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Abstract: A graph G is s-Hamiltonian if for any S C V(G) of order at
most s, G — S has a Hamiltonian-cycle, and s-Hamiltonian connected if for
any S C V(G) of order at most s, G — S is Hamiltonian-connected. Let
k > 0,s > 0 be two integers. The following are proved in this paper: (1)
Let k> s+ 2 and s <n-—3. If G is a k-connected graph of order n and if
max{d(v) : v € I} > (n+s)/2 for every independent set I of order k—s such
that I has two distinct vertices z,y with 1 < [N(z)NN(y)] < o(G) +s-1,
then G is s-Hamiltonian. (2) Let £k > s+3and s <n-2 IfGisa
k-connected graph of order n and if max{d(v) : v € I} > (n + s+ 1)/2
for every independent set I of order k — s — 1 such that I has two distinct
vertices z,y with 1 < |N(z) N N(y)| £ a(G) + s, then G is s-Hamiltonian
connected. These extended several former results by Dirac, Ore, Fan and
Chen. '
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1 Introduction

Graphs considered here are simple and connected. Undefined notations
and terminologies here can be found in [1]. For a graph G, we use V(G),
E(G), §(G) and a(G) to denote its vertex set, edge set, minimal degree
and independence number, respectively. If v € V(G) and H is a subgraph
of G, then Ny (v) denotes the set of vertices in H that are adjacent to v
in G. Thus, dy(v), the degree of v relative to H, is [Nuy(v)|. We also
write d(v) for dg(v) and N(v) for Ng(v). If C and H are subgraphs of
G, then N¢(H) = UyevyNc(u), and G — C denotes the subgraph of G
induced by V(G)—V(C). Let P = z,z5 - - - T denote a path of order m. To
emphasize the end vertices of the path P, we also say that P is an (1, Zm)-
path. Define Nj(u) = {zit1 € V(P) : z; € Np(u)}. So if z;m € Np(u),
then |[Nj(u)| = |Np(u)| — 1. Two vertices are consecutive in P if they
are the ends of an edge in E(P). Thus, each pair of vertices z;, zi41 are
consecutive in P for any i € {1,---,m —1}. When 1< i < j < m, we
use [z;, ;] to denote the section z;z;41---z; of P and [z;,zi] to denote
the section zjzj-y---z; of P. If there is an (z1,Zm)-path P* in G such
that V(P) c V(P*) and |V(P*)| > |V(P)|, then we say that P* extends
P. Let C =z - - Tmz; be a cycle. Define N} (H) = {ziy1 € V(C) : z; €
Nc(u)}, where the subscriptions are taken by modulo m. Two vertices are
consecutive in C if they are the ends of an edge in E(C). If there is a cycle
C* in G such that V(C) Cc V(C*) and |V(C*)| > |V(C)|, then we say that
C* extends C.

A graph G is Hamiltonian if it has a spanning cycle, and Hamaltonian-
connected if for every pair of distinct vertices u,v € V(G), G has a spanning
(u,v)-path. A graph G is s-Hamiltonian if for any S C V(G) of order at
most s, G — S has a Hamiltonian-cycle, and s-Hamiltonian connected if for
any S C V(G) of order at most s, G — S is Hamiltonian-connected.

The following sufficient conditions to ensure the existence of a Hamil-
tonian cycle in a simple graph G of order n > 3 are well known.

Theorem 1.1 (Dirac [4]) If 6(G) > n/2, then G is Hamiltonian.
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vertices z,y with 1 < |N(z) N N(y)| < a(G) + s, then G is s-Hamiltonian
connected.

Note that Theorem 1.6 is a special case of Theorem 1.7 when s =
0. Applying Theorem 1.8 to the case when s = 0, we get the following
corollary.

Corollary 1.9 If G is a k-connected (k > 3) graph of order n and if
maz{d(v) : v € I} > (n+ 1)/2 for every independent set I of order k — 1
such that I has two distinct vertices =,y with 1 < |[N(z) N N(y)| < o(G),
then G is Hamiltonian-connected.

The following Lemma 1.10 is very important for the proof of the main
theorems. A proof can also be found in [10].

