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Abstract

Suppose a network facility location problem is modelled by means
of an undirected, simple graph G = (V,£) with ¥V = {v1,...,vn}. Let
r=(r1,...,mn) and 8 = (s1,...,5n) be vectors of nonnegative inte-
gers and consider the combinatorial optimization problem of locating
the minimum number, v{r, 8, G) (say), of commodities on the ver-
tices of G such that at least s; commodities are located in the vicinity
of (i.e. in the closed neigbourhood of) vertex v;, with no more than
r; commodities placed at vertex v; itself, for all § = 1,...,n. In
this paper we establish lower and upper bounds on the parameter
~{r,8,G) for a general graph G. We also determine this parameter
exactly for certain classes of graphs, such as paths, cycles, complete
graphs, complete bipartite graphs and establish good upper bounds
on v(r, 8, G) for a class of grid graphs in the special case where r; =1
andsj=sforallj=1,...,n

Keywords: Graph domination.
AMS Classification: 05C69, 05C99.

1 Introduction

Cockayne [2] recently introduced a general framework for graph domination,
called (r, s) domination. Let G = (V, £) be a simple graph with vertex set
V = {v,...,v,}. Consider an n-vector 7 = (r1,...,7,) of non-negative
integers 7; (7 = 1,...,n). We follow the notation in [2] and define an
7-function of G as a function f : V — Ny satisfying f(v;) < r; for all
j =1,...,n, where Ny denotes the set of non-negative integers. The weight
of f is defined as |f| = Zv,-ev ;).
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Consider another n-vector s = (s1,..., 8} of non-negative integers s;
(j =1,...,n). An r-function of G is said to be s-dominating if

Z f(u) 2 s; forallv; €V,
u€N[v)]

where N{v;| denotes the closed neighbourhood of v; in G. It was noted in
(2] that an s-dominating r-function of G exists if and only if

Z x> s; forall je{l,...,n}. (1)
vk €N (v;]

Finally, let v(r,s,G) denote the smallest weight of an s-dominating 7-
function of G. If the graph G is clear from the context, this parameter is
denoted merely by v(r, s).

2 General bounds on v(r, s)

Let 7, s and G satisfy (1), and define, for every vertex v; € V, the constraint

difference
Tj=( Zrk)—sj, i=1l...,n (2)

v € N{vj}
as well as the constraint slackness

7y =min{ mp (T}, i=len )

Then 0 < T} < Tj and T} < rj forall j =1,...,n by (1) and (3). The

constraint slackness Tris the maximum d:fference between r; and the value
of any s-dominating r-function of G at v; € V. (If T} = 0, then necessarily

flv;) =r5.)

Recall that a packing of G is a subset P C V with the property that
the distance in G between any two vertices in P is at least 3. Denote the
cardinality of a maximum packing by p. The following general bounds hold
for y(r, s).

Theorem 1 Let T},..., Ty be the constraint slacknesses associated with
the vertices of a packing of cardinality m for a graph G with mazimum
degree A. Then

[%:IA‘W < 7(r,s <Zr, ZT*

for all v, 8 satisfying (1).
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Proof: Let f be an s-dominating r-function of G with minimum weight.

Then
Zf v;)(degv; + 1) > ZS'

v EV

The lower bound follows, because

Y fi)(deguvi +1) S (A+1) ) f(w:) = (A +1)y(r, s).

weV v, €V

For the upper bound, let P be a packing of cardinality m and consider the

r-function T+ i P
1o\ — Tj — j D (S
f'(v;) { rj otherwise.

Note that 0 < f'(v;) < r; for all v; € P by the definition of T}. If v; € P,
then

Z f/(u) = Z f’(u)+f(v,-) = Z Tk + (’rj —TJ’.“)

u€N(vj) uwEN(v;) v €EN(v;)
= Z’I’k—T; = Tj+Sj'°T; Z 85
v EN[vj]

by (2). However, if v; ¢ P, then v; has at most one neighbour, v; (say), in
P, so that

Zf(u Zrk—T >Z’”k"T—ZTk—( ZTk—Sj)=sj

u€N|v;) v EN(v;] vk ENv;] v €Nvj] v EN[v;)

by (2). Therefore f’ is an s-dominating function of G and hence
n m
Yr sy <If1 =) r = T} ]

In the balanced special case where r; = r (say) and s; = s (say) for
all j = 1,...,n, we refer merely to an r-function instead of an r-function,
which is s-dominating instead of s-dominating, and to the parameter v(r, s)
instead of y(r, s). In this special case the existence condition (1) reduces
to s < (0 + 1)r, where § is the minimum degree of the graph, and it follows
that T; = r(d; + 1) — s for all j = 1,...,n, where d; denotes the degree
of vertex v; € V. Therefore T; > min{r(§ +1) — 5,7} forall j = 1,.

