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Abstract

We show that every generalized quadrangle of order (4,6) with
a spread of symmetry is isomorphic to the Ahrens-Szekeres general-
ized quadrangle AS(5). It then easily follows that every generalized
quadrangle of order 5 with an axis of symmetry is isomorphic to the
classical generalized quadrangle Q(4, 5).
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1 Introduction

A generalized quadrangle of order (s,t), s,t € N\ {0}, or shortly a GQ(s, £),
is a point-line incidence structure Q which satisfies the following properties:

(a) each point is incident with ¢ + 1 lines and two distinct points are
incident with at most one line;

(b) each line is incident with s-+1 points and two distinct lines are incident
with at most one point;

(c) for every line L and every point p not incident with L, there exists a
unique line through p meeting L.

If s = ¢, then we also say that Q has order s. The point-line dual of a
GQ(s, t) is a GQ(t, s).

Let Q be a generalized quadrangle of order (s,t). For every point z
of @, let z1 denote the set of all points collinear with z (so z € z1). If
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X is a nonempty set of points of Q, then we define X := (), z' and
X1t = (X1)L. If z and y are different points, then |{z,y}*| is equal to
either s+ 1 or t+ 1 depending on whether z and y are collinear or not. The
set {z,y}++ is called the span of the pair (z,y). If z and y are collinear,
then {z,y}++ coincides with the set of points of the line zy. If z and y
are not collinear, then {z,y}1 is also called the hyperbolic line through z
and y; since {z,y}* contains two noncollinear points, this hyperbolic line
contains at most £+1 points. If the hyperbolic line through two noncollinear
points z and y contains precisely ¢ + 1 points, then the pair (z,y) is called
regular. A point z is called regular if the pair (z,y) is regular for every
point y not collinear with z.

If z is a regular point of a generalized quadrangle Q of order s with
s # 1, then a new generalized quadrangle P(Q, =) can be derived from it,
see [5] or [6]. The points of P(Q, =) are the points of Q not collinear with z
and the lines of P(Q, z) are on the one hand the lines of Q not containing
z and on the other hand the hyperbolic lines of Q through z (natural
incidence). The generalized quadrangle P(Q, z) has order (s — 1,5+ 1).

The generalized quadrangle W(q), ¢ prime power, is the GQ of the
points and totally isotropic lines of a symplectic polarity in PG(3,q). Its
point-line dual is the generalized quadrangle Q(4,q) whose points and
lines are the points and lines lying on a nonsingular parabolic quadric in
PG(4, q). If ¢ is even, then W(q) = Q(4,q), i.e. W(q) is self-dual. Every
point of W(q) is regular. So, we can construct a generalized quadrangle
P(W(q),z) of order (¢ — 1,q + 1) for every point x of W(g). Since the
automorphism group of W(q) acts transitively on the point set, essentially
one GQ of order (g—1, g+1) arises this way. If ¢ is odd, then P(W(q),z) is
isomorphic to the so-called Ahrens-Szekeres generalized quadrangle AS(q),
see [1] or [6].

A spread of a GQ is a set of lines partitioning the point set. If S'is a
spread in a GQ(s, t) with ¢ 5 1, then there are at most s+-1 automorphisms
of the GQ which fix each line of S, see [2]. If there are precisely s + 1 such
automorphisms, then S is called a spread of symmetry.

If z is a point of a GQ(s,t) with s # 1, then there are at most ¢
automorphisms of the GQ which fix every point of zt, see [6]. If there are
precisely ¢ such automorphisms, then z is called a center of symmetry. An
axis of symmetry is the dual notion of a center of symmetry. Every point
of W(q) is a center of symmetry. Dually, every line of Q(4, g) is an axis of
symmetry.

Let Q; and Q denote two GQ’s. If z;, i € {1,2}, is a point of Q;,
then we say that (Q),z;) is equivalent with (Q2,z2) if there exists an
isomorphism from Q; to Q2 mapping z; to z2. If S;, i € {1,2}, is a spread
of Q;, then we say that (Q1,S1) is equivalent with (Q2, S?) if there exists
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an isomorphism from Q; to @2 mapping S; to Ss.