Lemma 1.10 Let G be a connected graph, F = x31 - - - zm(x1) be a longest
path (or cycle) in G and H be a component of G-V (F). If z;,z; € Nr(H)
with 1 < i< j <m, then

(i) ziv1zi+1 € E(G);

(#) N(ziy1) NV (H) = 0;

(iii) Nf(H) U {z} is an independent set of G, where z € V(H).

Theorem 1.7 and Theorem 1.8 will be proved in the following two sections,
respectively.

2 Proof of Theorem 1.7

Throughout this section, let &, s denote two integers with k£ > s + 2 and
0<s<n-3.

Lemma 2.1 [5] Let G be o graph and P = z, - - - 2, be a Hamiltonian-path
of G. If d(z1) + d(zn) > n, then G contains a Hamiltonian-cycle.
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Lemma 2.2 Let G be a k-connected graph of ordern, S C V(G) be a vertex
set of order s, C = 1+ zmz; be a cycle of G — S with [V(C)| < n—s
and H be a component of G — S — V(C). Then G — S contains a cycle C*
eztending C, if one of the following holds:

(i) there exist two distinct vertices x;,z; € V(C) with Tiy1,zj41 € NG (H)
such that d(zi11) > (n + 5)/2 and d(zj4+1) > (n + 8)/2, or

(i) there exists a vertez z;41 € NZ(H) and a vertez y € V(H) such that
d(Zi41) 2 (n+ 5)/2 and d(y) > (n+ s)/2.

Proof:  Since the proof when (ii} holds is similar to the proof when (i)
holds, we only present the proof of the lemma assuming (i) holds. Let
z;,z; € V(H) (possibly z; = z}) be such that ziz;,z}z; € E(G) and
let P be an (z7,z})-path in H. Then G[V(C U P)] has a Hamiltonian-
path P* = [z,41,2;]P [z, z1)[Zm, zj+1). Let H = G- V(SUCU H).
If Ng/(zi41) 0 Nyo(zj41) # 0, let 2 € Ngi(2ig1) N Nyo(z541) and then
G — S has a cycle C* = z[z;41, ;)P [2i, 71][Tm, Tj+1]z extending C. Now
suppose that Ny+(z;41) 0 Np/(zj41) = 0 and so dy(ziv1) + de(zj31) <
|V(H')|. If Ny_p(xit1) U Ny_p(zjt1) # 0, without loss of generality,
let y € Ny_p(xiy1) U Ng_p(zj+1) and yz;y1 € E(G) and let P” be
an (zf,y)-path in H. So G — S has a cycle C* = z;P"[z;41,Zm][T1, 2]
extending C. Now we can suppose that Ny_p(zit1) U Ny_p(zj41) = 0
and so dy—p(Tiy1)+dr-p(z;41) = 0. By (i) of Lemma 2.2, both d(z;41) >
(n+s)/2 and d(z;41) > (n + s)/2. Thus,

dp(Tiy1) + dpe(Tj41) = d(it1) +d(z41)
—(dsunruH-P)(Ziv1) + dsunroH-p) (Tj+1))

2 n+s-2s—|V(H)| 2 |V(P)

By Lemma 2.1, G[V(CU P)] contains a Hamiltonian-cycle C* extending C.
(]

Lemma 2.3 Suppose that G satisfies the hypothesis of Theorem 1.7. Let
S C V(G) be a vertez set with |S|=s' < s, C = x;---z,x; be a longest
cycle of G~ S with [V(C)| < n—s' and H be a component of G~S -V (C).
Then
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(i) INc(H)| 2 k - s;

(i) if z € V(H),z; € V(C) are such that zz; € E(G), then 1 < |[N(z) N
N(@im)l £ a(G) +s-1;

(iii) d(z) = (n + s)/2 for each x € V(H) with |[Nc(x)| > 1.

Proof: (i) Since C = z; - - - ,,, 7 is a longest cycle of G- S with |V(C)| <
n — ¢, it follows that H # @ and V(C) — Nc(H) # 0. By the facts that
Nc(H)US separates H and G— H—(SUN¢(H)) and that G is k-connected,
we have |[Nc(H)| +|S| > k and so [Nc(H)| 2 k—5s' > k —s.

