Some Equitably 2-colorable cycle decompositions of $K_v + I$ *

Shanhai Li^{1,2}

¹Department of Mathematics, Shanghai JiaoTong University Shanghai 200240 China

²School of Statistics and Mathematics, Shandong Economic University, Jinan Shandong 250014 China Hao Shen

Department of Mathematics, Shanghai JiaoTong University Shanghai 200240 China

Abstract

Let G be a graph in which each vertex has been colored using one of k colors, say c_1, c_2, \dots, c_k . If an m-cycle C in G has n_i vertices colored c_i , $i = 1, 2, \dots, k$, and $|n_i - n_j| \leq 1$ for any $i, j \in \{1, 2, \dots, k\}$, then C is equitably k-colored. An m-cycle decomposition C of a graph G is equitably k-colorable if the vertices of G can be colored so that every m-cycle in C is equitably k-colored. For m = 4, 5 and 6, we completely settle the existence problem for equitably 2-colorable m-cycle decompositions of complete graphs with the edges of a 1-factor added.

Keywords: Graph coloring; cycle decomposition; equitable coloring.

AMS Subject Classification: 05B30

1. Introduction

Let G and H be graphs. A G-decomposition of H is a set $\mathcal{G} = \{G_1, G_2, \dots, G_p\}$ such that G_i is isomorphic to G for $1 \leq i \leq p$ and G partitions the

^{*}Research supported by the National Natural Science Foundation of China grant 10471093. Email: lsh751@163.com

edge set of H. Most commonly, $H = K_v$, the complete graph on v vertices. Other popular choices for H are $K_v - I$, the complete graph with the edges of a 1-factor removed, and $K_v + I$, the complete graph with the edges of a 1-factor added.

An m-cycle, denoted by (x_1, x_2, \dots, x_m) , is the graph with vertex set $\{x_1, x_2, \dots, x_m\}$ and edge set $\{\{x_1, x_2\}, \{x_2, x_3\}, \dots, \{x_m, x_1\}\}$. An m-cycle system of H is a G-decomposition of H where G is an m-cycle. The existence problem for m-cycle system has recently been solved; see [2], [4] and [5].

A coloring of an m-cycle decomposition \mathcal{C} of a graph G is an assignment of colors to the vertices of G. A k-coloring of \mathcal{C} is a coloring in which k distinct colors are used. A k-coloring of an m-cycle decomposition \mathcal{C} induces a coloring of each m-cycle in \mathcal{C} . If n_i is the number of vertices colored c_i in an m-cycle $C \in \mathcal{C}$, then C is equitably k-colored if $|n_i - n_j| \leq 1$ for any $i, j \in \{1, 2, \dots, k\}$ and an m-cycle decomposition \mathcal{C} is equitably k-colored if every $C \in \mathcal{C}$ is equitably k-colored. An m-cycle decomposition is equitably k-colorable if it can be equitably k-colored.

The existence question for equitably 2-colorable m-cycle decompositions of K_v and $K_v - I$, where $m \in \{4, 5, 6\}$, has been completely settled in [1]. In this paper, we consider the existence of equitably 2-colorable m-cycle decompositions of $K_v + I$. Throughout the paper, we use colors black and white, unless otherwise stated, b and w are used to denote the number of black and white vertices in $K_v + I$. Furthermore, an edge which connects two black (white) vertices is said to be a one-colored black (white) edge, and an edge which connects two differently colored vertices is said to be a two-colored edge. We make frequent use of the following important result.

Lemma 1.1 [5] An *m*-cycle decomposition of $K_v + I$ exists for all admissible v, that is, for all even v such that $3 \le m \le v$ and m divides the number of edges in $K_v + I$.

Our main result is the following theorem which completely settles the existence question for equitably 2-colored m-cycle decompositions of $K_v + I$ for $m \in \{4, 5, 6\}$.

Main Theorem There exists an equitably 2-colorable m-cycle decomposition of $K_v + I$, $m \in \{4, 5, 6\}$, for all admissible values of v.

2. Equitably 2-colorable 4-cycle decompositions

Every equitably 2-colored 4-cycle must contain two black and two white vertices, which may only be arranged in two formations; see Figure 1.

