row and column of the addition table (a; ;)
precisely once, Py is a permutation matriz of order q. In particular, P is the
unit matrix of order q.

Definition 2.2 Let B = (b; ;) be an r x s matrix with entries in GF(q). Then we
"blow up” B to a (0, 1)-matrix B with qr rows and qs columns in the following
way: B is the r x s block matrix having q x q blocks B; .j such that for all
t=0,...,r—1andj=0,...,5s —1one has

Bivj = Pg if, and only if bi,j =g.
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Proposition 2.3 (Criterion 1) The (0, 1)-matrix B is linear if, and only if, for
each 2 x 2 submatrix S of B, say

- a b
S = (d c), (a,b,c,d € GF(q)),

one has
a—b+c—-d#0.

Proof. To prove linearity, assume that B had an ordinary submatrix of order 2
all of whose entries were 1. Clearly, these four entries occurred in four distinct
blocks of B. Since the entries lied two by two in the same row and the same
column, we found entry 1 in positions

(Z,]) in Pa.: (‘l,k) in Pb) (l’k) in Pc, and (l’]) in Pd7

for some i, §, k,1 € {0,...,q — 1}. By construction, this respectively implied

—gi+gi=a, —gi+g=0b, —g+gr=c, and —gi+g;=d.

Subtracting the second and fourth equations from the sum of the first and
third, we obtained
0=a-b+c—-d,

a contradiction.
The converse is easily seen to be true. O

Corollary 2.4 Let B be anr x s matrix over GF(q). If B meets the requirements
of Criterion (1), then so does each matrix B' obtained from B by adding a fixed
element a € GF(q) to every entry in some row or column of B.

We refer to B’ as an additive shift of B. Reiterated additive shifts induce
an equivalence relation in the set of all » X s matrices over GF(q) satisfying
Criterion (1).

An immediate application this Criterion has already been pointed out in [9],
Proposition 7.3:

Proposition 2.5 If M is the full multiplication table of GF (q), then M is alinear
(0, 1)-matrix of order q*.

Proof. With each element g € GF(q), we associate the ¢ x ¢ permutation
matrix P,. We blow up the full multiplication table M of GF(q) to a g% x ¢*
matrix M. Apply Criterion 1: consider M = (m;,;) and take four elements
pairwise in the same row and the same column, say mm; ;, ™M k, 7,5, T4 k- Since
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M is a multiplication table, there exist elements z;, z;,y;,yx € GF(g) with
z; # x; and y; # yx such that

Mij = TilYj, Mik = TilYk, Mi,j = LY, Mk = Tk ;

thus
My 5 — Mik + My, —my; = (T — 21)(y; — ye) # 0.

Hence, M is linear. m]
Multiplicative correspondence

For a prime power g > 3, consider the multiplicative group GF(g)* and fix
a labeling for its elements, say gi,...,g,—1 such that g; = 1. Let (a;,;) be the
GF(q)*-matrix of order ¢ — 1 defined by
Qs j :=gi'lgj fori,7=1,...,¢—1.
The matrix (c; ;) is a multiplication table for GF(q)* where

gl=1)g2—l’gs—l)"'agq——ll and g1,92,---,99-1

correspond to the the 152,24, . .| (¢—1)°! rows and the the 1°¢,274, .| (g—1)*
columns, respectively. In particular, all the entries in the main diagonal are equal
to 1. For each g € GF(q), let Q, be the (0, 1)-matrix of order ¢ — 1 whose entry
in position (3, §) is defined by

(Qg)i,j

Since the element g appears in each row and column of the multiplication table
(,;) precisely once, G, is again a permutation matrix, but of order ¢ — 1. In
particular, ; is the unit matrix of order ¢ — 1.

1 ifa;;=¢
0 otherwise.

Definition 2.6 Let B = (b; j) be an r x s matrix with entries in GF(q)*. Then
we “blow up” B 10 a (0, 1)-matrix B with (q — 1)r rows and (g — 1)s columns
in the following way: B is the v x s block matrix having q — 1 x g —1 blocks B; ;
suchthatforalli=1,...,randj=1,...,s one has

Bi,j =Qq ifandonlyif b;;=g.

Proposition 2.7 (Criterion 2) The (0,1)-matrix B is linear if, and only if, for
each 2 x 2 submatrix S of B, say

5 = (Z Z) » (b, d€ GF(g)7),
one has
ab led ' #£ 1.
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Proof. Translate the additive pattern proving Criterion 1 into multiplicative
terms. O

Corollary 2.8 Let B be anrx s matrix over GF(q)*. If B meets the requirements
of Criterion (2), then so does each matrix B” obtained from B by multiplying
every entry in some row or column of B by a fixed element o € GF(q)".