(ii) By Lemma 1.10 (iii), N&(H) U {z} is an independent set and so
|Nc(H)| = |NZ(H)| € oG) — 1. 1t follows that 1 < [N(x) N N(zi41)| <
INc(H)US| < a(G)+5' =1L a(G)+s—1.

(iii) Suppose, to the contrary, that there exists an z € V(H) with
[Nc(z)| = 1 and with d(z) < (n + s)/2. Let z; € N¢(z). By Lemma 1.10
(iii) and by the fact that |Ng (H)| = [Nc(H)| > k—s, G has an independent
set J = J'U{z} of order k—s with z;4; € J' C NG (H). By (ii), 1 < [N(z)n
N(zi+1)] € &(G) + s — 1. Hence by the hypothesis of Theorem 1.7 and by
the fact that d(z) < (n + s)/2, there must exist an z;4; € J' satisfying
d(z141) > (n+5)/2. By (i), |IN&(H)| = |Nc(H)| 2 k—s > 2, and so there
exists an z;41 € N& (H) — {z141}. Since zj41 € N} (H), z; € No(H) and
we may assume y € V(H) with yz; € E(G) (possible y = z). By (ii), we
have 1 < |[N(y)NN(zj31)| € o(G)+s—1. Similarly, G has an independent
set J; = J;U{y} of order k—s, where 241 € J, C N} (H)—{zi41}. By the
hypothesis of Theorem 1.7, there exists a z € J; such that d(2) > (n+s5)/2.
Consequently, either z € N} (H), whence by Lemma 2.2 (i), G — S has a
cycle C* extending C; or z = y, whence by Lemma 2.2 (ii), G — S has a
cycle C* extending C. In either case, a contradiction to the assumption
that C is a longest cycle of G — S is obtained. O

Proof of Theorem 1.7 Let G be a graph satisfying the hypothesis of
Theorem 1.7. Suppose, to the contrary, that G is not s-Hamiltonian. Then
there exists a vertex set S C V(G) with |S| = s’ < s such that G — S does
not have a Hamiltonian-cycle. By the fact that k—s' > k—-5>2,G—- S
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is 2-connected. We may assume that
C =z -,z is a longest cycle in G ~ S. (1)

Then [V(C)| < n—5'. Let H be a component of G— § —V(C). By Lemma
2.3 (i), we have |Nc(H)| > k — s > 2. Choose z;,z; € No(H) to be such
that

X NNg(H) =0, and | X| is minimum, (2)

where X = {zj;1,---,zj-1}. Then |X| > 0. Otherwise, there exist
Y, ¥i+1 € V(H) such that z;y; € E(G),zi11%i41 € E(G) (v and yip
might be the same vertex). Let Py(yi,%i+1) be a (vi,viy1)-path in H.
Then C* = [z1, 2;] Py [y, yi+1][Zi+1, Zm]21 is a cycle extending C, contrary
to (1). By Lemma 2.3 (iii), for each vertex z € V(H) with |[N¢(z)| > 1,
d(z) 2 (n+s)/2. Since N(z)U{z} C V(H)UNc(H)US for each z € V(H),
[V(H)| + [Nc(H)| +|S| = (n+ s)/2 + 1, and then

n—s

2

\V(H)| + |[Nc(H)| 2 +1. 3)
Claim 1. G — S — V(C) has only one component H = G — S — V(C) and
X[ < |V(H).