Now, suppose that Q is a generalized quadrangle of order s > 2 with
a regular point z. Then the hyperbolic lines through z define a spread
S(Q, z) of P(Q, z). If z is a center of symmetry, then the s automorphisms
of @ which fix each point of z* induce s automorphisms of P(Q, r) fixing
each line of S(Q,z). Hence, S(Q,z) is a spread of symmetry of P(Q, z).
Conversely, if S* is a spread of symmetry in a generalized quadrangle Q*
of order (s — 1,s + 1), s > 2, then by [4], there exists, up to equivalence,
a unique pair (Q,z), with Q a generalized quadrangle of order s and z a
regular point of @, such that (P(Q, z), S(Q, z)) is equivalent with (Q*, S*).

All finite generalized quadrangles of order (1,%), (2,t) and (3,t) have
been classified. If Q is a generalized quadrangle of order (4,¢), then t €
{1,2,4,6,8,11, 12,16} and unique examples exist in the cases t =1, t = 2
and ¢ = 4. We refer to [6] for more details. So, the “smallest order” for
which not all GQ’s have been determined is the order (4,6). A unique
GQ is known with these parameters, namely AS(5). In this paper, we will
prove the following result.

Theorem 1 If a GQ of order (4,6) has a spread of symmetry, then it is
isomorphic to AS(5).

Since AS(5) has only one spread of symmetry, see [2], there exists up to
isomorphism only one GQ of order 5 with a center of symmetry. So, we
also have:

Corollary 1 Every GQ of order 5 with a center of symmetry is isomor-
phic to W(5), or dually, every GQ of order 5 with an azis of symmetry is
isomorphic to Q(4,5).

To prove these results we will make use of so-called admissible triples.
These are objects which were introduced in {2].

2 Admissible triples

Definition. An admissible triple is a triple T = (£, G, A), where:
e G is a nontrivial group. We put s :=|G| -1 > 1.

e Lis alinear space, different from a point, in which each line is incident
with exactly s + 1 points. We denote the point set of £ by P. Then
L has order (s,t — 1), where ¢ := 1=t

8
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e A is a map from P x P to G such that the following holds for any
points z, y and z of L:

(AT) =z, y and z are collinear & A(z,y) + A(y, 2) = A(z, 2).

If T is an admissible triple, then A(z,z) = 0.and A(y,z) = —A(z,y) for
all points. z and y of L. Notice that we have used the additive notation for
the group G.

Theorem 2 ([2]) Suppose that T = (L, G, A) is an admissible triple and
let P denote the point set of L. Let T’ be the graph with vertez set G x P,
two vertices (g1, 1) and (g2, Z2) being adjacent whenever

e I, =z and g1 # g2, OT
o 71 # z2 and g2 = g1 + A(z1,Z2).

Then T is the collinearity graph of a generalized quadrangle Q of order
(s,t). Moreover, the set Lz := {(g,z)|g € G} is a line of Q for every point
z in P and the lines L, z € P, form a spread of symmetry S in Q.

Example. Let £ be the Desarguesian affine plane AG(2, ¢) coordinatized
in the natural way by the finite field F,. Let G be the additive group of
FF,. For all points (z1, 1) and (z2, y2) of £, we define Al(z1, 1), (z2,32)] =
T
x2
if and only if

Z; . Now, three points (1, 1), (z2, ¥2) and (z3, y3) of £ are collinear

Ty yn 1
T2 y2 1 |=0,
z3 y3 1

or equivalently, if and only if A[(z1,31), (zs,33)] = Al(z1,31), (z2,32)] +
A[(z2, ¥2), (z3,¥3)]- It was shown in [2] that the generalized quadrangle
associated with the admissible triple (£, G, A) is isomorphic to P(W(q), ),
where z is any point of W(q).

For every admissible triple T', we put (T := (Q, S) where Q and S are
as in Theorem 2. The following theorem is one of the key results which we
will use during our proof of Theorem 1.