Hence the bounds in Theorem 1 reduce to the following bounds in thls
special case.
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Corollary 1 For any graph G,

sn
< < - i -
[A T 1] < y{r,s) < rn— pmin{r(d +1) — s,7}

foralls < (6 +1)r.

Note also that in the classical domination setting (i.e. whenr; = s; =1
for all j = 1,...,n) the lower bound in Corollary 1 reduces further to
the well-known bound [n/(A + 1)] < ¥(G) for a graph G without isolated
vertices (see, for example, Theorem 2.1 in [3]), which is sharp for the infinite
class of complete graphs. In the classical domination setting the upper
bound in Corollary 1 reduces to the bound ¥(G) < n — p for a graph
G without isolated vertices. This bound coincides with the bound ¥(G) <
n—=ép by Chellali and Volkmann [1] for graphs with end-vertices. Otherwise,
it is weaker than the Chellali and Volkmann bound. However, the bound
4(G) < n — p is sharp for the infinite class of coronas of trees.

3 Special graph classes

In this section we consider only the balanced special case where s; = s (say)
and r; = r (say) for all i = 1,...,n and establish values for and bounds on
~(r, s) for a number of special graph classes, including complete (bipartite)
graphs, paths, cycles and a class of grid graphs.

3.1 Complete (bipartite) graphs
Let us first consider the values of v{r, s) for complete graphs.

Proposition 1 (Complete graphs)
v(r,s,Kp) =5 for alln € N and all 7,5 € No satisfying s < nr.

Proof: It follows by Corollary 1 that (r,s, Ks) > zn—_f;‘m = s. Sup-
pose m, e € Ng such that s=mr +e with e < r and m < n, and consider

the r-function
r ifi=1,...,m
flu) =< e ifi=m+1

0 otherwise

of K,. Then f is clearly an s-dominating function of K, and hence
vir, s, Kn) < |fl=mr+e=s. ]

Next we turn our attention to values of y(r,s) for complete bipartite
graphs.
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Proposition 2 (Complete bipartite graphs)
Suppose m,n € N and r,s € Ny satisfyingm >n and s < (n+ 1)r. Then

Y7, 8, Kmn) = min{X +Y} 4)

for which | X/n|+Y > s, (5)
[Y/m|+X = s, (6)

[X/n] < 7 (7)

[Y/m] < (8)

Proof: Suppose the partite sets of K,, , are M and N with |M| =m
and |N| = n. Consider the function f:V — Ny given by

_ z; ifvy;, €N
f(vi)_{ Vi ifviEM

andlet X =37 vziandY =3 4 i It is easy to see that if f is
an s-dominating function of Knn such that z; — z; = dij > 2 for some
i # j, then f may be replaced by the s-dominating r-function

z; — |dij/2] fv=v
fllo) =1 zj+|di/2] if v=0
fu) otherwise,

satisfying f'(v;) — f'(v;) < 1 and |f’| = |f|. By repeating this argument
we may assume, without loss of generality that z; = [ X/n] or z; = [X/n]
for all v; € N. It follows by a similar argument that we may assume that

= |Y/m] or y; = [Y/m] for all v; € M. Then |f| = X + Y, explaining
the objective function (4). The constraints (5)—(6) ensure that f is an s-
dominating function of K, m, while the constraints (7)-(8) ensure that f
is an r-function of K, ;. N

The result above naturally gives rise to the following algorithm for de-
termining the value of y(r, s, K;m n) exactly.