Proof. Suppose, to the contrary, that G — S — V(C) has at least two
components. Assume that H is the component with the smallest order and
let H* = G—-S—-V(CUH). Since |V(H)| is minimized, |V (H)| < |V(H*)|.
It follows by (3) and |Ng(H)| > 2 that

V(O) - INc(H)| _ n—|V(H")| =" — (V(H)| +|Nc(H))])

XU s =N No (D)
¢ (= S/2= L [VUE) _ (VU + INo(H)| — 2 = V(H")
< NG N ()]
V)| = IV(H)] _ INe(H)] -2 "
E] NG (D)

Then as |[V(H)| < |V(H*)|, (4) implies |X| < 1, contrary to the fact
that |X| > 0. Hence, H is the only component of G — § — V(C). Since
|Nc(H)| 2 2, we have that |X| < [V(H)|. []

Choose z;,z; € V(H) with z;z} € E(G),z;z; € E(G) to be such that
[V(P')| is as large as possible, where P’ is an (z},z})-path in H. Then
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C' = |z1,%i|P'[zj, Zm]z1 is & cycle such that
V(C)\ X C V(C') and |V(C")| is maximized. (5)

By (5), C' is a longest path containing V(C)\ X and so by applying Lemma
2.3 and the argument on C to C', it follows that G—S—V(C’) has only one
component H’ and that H = G[X UV(H — P')]. By (2) and the fact that
|X| >0, H— P’ = 0. Otherwise, H' is connected while G[X U(H — P")} is
disconnected, a contradiction. Therefore P’ is a path of order |V (H)|. By
the fact that |X| < |V(H)|, we have |V(C")| = |[V(C)| - |X| + [V(H)| >
|V(C)|, contrary to (1). This completes the proof of Theorem 1.7. [ ]

3 Proof of Theorem 1.8

Lemma 3.1 Let G be a graph and P = z, - - - £, be a Hamiltonian-path of
G. If d(z,) + d(z,) > n+ 1, then for any edge e = z;ziy1 € E(P), G has
a Hamiltonian-cycle C such that e € E(C).

Proof: Let T = {z;| 71241 € E,zj41 € V(P)}. Then
IT N N(zn)| = |T|+ |N(za)| = [TUN(@a)| Z2n+1-(n—1) =2

That means there exists z; € TNN(zn)—{z;}, and so G has a Hamiltonian-
cycle C = [z1,z;][%n, Tj41]x1. Clearly, E(P) - {zjzj+1} € E(C), and so
e = z;z;41 € E(C). Thus the lemma holds. O

Lemma 3.2 Let G be a k-connected graph of ordern, S C V(G) be a vertez
set with |S| =s' < s, P=1 - Tm be a path of G— S with |V(P)| <n—s
and H be a component of G — S — V(P). Then G — S contains a path P*
ectending P, if one of the following holds:

(i) there ezist two distinct vertices T;,z; € V(P) with Zi41,Z;41 in N (H)
such that d(zi41) > (n + s +1)/2 and d(zj41) > (n+s+1)/2, or

(ii) there ezists a vertez zi41 € NE(H) and a vertez y € V(H) such that
d(zi41) = (n+s+1)/2 and d(y) > (n+ s+ 1)/2.
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Proof: Since the proof when (ii) holds is similar to the proof when (i)
holds, we shall only present the proof of the Lemma 3.2 assuming (i) holds.
Let zi,z% € V(H) with z;zi,z;z; € E(G) and let P’ be an (z}, z})-path
in H. Define G; to be the graph obtained from G by adding a new edge
z1Zm if £1Zm € E(G) and to be G if 1z, € E(G). Then we have an
(Ti+1,Tj+1)-path Py = [zi1q, 2] P'[2i, 1] [Zm, 2j+1] wWith V(P) = V(P)U
V(P') in G;. Moreover, 1z, is an edge of P;. Let H* =G - V(SUPU
H). If Ng-(2i41) N Ny« (z541) # 0, let 2 € Ng-(zi41) N Ny-(z;4+1) and
then G[V(P,) U {2}] has a Hamiltonian-cycle C such that z,z,, € E(C).
Therefore, C — {1z, } is an (z), T, )-path in G — S which extends P. Now
suppose that Ng-(zi+1) N Ny-(zj41) = @ and so we have dy-(zi+1) +
du+(zj41) < |V(H*)|. If Ng_p/(2i41) U Ng_pr(zj41) # 0, without loss of
generality, let y € Ny_p/(zi41) U Ny_p/(z;41) and yzi41 € E(G) and let
P" be an (z},y)-path in H. So G — § has a path P* = [z1,z;)P"[Zit1, Tm]
extending P. Now we can suppose that Ny_p/(zi41) U Ny_pi(zjq1) = 0
and so dy_p(ziy1) + dy—pr(zj41) = 0. Since d(zi41) > (n+5+1)/2 and
d(zj4+1) 2 (n+ s+ 1)/2, we have

dp(Ziy1) +dp (zj41) = d(Zis1) + d(zj41)
—(dsun-u(r-py(Tit1) + dsur-u-pry(Ti+1))
> n4+s+1-2s—|V(H")| > |V(P) +1.