B” is said to be a multiplicative shift of B. Reiterated multiplicative
shifts induce an equivalence relation in the set of all r x s matrices over GF(g)*
satisfying Criterion (2).

An immediate application of Criterion 2 reads:

Proposition 2.9 If S is a submatrix of the addition table of GF (g) such that 0
does not occur as entry of S, then S is a linear (0, 1)-matrix.

Proof. With each element g € GF(g)*, we associate the ¢ — 1 x ¢ — 1
permutation matrix Q,. We blow up S to S. To apply Criterion 2, consider
S = (0:,) and take four elements pairwise in the same row and the same col-
umn, say i, Oik, 01,5, 0L k. Since S comes from an addition table, there exist
elements x;, zi, y;, yx € GF(q) with z; # z; and y; 7 yx such that

0ij = Ti + Yj, Oik =Ti+ Yk, Ol =Tt + Y5, Otk =Tt + Yk -
Thus

-1 _ Tl + Ty + Ty + YV
bi ™z + iy; + Tk + Uik

cr;,jai",:ag,ka
if, and only if
Tiyk + 1Y # Tivj + Tiyk -
This, in turn, holds true if, and only if,

(zi —21)(y; —yk) #0.

.

Hence, S is linear. 0

3 Elliptic Semiplanes of Type C

Let’s begin with the Desarguesian elliptic semiplane S¢(g — 1) := P\B(p, 1),
obtained by deleting the Baer subset B(p,!) with p|l from a finite Desarguesian
projective plane P of order q.

Theorem 3.1 The (0, 1)-matrix M constructed in Proposition 2.5 is an incidence
matrix of the Desarguesian elliptic semiplane S€(q — 1), and vice versa.
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Proof. Fix an incident point line pair p|! in a finite Desargesian projective plane
P of order ¢ and introduce non-homogeneous co-ordinates in P, see e.g. [10] or
[12]: choose ! to be the line at infinity and p to be the point with co-ordinate
(00). Then the points and lines of S = P\B(p,!) are exactly those with two
co-ordinates, i.e. the point set and the line set can be identified with the sets

{(a,b) : a,be GF(q)} and {[o,f] : a,8€ GF(q)},
respectively. Incidence is given by the rule
(a,b)| [, 8] if,andonlyif aa+B=0b.

The labeling go = 0, g1, . .., g4 chosen when establishing the additive correspon-
dence induces a linear order in GF(q). If we adopt the canonical lexicographic
order for the co-ordinates to establish labelings for both the points and lines of S,
we yield M as an incidence matrix of S. a

Remark 3.2 The distinction in the first place of this lexicographic order has the
Jollowing geometric interpretation: The point and lines of S are grouped together
in one and the same parallel class if, and only if, their first co-ordinate coincide.
The 15t 27 | qth point classes correspond in P to the deleted (vertical) lines
with equations

T=go, T=G1,:.+» T=Gg-1,
while the 1°t,2™2, ... " line classes are characterized in P by their improper
points
(90)7 (gl)v ey (gq—l) 1
respectively.

The advantage of this characterization becomes clear when compared with
other explicit constructions (cf e.g. [8]).

Example 1 For GF(4) = {0,1,z,Z} we obtain

88 = O

Bl © —
— o8l 8
S =8 8

z

as an addition table already with 0 entries in the main diagonal,

Po= y Pl —

o= OO
= OO0
oMo
O OO -
- O OO0
o= OO

0
1
0
0

SO O

181



0 010 0 0 01
0 0 01 0010
Pe=l 1000 ™ %E=19100
0100 1 000
as permutation matrices, and
0 0 0O
01 =z T
M= 0 z T 1
0z 1 =z

as the full multiplication table. We blow up M to the following (0, 1)-matrix M,
where, for convenience, the entries 0 have been omitted. In two additional rows
and columns (above and to the left) there are written down the non-homogeneous
point and line co-ordinates in lexicographic order; they illustrate how M works
as an incidence matrix for S°(3).