Algorithm 1 (Complete Bipartite Graphs)

Input: 7,5 € Ng, m,n € N satisfying m > n and s < (n+1)r
Output: v(r, s, K »)

1 zens(m—1)/(mn-1)

2 yems(n-1)/(mn-1)

3.1 if nr < |z| then output nr + m(s — nr)

3.2 else if ([z], [y]) or (|z], [y]) satisfies (5)~(8) then output [z]+ ]
33 else output [z] + [y]
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(L= Twl)
L]

* (121, Lu)

IJAX/n=r

(b)

(L=]. TwT)
L]

(e)

Figure 3.1: Three possibilities for the feasible domain in Proposition 2, if
the constraint (7) is not binding.
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The algorithm finds the smallest value of ¢ for which X +Y = ¢, and for
which X and Y are integers, by determining the lowest line with slope —1
intersecting an integer pair in the feasible domain (5)~(8) in (X, Y)-space.
The values of z and y in Steps 1-2 of the algorithm are the simultaneous
solutions to the system

sty = s
Lz = s
and are given by
x_ns(m—_l) and _ms(n—1)
T mn-1 A ——

In Step 3.1 it is tested whether constraint (7) is binding (i.e. whether equal-
ity is achieved in (7)), in which case maximum values for the r-function
are required at the vertices in the partite set N. Notice that we need
not test whether (8) is binding, because the requirement m > n implies
Y/m < X/n < r. If constraint (7) is not binding and the coordinates
([=], ly]) and (|z], [¥]) satisfy (5)-(8), then the situation in Figure 3.1(a)
results (Step 3.2 of the algorithm). Otherwise the situations in Figure
3.1(b)—(c) result (Step 3.3 of the algorithm). If (7) is not binding, an op-
timal objective function value of [z + y] is achieved in most cases (see
Figures 3.1(a)-(b)), but sometimes an optimal value of [z + y] + 1 results
(see Figure 3.1(c)). The following result follows from these observations.

Proposition 3 (Complete bipartite graphs)
If constraint (7) is binding, then v(r, s, Km ») = m(s—nr) +nr. Otherwise

ns(m — 1) + ms(n - 1)~’+1'

nm—1

[ns(m - 1)+ ms(n—1)
nm—1

] < 7(r,, Kmin) < [

3.2 Paths and Cycles

The value of y(r, s) for a cycle C, of order = is established in the following
proposition.

. sn e
Proposition 4 (Cycles) y(r,s,Cp) = [?1 for all r;s € Ny satisfying
s < 3r.

Proof: Let n =3¢+ j for some £ € Ng and some integer 0 < j < 3. Then
it follows by Corollary 1 that

¥{r,s}) = [%] = [@] =st+ [.83!’ (9)
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for all s < 3r. For the upper bound, suppose the vertices of C, are la-
belled vy,...,v,. Let r > [s/3] and let f be the r-function satisfying
Y, f(vaksi) = s and [5/3] > f(vaks1) 2 flvak+2) 2 flvaksea) 2 5/3]
forall k =0,...,¢ —1 and f(vsesi) = f(v;) for all 0 < i < j. Then f is
s-dominating and it is easy to verify that

v <l =st+ [ 7], (10)
The result follows by a combination of (9)-(10). |

Next we consider the value of y{r, s) for a path P, of order n.

Proposition 5 (Paths) Suppose r,s € No with s < 2r. Then

(.5, Pa) £ +s—r if n=0 (mod 3)

7y S, = .

v " s[3] if n=1,2 (mod 3).

Proof: Suppose the vertices of P, are v1,...,Vs, and that v, and v,

are the end vertices of the path. Consider an s-dominating r-function f of
P, with minimum weight. Then f(v;) > s — f(v2) > s — r and similarly
f(va) > s — 7. Also, for any three consecutive vertices u,w,v of P, it
follows that f(u)+ f(v) + f(w) > s.

Consider first the case where n = 3¢ for some £ € N. Then

Ar,s) = for) + Fua) + f) + -+ + f(Uno1) + flva) 2 T +s = (11)
) + f(v2) + S On1) + f(oa)
2s >s(8-1) 28—1

For the upper bound, consider the r-function f’ of P, satisfying f'(vsk+1) =
s—7, f'(vske2) = 7 and f'(vaks3) = 0 for all k = 0,...,€ — 2, together
with f'(vp—2) = s =7, f'(vn-1) =7 and f'(v,) = s — 7. Then clearly flis
an s-dominating function of P,, and so