Theorem 3 ([2]) If S is a spread of symmetry of a generulized quadrangle

Q, then there ezists an admissible triple T such that Q(T) is equivalent with
(@, 9).
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Theorem 4 ([2],[3]) Suppose that T = (L,G, A) is an admissible triple
and let P denote the point set of L. Let L' be a linear space isomorphic to
L and let G’ denote a group isomorphic to G. Let a denote an isomorphism
from L to L', let 0 denote an isomorphism from G to G’ and let f denote
an arbitrary mep from P to G. For all points x and y of L, we define

A'(a(z), ay)) = [f(z) + Az, y) — fF))°.

ThenT' := (L', G, A’) is an admissible triple and QU(T") is equivalent with
Q(T).

Definition. Let T} = (£,,G1,A;) and Tz = (L3, G, Az) be two admissi-
ble triples. Let P;, ¢ € {1,2}, denote the point set of £;.

o If £; and L; are lines, then we say that T) and T are equivalent if
L, and £; contain the same number of points.

e If £, or £ is not a line, then we say that T, and T, are equivalent if

(i) there exists an isomorphism a from £; to L,
(ii) there exists an isomorphism € from G, to Ga,
(iii) there exists a map f: P, — G

such that

Do(a(z), afy)) = [f(=) + A (2, 9) — F(v))°

for all points = and y of £;.

Theorem 5 ([3]) Two admissible triples Ty and T are equivalent if and
only if Q(T) and Q(T») are equivalent.

Lemma 1 If T = (£,G, A) is an admissible triple and if o is an arbitrary
point of L, then there exists an admissible triple T' = (£, G, A’) equivalent
with T such that A'(o,z) = 0 for every point = of L.

Proof. In the above definition, we put a equal to the trivial automorphism
of £, 8 equal to the trivial automorphism of G and we define f(z) := A(o, z)
for every point z of £. We then have A’(o, z) = A(o, 0)+A(0, z)—A(o, ) =
0 for every point z of L. a

Lemma 2 If an admissible triple T = (L, G, A) gives rise to generalized

quadrangle Q of order (s — 1,s 4+ 1), s > 2, then G is a group of order s
and L is an affine plane of order s.
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Proof. Clearly, G has order (s — 1) + 1 = s. The linear space £ has
14 (s —1)(s + 1) = s points and s points on each line. So, £ is an affine
plane of order s. a

In particular, if Q is a generalized quadrangle of order (4, 6), then we may
suppose that £ is the Desarguesian affine plane AG(2,5) coordinatized by
the finite field F5 and that G is the additive group of 5. In the following
section, we will show that AG(2, 5) admits only one admissible triple up to
equivalence.

3 Determination of all admissible triples aris-
ing from AG(2,5)

We will determine all admissible triples (AG(2, 5), Fs, A). By Lemma 1, we
may choose an arbitrary point o in AG(2,5) and suppose that A(o,z) =0
for every point of AG(2,5). If z and y are two different points of AG(2,5),
then by Property (AT) we have that o € zy if and only if A(z,y) = 0.

Lemma 3 (a) If L = {z),%2,73,%4,%5} is a line of AG(2, 5) not passing
through o, then Fs = {A(z1,z:)|i € {1,...,5}}.

(b) If L is a line not passing through o, then we can label the pomts of L
by the elements of the set {z;|i € IF5} such that A(z;,z;) =7 —t.

(c) For every f € Fs and for every point x different from o, there are
precisely five points y such that A(z,y) =

(d) If L is a line through the origin and if = is a point not coniained in
L, then Fs = {A(=z,l)|l € L}.

Proof.

(a) For all i,5 € {1,...,5} with i # j, we have A(zi,z;) # 0. Hence,
Az, z5) = Az, Z:) + A(zi, 75) # Az, 7).

(b) Choose a point of L and label it z;. Then for every f € Fs, let =y
denote the unique point of L such that A(zy,z;) = f —1. Then
A(zi, z5) = Alzi, 21) + Az1,z5) = (1 = i)+ (G — 1) =j — i for all
i,7 € Fs.