0000[1111[zxzxzziTZTTT

01zZ|01zZ|01xzZF|01zxzZ
001 1 1 1
01 1 1 1 1
0z 1 1 1 1
0z 1 1 1 1
10]1 1 1 1
11 1 1 1 1
1z 1 111 1
1z 1 1 1 1
Tz 0|1 1 1 1
A | 1 1 1 1
Tz 1 1 1 1
T T 1 1 1 1
z 01 1 1 1
z1 1 1 1 1
Tz 1 1 111
T I 111 1 1

4 Elliptic Semiplanes of Type L

Next we deal with the Desarguesian elliptic semiplane SZ(g — 1) := P\B(p,!),
obtained by deleting the Baer subset B(p,!) from a finite Desargesian projective
plane P of order g where (p, !) is a non-incident point line pair in P.
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Let A = (a; ;) be the addition table of GF(g) constructed above for estab-
lishing the additive correspondence. Then, forall ¢, =0,...,¢ — 1, one has

aij+aj:=(—g)+9 +(~g;)+g:=0,

whence 0 shows up in the main diagonal of A. For¢,j =0,...,q,let B = (b; ;)
be the following ¢ + 1 x ¢ + 1 matrix whose entries are either blank or elements
in GF(g)*:

blank if <=j;
b; = a;; if 4,5€{0,...,g—1} with i #7;
1 if either i=q or j=gq.

Finally, blow up B to B, where the blanks are substituted by copies of the ¢ — 1 x
g — 1 matrix all of whose entries are 0.

In the light of the multiplicative shift equivalence, the choices bg ; = 1 and
bi,q = 1 could be replaced by bg; = a, j =0,...,g—land b;y = b, i =
0,...,9—1forsomea,b e GF(q)*.

Lemma 4.1 B meets the requirements of Criterion 2.

Proof. For entries coming from the principal minor of order g, the statement
follows from Proposition 2.9. Hence the only remaining 2 x 2 submatrices to be

examined are of types
a b a 1
(17) = (21)

for some a,b,c € GF(q)*. Since a,b and a, c respectively appear in the same
row and column of an addition table, they can’t be equal. Thus ab~! # 1 and
ac™! # 1. o

Theorem 4.2 The (0, 1)-matrix B is an incidence matrix of the Desarguesian
elliptic semiplane S* (g — 1), and vice versa.

Proof. Fix a non-incident point line pair (p, !) in a finite Desargesian projective
plane P of order ¢ and introduce homogeneous co-ordinates in P: choose ! = [0 :
0 : 1] to be the line at infinity and let p = (0 : 0 : 1) be the origin. Then the
points of S = P\B(p, ) are exactly the affine points of P, other than the origin.
Normalizing their third co-ordinate to be 1, we obtain

{(a,,1) : a,b € GF(g),(a,b) # (0,0}

as point set of S. The lines of S arise from those affine lines in P whose affine
equations read either y = o/z+ 0’ with 8’ # Oorz = p/ with i’ # 0. Translating
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into homogeneous co-ordinates, this becomes either [’ : =1 : #']or[-1:0: p'}.
( I’s worth mentioning that we could also normalize their third co-ordinate to be

1; hence
{[e8,1) 1,8 € GF(g),(a, 8) #(0,0)}
would be the line set of S and incidence be given by the rule

(a,b,1)| [, 8,1] if, andonlyif, aa+Bb = —1.)

The labeling g; = 1,...,gq chosen when establishing the multiplicative cor-
respondence induces a linear order, say <, in GF(g)*. We extend this order by
saying that all the elements in GF(g)* precede the symbol oo (standing for quo-
tients with denominator zero). Again we adopt some kind of lexicographic orders
(denoted by < as well) for the co-ordinates to establish labelings for points and
lines of S:

al'lbl < az'lbz ;
(@1,b1,1) < (ag,bo,1) if a; < as if al_lbl = ai‘lbz ;
b < by if a;lbl = a;lbg and a; = a3 .

. a <az
[ala_lvﬂll < [a29—11ﬂ2] if { ﬁl < ﬂ2 if =0y,

[@,—1,8] < [-1,0,x] inany case.

[_lsoaul] < [_1’0”“2] if H1 < p2.
With respect to these labelings, B is the incidence matrix of S. O
Remark 4.3 The point and lines of S are grouped together according to the par-

allel classes they make up such that the 1°,2™, .. . (g + 1)** point classes cor-
respond in P to the deleted lines going through the origin with equations

Y=00Z, Y=QT, ..., Yy=gq—1%, and z =0,
while the 1%t,2™¢, . .| (g + 1)°t line classes are characterized in P by their im-
proper points
(90), (91), -+ (9g-1) and (0),
respectively.