'y(r,s)$s€+(s—r)=%+s—r, (12)

proving the proposition for the case where n is a multiple of 3 by a combi-
nation of (11)-(12).
Consider next the case where n = 3¢ + 1 for some ¢ € Ny. Then

1Ur,8) = f1) + £(02) + f(v0) + -+ Flona) + flon-) + Soa) 2 s 5]

2s >s(e-1) >s
(13)
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For the upper bound, consider the r-function f” of P, satisfying f"(vsk+1) =
Ls/2], f"(vak+2) = [s/2] and f”(vsk+3) =0 for all k = 0,...,¢ — 2, to-
gether with f"(vn_3) = |/2], f"(vn-2) = [s/2], f"(vn-1) = [s/2] and
f'(va) = |5/2]. Then clearly f” is an s-dominating function of P,, and so

vns) <se+1)=s|z], (14)

proving the proposition for the case where n = 1 (mod 3) by a combination
of (13)-(14).
Finally, consider the case where n = 3¢ + 2 for some ¢ € Ng. Then

Wrys) = f1) + -+ + fena) + fat) + fa) 2 5[] (15)
>sé 23

For the upper bound, consider the r-function f" of P, satisfying f"'(vsr41) =
Ls/2]), f"(vak+2) = [s/2] and f"(vsk4+3) =0 forall k =0,...,£—1 to-
gether with f"/(vae41) = | /2] and f"”'(vse+2) = [s/2]. Then clearly f" is
an s-dominating function of P, and so

N sy <s(+1)=s [g] , (16)

proving the proposition for the case where n = 2 (mod 3) by a combination
of (15)-(18). |

3.3 A Class of Cartesian products

It seems to be a very hard problem to find a simple, closed formula for v(r, s}
for the grid graph C,, x C, (in fact, such a formula is not even known for
v(1,1)). We therefore merely establish an upper bound on ¥(r,s) in this
case. However, we then go on to show that this upper bound is good (and,
in fact, often exact).

Proposition 6 (Grid graphs on a torus)

')'(7'; 5,Cm X Cn) < [?] + g(m» n, S) + g(na m, 3) + h(m) , 3)7 (17)

where

0 if s =0 (mod 5) or y =0 (mod 5)
g9(z,y,8) = l-g%_—ll] if ys = 3 (mod 5)
[251]  otherwise
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[

(a) The tiling pattern (b) Corresponding crosses

Figure 3.2: Upper bound construction on 7(r, s, Cpm x Cy).

and
[ZeB] - [254] if myn,s = 2,3 (mod 5)
Kl o= or s=2 (mod5) & m=n=1 (mod 5)
Sl or s=3 (mod 5) & m =n =4 (mod 5)

0 otherwise
for all 7,s,m,n € N satisfying 4 <n <m and s < 5r.

Proof: We use the infinite tiling pattern (of crosses) in Figure 3.2(a) to
assign values to an r-function f* : V(Pa X Px) — Np. The corresponding
pattern of crosses is super-imposed on a portion of the graph in Figure
3.2(b) — the centre of each (bold faced) cross is shown slightly larger.
Our approach is to ensure that f* is an s-dominating r-function of the
infinite grid graph and to use it to form an s-dominating r-function f of
a finite grid graph (on the torus) by selecting an m x n subpattern of the
infinite tiling pattern in Figure 3.2 and by wrapping the ends horizontally
and vertically to form a copy of Cy, x Cp, with vertex set V. We do this by
letting f(v) = f*(v) for any vertex v € V that is not adjacent to a wrapping
seam and by applying correction terms to the function value at any vertex
adjacent to a wrapping seam (the two functions g(m,n,s) and g(n,m, s)
in (17)). Another correction term (the function h(m,n,s) in (17)) arises
because the best row patterns for the horizontal seam is not necessarily the
best pattern for the vertical seam.
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Notice that if values of f* are chosen arbitrarily such that

for any two vertices u, v corresponding to the same
AR . " (18)
position within two crosses, f*(u) = f*(v)

and such that

the values of f* add up to s when evaluated over (19)
all five vertices comprising any single cross,

then ) . N} f* (1) = s for every vertex v and hence f* is an s-dominating
r-function of the infinite grid graph if f*(v) < r for all vertices v. Further-
more, the tiling pattern consists of five row patterns p(®,...,p) which
may be obtained from one another by means of horizontal shifts. More
specifically, if p,(’ ) denotes the i-th entry of p\), then pSJ ) = p,@zj for all
J=1,2,3,4and i € Z, where Z denotes the set of integers. We shall assign
either the value [s/5] or the value |s/5] to f(v) for any v € V, as described
below.