(c) If f = 0, then the required points are precisely the five points on t.he

line oz. If f 0, then by (a) there exists a point y with A(z,y) =
on each of the five lines through z different from oz.
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(d) Let !, and Il denote two different points of L. Then A(ly,[l2) = 0.
By Property (AT) it follows that A(z,l2) # A(z,l) + A(lL, ) =
A(Z, ll ) (W]

Now, consider an arbitrary line L not passing through o and an arbitrary
line M through o not parallel with L. By Lemma 3 we may label the
points of L by the elements of the set {zs|f € Fs} in such a way that
LNM = {z,} and A(z;,z;) = j —i for all 4,5 € F5. Also, by Lemma 3,
Fs = {A(z2,m)|m € M}. Now, A(z2,0) = 0 and A(zz,z;) = 4. Let p,
g and r denote the points of M such that A(zz,p) = 3, A(z2,9) =2 and
A(zq,m)=1.

e Foreveryi € {3,4,5}, we have A(p, z;) € {A(p, 0)+A(o, z:), Alp, 1)+
A(xh xt')t A(p: 22)+A($2’Ii)} or A(p, :L',') ¢ {01 i—1, i}' So, A(p, 23) €
{1,4}, A(p,z4) € {1,2} and A(p,zs) € {1,2,3}. This leads to 12
possibilities for the triple (A(p, z3), A(p, z4), A(p, z5)), but since we
must also have that A(p, z5) — A(p, z4) # 1, A(p,z5) — Ap, x3) # 2
and A(p, z4) — A(p,z3) # 1, only three possibilities remain, namely
(1,1,1), (4,1,3) and (4,2,2).

o Foreveryi € {3,4,5}, we have A(q, z;) & {A(g,0)+A(o, z:), Ag, 1)+
Az, ), Ag, z2) + A(z2, i)} or Ag,z;) € {0,i — 1,7+ 1}. So,
A(g,z3) € (1,3}, Ag,z4) € {1,2,4} and A(q,z5) € {2,3}. Since
A(g,zs) — Alg,z4) # 1, A(g,z5) — A(g,z3) # 2 and A(q,z4) —
A(g, z3) # 1, we again have only three possibilities for (A(g, z3), A(q, z4),
A(gq,z5)), namely the possibilities (1,4,2), (3,1,3) and (3,2,2).

e Foreveryi € {3,4,5}, we have A(r,z;) & {A(r,0)+A(0, z;), A(r, z1 )+
Az, zi), A(r,z2) + A(z2,z:)} or A(r,z;) € {0,i — 1,7+ 2}. So,
A(r,z3) € {1,3,4}, A(r,z4) € {2,4} and A(r,z5) € {1,3}. Since
A(r,zs) — A(r,z4) # 1, A(r,z5) — A(r,z3) # 2 and A(r,z4) —
A(r, z3) # 1, we again have only three possibilities for (A(r, z3), A(r, z4),
A(r,xs5)), namely the possibilities (1,4,1), (3,2,1) and (4,4,3).

Now, for every point z of AG(2,5), we define

A:l: = (A(l‘, xl)r A(Z, 22), A(Z, 23), A(z) 24), A(Ir z5))'

By the above reasoning we know that there are at most 27 possibilities for
(Ap, Ag, Ar). By Lemma 3, we have that the elements A(z;,p), A(zi,q)
and A(z;,r) are mutually different for every i € {3,4,5}. Using this fact,
only four cases remain:

@) Ap=(0,2,1,1,1), A, = (0,3,3,2,2) and A, = (0,4,4,4, 3);
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(1) A, =(0,2,4,1,3), A, = (0,3,1,4,2) and A, = (0,4,3,2,1);
(1) A, =(0,2,4,1,3), A, = (0,3,3,2,2) and A, = (0,4,1,4,1);
(V) A, =(0,2,4,2,2), A, = (0,3,3,1,3) and A, = (0,4,1,4,1).