By Lemma 3.1, G1[V(P,)] contains a Hamiltonian-cycle C such that z;z,, €
E(C), and then C — {z12,,} is an (z1,Z,)-path P* in G — S extending P.
]

By a proof similar to that for Lemma 2.3, we obtain the following lemma.

Lemma 3.3 Suppose that G satisfies the hypothesis of Theorem 1.8. Let
S C V(G) be a vertex set with |S| =s' < s, P=x; -z be a longest path
of G— S with [V(P)| < n— s and H be a component of G — S — V(P).
Then

(i) INp(H)| 2 k — s;

(i) if z € V(H),z; € V(P) with zz; € E, then 1 < |N(z) N N(zi41)| <
ao(G) +s;

(i) d(z) > (n+ s+ 1)/2 for each z € V(H) with |[Np(z)| > 1.
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Proof of Theorem 1.8 Let G be a graph satisfying the hypothesis of
Theorem 1.8. Suppose, to the contrary, that G — S is not Hamiltonian-
connected for some vertex set $ C V(G) with |S| = s’ < s. Then there
exists a pair of vertices, say = and y, such that G — S does not have a
Hamiltonian (z,y)-path. Since k —s’ > k—s > 8, G — § is 3-connected
and we can choose

P =z29-- T, to be a longest (z,y)-path in G - S, 6)

where z = z;,y = Tm. Then |V(P)] < n—s'. Let H be a component of
G - S — V(P). By Lemma 3.3 (i), we have [Np(H)| > k — s > 3. Choose
z;,zj € Np(H) to be such that

XN Np(H) =0 and | X| is minimum, (7

where X = {Zit1,'-+,zj—1}. Then |[X| > 0. Otherwise, there exist
Yi,Vi+1 € V(H) such that z;y; € E(G),zit1%i+1 € E(G) (v and yipa
might be the same vertex). Let Py[yi,y: + 1] be a (v, ¥i+1)-path in
H. Then P* = [z1,z:)Pu(yi, Yi+1][Zi+1, Tm] is an (z1,Zm)-path extend-
ing P, contrary to (6). By Lemma 3.3 (iii), for each vertex z € V(H)
with |[Ng(z)] > 1, d(z) = (n + s+ 1)/2. Since for each z € V(H),
N(z)u{z} CV(H)UNp(H)US,

[V(H)| + [Np(H)| 2 (n — &')/2+ 3/2. (8)

By a proof similar to that for the Claim 1 in the proof of Theorem 1.7, we
get the following.

Claim 2. G — S — V(P) has only one component H = G — § — V(P) and
|X| < [V(H)I-

Choose z},z; € V(H) with z,z; € V(H) to be such that [V(P’)|

is as large as possible, where P’ is an (z},z})-path in H. Then P* =
[z1,zi]P'[zj, ZTm] is a path such that
V(P)\ X C V(P*) and {V(P*)| is maximized. 9)

By (9), P* is a longest path containing V(P)\ X and so by applying Lemma
3.3 and the argument on P to P*, it follows that G — § — V(P*) has only
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one component H' and that H' = G[X UV (H — P')]. By (7) and the fact
that [X| >0, H — P’ = (. Otherwise, H' is connected while X U (H — P’)
is disconnected, a contradiction. Therefore, P’ is a path of order |V (H)|.
By the fact that | X| < [V(H)|, we have [V(P*)| = |V(P)| - |X|+|V(H)| >
|[V(P)|, contrary to (6). This completes the proof of Theorem 1.8. O
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