The sequence formed by the values of f* along any row or column of
the grid graph is periodic, with period 5. Therefore, if n = 0 (mod 5), then
no correction term is required for the value of f(v) at any vertex v adjacent
to the wrapping seam of length m. A similar observation holds for the
wrapping seem of length n if m = 0 (mod 5). Also, if s =0 (mod 5), then
we may choose f(v) = s/5 for all vertices v € V, in which case g(m,n,s) =
g(n,m,s) = h(m,n,s) =0 and v(r, s) = |f| = mns/5.

We consider the other values of s (mod 5) separately, first focussing on
wrapping in one direction so as to form a single seam. The second wrapping
seam is considered in more detail at the end of the proof.

The case s =1 (mod 5). Let the row patterns for f* be

0 _ [s/5] if i=0 (mod 5)
P = |s/5] otherwise,

P,(J) = ch_’)zjy j=123,4.
Number the rows 0,...,n — 1 with the horizontal wrapping seam between
rows 0 and » — 1. Similarly number the columns 0, ...,m — 1 with the ver-
tical wrapping seam between columns 0 and m — 1. Let row j have pattern
pli(mod3) for all § = 1,...,n — 1. Let each value in row 0 be the maxi-
mum of the corresponding values in pattern p(®) and pattern p(*(med5))
essentially causing an overlap of the periodic tiling pattern in Figure 3.2
in the n-direction by one row. This ensures that ), . N[ f(u) = s for
every vertex v in row n — 1. However, a similar inequality does not nec-
essarily hold for row 0. If not, then we replace the value of f for every
vertex in row n — 1 by the maximum of the corresponding values of f
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rown —1
row 0
row 1
(@) row 2
row 3
row 4

QOO OO
o~ 00 oIC
OO O O
[l =N=NeNe] o]
OO = OMOo
COO0OO O
Q= OO0 0O
OO0 O Ol
-0 0000
OO m=OMOo
(=N =Nl fo]
o= 00 OC

rown —1
row 0
row 1
(b) row 2
row 3
row 4

(=N =N =R [ =]
OO0 KMo
OO0 O =~OlO
-0 000
OO = O Of—
OO O OO
o= O O Mo
[=N=N=l =] ]
-0 00O
OO OO
(=N =Nl =]
O = O OMO

Table 3.1: The procedure of overlapping described in the case s = 1 (mod 5)
when (a) n = 2 (mod 5) or (b) n = 3 (mod 5).

in pattern p(®—1(med8)) and pattern p(*), essentially extending the over-
lap by one more row. The procedure is illustrated in Table 3.1 for the
cases (a) n = 2 (mod 5) and (b) n = 3 (mod 5). The table entries rep-
resent the values of f(v) — |s/5]. Values of f due to the overlapping of
the tiling pattern during the wrapping process are indicated in bold face.
In (a) row 0 is replaced by max{pattern p©, pattern p@}. In (b) row 0
is replaced by max{pattern p(%), pattern p®} and row n — 1 is replaced
by max{pattern p("~1(m°d8) pattern p(}. For the case n = 2 (mod 5)
an overlap of just one row is sufficient, but for the case n = 3 (mod 5) a
double overlap is required. It is easy to verify that for n = 1,2,4 (mod 5)
one overlap is sufficient, in which case the correction term is approximately
n/5. However, for n = 3 (mod 5) the correction term is approximately
2n/5 (along the concerned seam). Since we ensure that f(v*) = [s/5] for
the first vertex v* in row 0, the correction term will be at most [(n —1)/5]
or [2(n — 1)/5] for the two cases respectively.

The case s = 4 (mod 5). This case is similar to the case s = 1 (mod 5),

except that
© _ [ |s/5] ifi=4(mod5)
Pi " =1 [s/5] otherwise.

Here the the correction term is at most [(n — 1)/5] for the cases n =
1,3,4 (mod 5), and at most [2(n — 1)/5] for the case n = 2 (mod 5).