Now, consider the line M’ through the points o and 2 and let p’, ¢’ and 7’
those points on M’ such that A(zs,p’) = 3, A(zs, ¢') = 2and A(z3,7') = 1.
By symmetry, we have the following possibilities for Ay Ay and A,

@) Ay = (1,0,2,1,1), Ay = (2,0,3,3,2) and A = (3,0,4,4,4);
(') Ay = (3,0,2,4,1), Ay =(2,0,3,1,4) and A~ = (1,0,4,3,2);
IP) Ay = (3,0,2,4,1), Ay = (2,0,3,3,2) and Ay = (1,0,4,1,4);
(IV') Ay =(2,0,2,4,2), Ay = (3,0,3,3,1) and Ay = (1,0,4,1,4).

We will now show that only the case (II) + (II’) can occur by deriving a
contradiction for each of the 15 remaining cases. We will use the following
observation which holds for any two different points z and y of AG(2,5)
not contained in L:

o if the line zy is parallel with L, then no entry of the vector Az — A,
is equal to A(z,y);

e if the line zy intersects L in the point z;, then the i-th entry of
Ay — A, is equal to A(z,y) and the remaining entries are different
from A(z, y).

The case (I) + (I’)

In the following table, we list the possibilities for A(p,p’), A(p, ¢’) and
A(p, ') using the above-mentioned observations. One should interpret the
table in the following way: if the line pg’ is parallel with L, then A(p,q’) €
{1} (notice that A(p,g’) = 0 is not possible), if the line pg’ is not parallel
with L, then A(p, ¢') € {4}.

line difference [ ¥

o7 | A, — Ay = (4,2,4,0,00 | {1,3} | —
pql, AP - Aq’ = (3: 21 3: 314) {1} {4}
| Ap— A =(2,2,2,2,2) | {1,3,4) | —

From the table it follows that pp’ and pr’ are two lines through p parallel
with L, a contradiction.

210



The case (I) + (IT)

line difference Il I

g’ | Ag—Ay=(2,3,1,3,1)| {4} | —
q¢' | Aq— Ay =(3,3,0,1,3) | {2,4} | {1}
qr’ Aq —Ap = (4v3$4,4i0) {rlaz} _

From the table it follows that ¢gp’ and gr’ are two lines through q parallel

with L, a contradiction.

The case (I) + (III’)

line difference 1 I
| Ap — Ay =(2,2,4,2,0) | {1,3} | {4]
pqd | A, — A, =(3,2,3,3,4) | {1} | {4
pr | A, —Ar=(4,2,2,0,2) | {1,383} | —

The line pr’ is the unique line through p parallel with L. So, A(p,p') = 4
and A(p, ¢') = 4, contradicting the fact that A(p,p’) # A(p, ¢').

The case (I) + (IV?)

line difference Il 4
' | Ay — Ay =(3,2,4,2,4) | {1} [ —
pq | A, — Ay =(2,2,3,3,0) | {1,4} | —
pr' | A, — A =(4,2,2,0,2) | {1,3} | —

Each of the lines pp’, pq’ and pr’ would be parallel with L, a contradiction.

The case (II) + (I*)

line difference Il I

o0 | A, — Ay = (4,2,2,0,2) | {1,3} | —
rq Ap _ Aq’ = (3, 2,1,3, 1) {4} .
pr | A, —Ar=1(2,2,0,2,4) | {1,3} | {4}

Each of the lines pp’ and pq’ would be parallel with L, a contradiction.

The case (II) + (IIT%)

[ line difference NER
o | A, - Ay = (2,2,2,2,2) | {L3.4} | —
pd |4, — A, =(,2L,30) | (4] |—
pr' | A, — A =(4,2,0,0,4) | {1,3} | —

Each of the lines pp’, pq’ and pr’ would be parallel with L, a contradiction.

211




The case (II) 4+ (IV?)

line difference I K
w | A, - Ay =(3,2,2,2,1) [ {4] {1}
»d | A, — Ay =(2,2,1,3,2) | {4} [{1,3}
pr | A, — Ar =(4,2,0,0,4) [ {1,3} | —

The line pr’ is the unique line through p parallel with L. But then each of
the elements A(p, p’), A(p,¢') and A(p, ') would belong to {1,3}, contra-

dicting the fact that they are mutually different.