Example 2 Let GF(5)* = {1,2,3,4} and write down the multiplication
table with respect to the order

1, 27'=3,31=2 47"=4 and 1,2,3,4
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for the first and second factors, respectively:

1 2 3 4

31 4 2

2 41 3

4 3 21

Extract the permutation matrices
1 0 00 0100
0100 0 001
@=loo010]| ®=l1000 [
0 0 01 0010
0010 0 001
1 000 0 010
@=| 5991 |2 Qu=|,7 40
01 00 1 000
With these data, one has

4 3 211

1 4 3 2 1

2 1 4 3 1
B = 13921 41

4 3 2 1 1

11111

We blow up B to the following (0,1)-matrix B, where, for convenience, the
entries 0 will again been omitted. In three additional rows and columns (above and
to the left) there are written down the homogeneous point and line co-ordinates
in the order defined above. The entry —1(= 4) in the line co-ordinates has been
replaced by 4. This shows that B is an incidence matrix for S L(4). (An analogous
incidence matrix for S*(3) can be found in [5], Figure 6.)
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5 Elliptic Semiplanes of Type D

Explicit constructions of incidence matrices for elliptic semiplanes of type D have
already been presented in [9]. Therefore we may restrict ourselves to a short
survey.

To this end we need a slight generalization of our notation. For eachr € N, we
understand a finite difference set modulo r to be asubset S = {so, ..., Sk-11 C
Z. such that the k2 — & differences

8;,j = s; — sj (mod 1)

are pairwise distinct fori,j = 0,...,x— 1 withi # j. If r = k> =k + 1, then S
is called perfect [4].

Lemma 5.1 [13] Let C = < co,...,¢r—1 > be a circulant (0,1)-matrix, S :=

{i € {0,...,r — 1} |c; = 1}, and |S| = k. Then C is linear if, and only if, S is
a difference set modulo .
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Instances of perfect difference sets are {0,1,3} modulo 7 and {0, 1,4, 6}
modulo 13, which represent incidence matrices for PG(2,2) and PG(2,3), re-
spectively.

Now, for a prime r, we allow difference sets modulo r as entries in B once
in every row and every column (typically in the main diagonal). For convenience,
we will mention () as an index above and to the right of every such generalized
matrix over GF'(r). Criterion (1) still holds true if applied for every choice of
some element out of each difference set (cf. [9], Theorem 5.5).

Finite projective planes P = PG(2,q?) can be partitioned into Baer sub-
planes B = PG(2, q) and Singer cycle results guarantee circulant (0, 1)-matrices
C as incidence matrices for B, for details see e.g. [11]. Deleting just one copy of
C in a suitable incidence matrix for 7, we obtain incidence matrices for Desarge-
sian elliptic semiplanes of type D and order ¢ — 1, denoted by SP (g% — 1).

For instance,
0,1,3 6 \?
6 0,1,3

represents an incidence matrix of SP(3), and SP(8) has an incidence matrix
induced by:

0,1,4,6 12 8 11 11 8 (13)
12 01,46 12 8 11 11
8 12 01,46 12 8 11
11 8 12 01,46 12 8
11 11 8 12 0,1,46 12
8 11 11 8 12 0,1,4,6

Note that the linearity of these incidence matrices can easily been verified using
Criterion 1.

6 The Elliptic Semiplane of Type B

Baker [1, 2] presented his elliptic semiplane, denoted here by S B_in terms of an
incidence matrix, which is a 15 x 15 block matrix having (0, 1) square blocks of
order 3. Adopting suitable additive shift operations, his incidence matrix can be
transformed into the following 15 x 15 block square matrix which can be written
down in terms of our additive correspondence for GF(3):
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0510]1611{2712{3813/4914
000[{110[101|110(110
011/000{110(101{110
011({011({000(110[101
110{011/011j000}110
0[1000 221 0 0 0 0
5(0110 20011 1|1 1
10/1110 101 2 12 2 2
1[0100 0 020 | 0 2
610011 1 11012 110
1110111 21122) 0 (2 1
270010 0 1 020 0 2
711101 1 2 1101 0
12{1111 2 0122 2 |1
310001 00 0 221
811010 1 1 1 20011
1311011 2 2 2(101 2
411100 0 212 0 100
910101 1 |0 0 1 121
1411001 2 1 1 21220

Let’s denote this matrix by Bis.