The cases s = 2,3 (mod 5). These two cases differ from the pre-
vious two in the sense that there are two possible tiling patterns, and
the vertical and horizontal (cyclic) patterns are necessarily different. For
example, if the horizontal row pattern in the equivalent of Table 3.1 is
0,0,0,1,1,0,0,0,1,1,... then the vertical pattern will be 0,0,1,0,1,0,0,1,
0,1,... (and vice versa). We may therefore choose the pattern adjacent to
the longer seam that results in the smallest correction term, but that will
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n (mod 5) — 1 2 3 ‘ 4
(2) s =2 (mod 5) 1,0,1,0,0,... | [ml]  [2m=2] [2m=2] [2m=2)
1,1,0,0,0,... | [2m=2] [m=1] [mel]  [2m=2]
n {mod 5) — 1 2 3 4
(b) s =3 (mod 5) 1,1,1,0,0,... | [Zn=2] [m=l] [m=l]  [2m=2)
1,1,0,1,0,... | [3m=2] [2m=2] [2m=2]  [m-1]

Table 3.2: Upper bounds on the correction term for each type of row pat-
tern.

fix the pattern along the shorter seam, which may be undesirable. The
function h in (17) compensates for such undesirability in cases where the
correction term for the shorter seam is forced to be [2(n — 1)/5] instead
a sufficient increase of [(n — 1)/5]. Upper bounds on the correction term
as a result of overlapping during the wrapping process are shown in Ta-
ble 3.2 for each type of row pattern. Notice that it is always sufficient
to have a correction term of at most [(m ~ 1)/5] for both seams, except
when m = 4 (mod 5) and s = 2 (mod 5), or when m = 1 (mod 5) and
s =3 (mod 5). Thus, in all cases when the upper bound on the correction
terms for both seams is [2(m — 1)/5], it holds that ms = 3 (mod 5). The
function % in (17) may be determined from Table 3.2. |

We demonstrate the result of Proposition 6 by means of a numerical
example.

Example 1 7(r,8,Cy x Cy) < [9x4 x 8/5]+2+1+1=862 as shown in
Table 3.3(a). Similarly, ¥(r,1,Co x C4) < [9x4x1/5]+2+1+0=11
as shown in Table 3.3(b), which compares favourably with the ezact value
¥(1,1,Cq x Cy) = 9 established by Klaviar and Seifter [4, Theorem 2.5]. O

In fact, in the classical domination setting (where r = s = 1) our con-
struction in Proposition 6 gives the correct result, namely y(1,1, Crr, xCy) =
m as determined by KlavZar and Seifter {4, Theorem 2.5] for the case
m = 0 (mod 5), and overestimates this value by 1,2,3,2 for the cases
m = 1,2,3,4 (mod 5) respectively. This overestimation of course becomes
negligible as m increases.

Furthermore, Proposition 6 gives the exact value of y(1,1,Cp, x Cs)
for the cases m = 0,1,2,4 (mod 5) and matches the upper bound on
7(1,1,C, x C5) established by Klav#ar and Seifter [4, Theorem 2.6] for
the case m = 3 (mod 5).
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coumn |1 2 3 4 5 6 7 8 9

row0 |2 2 1 2 2 2 2 1 2

(a) s=8 rowl |2 1 2 2 1 2 1 2 2
row2 2 1 2 1 2 2 1 2 1

row3 |2 2 2 1 2 1 2 2 1

column |1 2 3 4 5 6 7 8 9

row0 |1 0 0 1 0 1 O 0 1

(b)s=1 rowl |0 0 1 0 0 0 0 1 O
row2|(0 0 0 O 1 0 O0 0 O

row3|0 1 0 0 O O 1 O O

Table 3.3: Values of an s-dominating r-function f for the graph Cq x Cjy.

4 Further work

Further, related work may include determining the value of y(r, 8) for other
graph classes, such as complete multipartite graphs, circulant graphs, and
other Cartesian graph products, such as Pp X Pn, Py X Cp, Kin X Kp,
K., x P, and K,, x C,,. The upper domination parameter I'(r, ) (the
largest weight of a minimal s-dominating 7-function) is also of interest.
Establishing general lower and upper bounds on I'(r, s), as well as deter-
mining the value of I'(r, 8) for special graph classes, such as those mentioned
above and considered in this paper, may also be a worth-while endeavour.
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