The case (III) + (I’)
line difference I i ]
o | A, — Ay =(4,2,2,0,2) | {1,8} | —
pq’ AP — Aq' = (3) 2! 1,3, l) {4} _
pr | A, — A =(2,2,0,2,4) | {1,3} | {4}

Each of the lines pp’ and pq’ would be parallel with L, a contradiction.

The case (III) + (II’)
[line difference L I [k
qp' Aq - Ap’ = (21 31 11 3! 1) +f4} .
qq, Aq - Aq’ = (31 31 0’ l) 3) {2’ 4} {l}
qr’ Aq - A = (4»3:4v4’0) +r1’21+ —_

Each of the lines gp’ and gr’ would be parallel with L, a contradiction.

The case (III) + (IID)
line difference | 4
w | A, - Ay =(2,2,2,2,2) | {1,3,4} | —
pd | A, — Ay =(3,2,1,3,1) {4} —
pr | A, — A =(4,2,0,0,4) | {1,3} | —

Each of the lines pp’, pq’ and pr’ would be parallel with L, a contradiction.

The case (III) + (IV?)
line difference Il It
P | Ap— Ay =(3,2,2,2,1) | {4} {1}
Pq’ Ap - Aq’ = (21 2: ll 3) 2) [4J+ {11 3}
pr’ | Ay, — Ap = (4,2,0,0,4) {1,3 —
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The line pr’ is the unique line through p parallel with L. But then each of
the elements A(p, p’), A(p, ¢’) and A(p, r’) would belong to {1, 3}, contra-
dicting the fact that they are mutually different.

The case (IV) + (I’)

line difference [ }
A, A,,_(42211) By | —

pq A, — Ay =(3,2,1,4,00 | — | {1,4]

pr’ A — A =(2,2,0,3,3) | (LA} | —

Each of the lines pp’ and pr' would be parallel with L, a contradiction.

The case (IV) + (I’)

line difference | ']

pp' | A, — Ay =(2,2,2,3,1) | {4} | {1,3}
pq | Ap— Ay =(3,2,1,1,3) | {4] —
pr’ | Ap — A =(4,2,0,4,0) | {1,3} | —

Each of the lines pqg’ and pr’ would be parallel with L, a contradiction.

The case (IV) + (IID)

line difference I #
aw | A;— Ay =(2,3,1,2,2) | {4}
99 | Ag— Ay =1(3,3,0,3,1) | {2,4} | {
g’ | Ag— A =(4,3,4,0,4) | {1,2} | —

Pt
—

—
(-

The line ¢r’ is the unique line through q parallel with L. But then A(q,p’) =
1 and A(q, ¢’) = 1, contradicting the fact that A(q,p’) # A(g, ¢').

The case (IV) + (IV?)

line difference Il I

qp’ Aq - AP’ = (3a 3,1,2,1) {4} {2}
qq¢ | Aq— Ay =(2,3,0,3,2) | {1,4} | —
gr' | Ag— A =1(4,3,4,0,4) | {1,2} | —

Each of the lines q¢’ and ¢r’ would be parallel with L, a contradiction.

Since only the case (II) + (II') can occur, we have shown the following (see
also Lemma 3, (a)+(d)).
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Lemma 4 If z is a point of AG(2,5) different from o and if L is a line of
AG(2,5) not parallel with oz, then Fs = {A(z,l) |l € L}.

Definition. For every point z of AG(2,5) different from o and for every
f € Fs, let L{ denote the set of points of y such that A(z,y) = f.

Lemma ‘5 For every point = of AG(2,5) different from o and for every
f €Fs, L{ is a line parallel with ox.

Proof. By Lemma 3 (c), L{ contains precisely 5 points. If y; and y; are
two different points of L, then by Lemma 4, y;y2 must be parallel with
oz. The lemma now easily follows. D

Another consequence of the fact that only the case (II) +(II’) can occur is
the following lemma.