The above table also reveals a deeper correlation between Baker’s elliptic
semiplane and the corresponding BIBD, i.e. the point plane structure of PG(3,2),
which will be discussed in the sequel.

Let

(€)=

e = =]
-0 O -
o= O O

0
1
0
0
generate a Singer cycle by its transitive action on the points of PG(3,2): if pp is
the point having homogeneous coordinates (1:0: 0 : 0), we define

Pi+1 :=p,-C, ‘I:=0,...,14.

Let o be the plane containing the line lp = pops and the point p, = (0:1:0:
0): in this way, o gets homogeneous coordinates [0:0:0:1]. Define

Ti4l = Wi(C_l)T y 1= 0, ceay 14.

Turning all blank and non-blank entries of Bs into 0 and 1, respectively, we
obtain a point plane incidence matrix of PG(3,2). Obviously, this corresponds
to the process of identifying parallel classes of points and lines in Baker's elliptic
semiplane. In the above table, additional rows and columns (above and to the left)
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indicate the Singer cycle indices ¢ € {0,...,14} as well as the homogeneous
co-ordinates of p; and 7;, 4,7 € {0,...,14}.
It’s easy but somewhat lengthy to check the following statement:

Proposition 6.1 The 5th power of the Singer cycle C induces an automorphism
of order 3 in Baker's elliptic semiplane. The effect of the induced automorphism
is to add 1 to each non-blank entry of Bis.

7 Epilogue: Tactical Decompositions and Par-
titions

The reader will have noticed that throughout the paper another question has al-
ready been solved without explicitly being mentioned so far: do Desarguesian
elliptic semiplanes admit significant tactical decompositions or partitions into el-
liptic semiplanes of smaller order?

Recall that a tactical decomposition of S = (X, L,|) is a partition of X
into s pairwise disjoint point sets Xj, -+ , X together with a partition of L into
t pairwise disjoint line sets Ly,--- , L, such that, for each choice of 7 and 7,
i=1,...,s 7 =1,...,t, the partial subplanes (X;, L;, |) satisfy the following
condition (cf e.g. [5]):

The numbers

a;j:=|{leL;:p|l}| for some fired p € X;

Bij =|{p € X; : pll}| for some fized l € L;

do not depend on the choice of pe X; and l € L;, respectively.

A partition of an elliptic semiplane S = (X, L, ) into elliptic semiplanes
of smaller order is a tactical decomposition with s = ¢ such that, for all ; =
1,...,s, the partial plane (X;, L, |) makes up a non-degenerate elliptic semiplane
again.

Clearly, the block structures occurring in the (0, 1) block matrices constructed
here meet the requirements of tactical decompositions, see e.g. [9). More in detail,
we have the following result.

Proposition 7.1 Let S be a Desarguesian elliptic semiplane of order n.

(2) If S is of type C, then n = q — 1 and S admits a tactical decomposition
into partial subplanes each of which is a union of q disjoint flags, i.e. incident
point line pairs.

() If S is of type L, then n. = q — 1 and S admits a tactical decomposition
into partial subplanes each one being a union of q — 1 disjoint flags.
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(i43) If S is of type D, then n = q* — 1 and S admits a partition into ¢ —q
Baer subplanes of order q (which can also be seen as elliptic semiplanes).

(iv) Baker’s elliptic semiplane SB admits a partition into 5 copies of the
Desargesian elliptic semiplane S (2).

Proof. In cases (2), (i), and (iii), the statement is immediately clear. In case

(iv), both
2 2 0 2 0
2 0 and 110
10 1 2 2

are additive shifts of the full multiplication table

-0

O OO
N = O
- N O

(GF(3),x) = (

(1)

turns out to be an additive shift of the full multiplication table of GF(3) where all
entries have been multiplied by —1 = 2. Note that (—GF(3), x) is not additively
shift equivalent to (GF(3), x ), but induces an incidence matrix for S€(2) as well

O

while

NN O
N =
-0 O

Final Remark 7.2 (i) According to the 35 lines in PG(3,2), there is a total num-
ber of 35 elliptic subplanes isomorphic to S C(2) in SB. The partition of S B into
5 such copies of S€(2) corresponds to a line spread of PG(3,2), namely the 5
lines

l; == {pi,Pi+s,Pi+10},

indices taken modulo 15.

(4%) Since S€(2) is isomorphic to Pappus’ famous configuration, we may also
say that Baker’s elliptic semiplane S B admits a partition into 5 disjoint Pappus
configurations and that S B contains a total number of 35 of them.
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