Lemma 6 Let L be a line of AG(2,5) not containing o, let x be a point
of AG(2,5) different from o such that oz is not parallel with L and put
LNoz = {u}. Let k € Fs and v,w € L such that A(u,w) = & - A(u,v).
Then Az, w) = & - Az, v).

We are now ready to determine A. In AG(2, 5) there exist points z* and y*
such that A(z*,y*) = 1. Since the points o, z* and y* are not collinear we
can choose our reference system in such a way that o = (0,0), z* = (1,0)
and y* = (0,1). By Lemma 3 (d), there exists a permutation A of [s
such that A[(1,0),(0,(i))] = ¢ for every i € Fs. Obviously, A(0) = 0
and A(1) = 1. Similarly, there exists a permutation p of Fs such that
A[(u(4),0), (0,1)) = i for every i € Fs. Again 12(0) = 0 and (1) =1.

Lemma 7 For all i,j € Fs, A[(1(2),0), (0, A(5))] = %5.

Proof. Obviously, this property holds if i € {0,1} or j € {0,1}. So,
suppose that 4,5 € {2,3,4}. By Lemma 5, we have A[(1,0),(1,A(5))] =
A[(1,0), (0, AG))] =7 = 3-A[(1,0), (0,1)] = 4-A[(1, 0), (1, 1)). By Lemmas
5 and 6, we then have A[(u(3),0), (0, M(7))] = A[(s(3),0),(1,AG))] =37 -
Al((6),0), (1, 1)) = 5 - A[(u(i), 0), (0,1)) = 1. o

Now, choose points (z1,¥1) and (z2, y2) with z; # 0 # y;. The line through
(z2, y2) parallel with the line through (0,0) and (z1, 1) contains the points
(%2 u,;lggzl, 0) and (0, &1=%a11). By Lemma 5, Al(z1, 1), (22,92)] = Al(z1, 1)
(Bam=z 0)] = A[(0,yy), (BHSEUA, ()] = —p~}(EHSER) . A (y),
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On the other hand: A[(Zl,yl),($2,y2)] = A[(-"-‘l,yl),(ox }Il:ﬂﬁiﬂ)] =
A[(z1,0), (0, BRZZ2)) = = (z;) - A7}(BEL=Z2ML). As 5 consequence,

~n () A ) = M ) AT (R,
n z

for all z1,z2,41,y2 € Fs with z; # 0 # y;. Putting z; = 3; # 0 and
Zy # Y2, We obtain

X@y) | AN — o)

pNz)  pHze—ys)
Hence, A = p and A~!(a) = —A~!(—a) for all a € Fs. (Recall that A\(1) =
£(1) = 1 and A(0) = p(0) = 0.) In particular, A\=1(4) = —A~1(1) = 4.
Now, for all z1,¥1, z2, y2 € Fs with z; # 0 # y,, we have

- ~1,T1Y2 — T

Al(z1,31), (T2, 32)] = A H(z1)A 1(1_92;1_291).
Since the points (1, 1), (1,2) and (1, 3) are collinear we have A[(1, 1), (1,2)]+
A[(1,2),(1,3)] = A[(1,1),(1,3)] or A71(2) =2. Now, A"1(3) = -A"1(2) =
3. So, we have shown that A and p are trivial permutations of F5 and that

Al(z1, 1), (22, ¥2)] = Z1y2 — zay1 for all zy,y1, 22,2 with z; # 0 # y,.
One easily verifies that this formula remains valid if z; = 0 or y; = 0. So,

1 N

Al(z1,31), (z2,32)] = 2 Y2

for all points (z1,y1) and (z2,y2) of AG(2,5). We have shown earlier that
this A indeed gives rise to an admissible triple.

Conclusion. We have shown that AG(2, 5) admits, up to equivalence, only
one admissible triple. As a consequence, there exists, up to equivalence,
only one pair (@, S) where Q is a generalized quadrangle of order (4, 6) and
where S is a spread of symmetry of Q. This also implies that there exists,
up to equivalence, only one pair (Q, z) where Q is a generalized quadrangle
of order 5 and where z is a center of symmetry of Q.
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