Figure 1: Possible equitable 2-colorings of 4-cycles.

Now we prove the following theorem:

Theorem 2.1 There exists an equitably 2-colorable 4-cycle decomposition of $K_v + I$ if and only if $v \equiv 0 \pmod{4}$, $v \geq 4$.

Proof. From Lemma 1.1, a 4-cycle decomposition of $K_v + I$ exists if and only if $v \equiv 0 \pmod{4}$, $v \geq 4$. As v is even, we color v/2 vertices black and v/2 vertices white. Note that there are $\frac{1}{8}v^2$ 4-cycles in any 4-cycle decomposition of $K_v + I$.

decomposition of $K_v + I$. Let the vertex set of $K_v + I$ be $\bigcup_{i=0,1} \{0_i, 1_i, \dots, \frac{1}{2}(v-2)_i\}$. Color the vertices with subscript 0 black and color the vertices with subscript 1 white.

Let the edges in I be $\{j_k, (\frac{v-2}{2}-j)_{k+1}\}$, where $j=0,1,\cdots,(v-4)/4, k\in \mathbb{Z}_2$. We obtain v/4 cycles of Type 2 (see Figure 1) by forming the 4-cycles

$$(j_0, j_1, (\frac{v-2}{2} - j)_0, (\frac{v-2}{2} - j)_1)$$

for $j=0,1,\cdots,(v-4)/4$. We generate the remaining v(v-2)/8 cycles of Type 1 (see Figure 1) by forming the 4-cycles

$$(j_0,(j+l)_0,j_1,(j+l)_1)$$

for $j=0,1,\cdots,(v-4)/2$ and $l=1,2,\cdots,\frac{v-2}{2}-j$. It can be easily checked that this gives an equitably 2-colored 4-cycle decomposition of K_v+I . \square

3. Equitably 2-colorable 5-cycle decompositions

When considering cycles of odd length, if b vertices of a cycle are colored black and w vertices white, we cannot have b=w. Instead, each cycle within the decomposition must satisfy |b-w|=1. We introduce the following definitions first.

Definition Let v and λ be given positive integers and K be a set of positive integers. A pairwise balanced design (v, K, λ) -PBD is an ordered pair (V, \mathcal{B}) , where V is a v-set and \mathcal{B} is a set of subsets of V (called blocks), such that $|B| \in K$ for each $B \in \mathcal{B}$ and each pair of distinct elements is contained in exactly λ blocks.

If $\lambda = 1$, we simply write (v, K)-PBD for (v, K, 1)-PBD. The integer v is the order of the PBD. We denote by $(v, \{k, s^*\})$ -PBD a PBD of order v having one block of size s, and the other blocks of size k.

Definition A group divisible design, denoted GDD(K, M; v), is a triple $(X, \mathcal{G}, \mathcal{B})$, where X is a v-set, \mathcal{G} is a set of subsets (called groups) of X, \mathcal{G} partitions X, \mathcal{B} is a set of subsets (called blocks) of X such that

- (1) $|G| \in M$ for each $G \in \mathcal{G}$,
- (2) $|B| \in K$ for each $B \in \mathcal{B}$,
- (3) $|B \cap G| \le 1$ for each $B \in \mathcal{B}$ and each $G \in \mathcal{G}$,
- (4) Each pair of elements of X from distinct groups is contained in a unique block.

When $K = \{k\}$ and $M = \{m\}$, we simply write GDD(k, m; v) for $GDD(\{k\},\{m\};v)$. The following result is well-known, and is useful in proving the main theorem of this section.

Lemma 3.1 [3] For all positive integers x there exists a (2x + 1, 3)-PBD or a $(2x + 1, \{3, 5^*\})$ -PBD.

Corollary 3.2 For all positive integers x there exists a GDD(3, 2; 2x) or a GDD(3, $\{2, 4^*\}; 2x$).

Proof. Take a (2x+1,3)-PBD or a $(2x+1,\{3,5^*\})$ -PBD (see Lemma 3.1), and delete an element "a" (for the $(2x+1,\{3,5^*\})$ -PBD, "a" is contained in the unique block of size 5) and take the truncated blocks as groups. This

gives a GDD(3, 2; 2x) or a $GDD(3, \{2, 4^*\}; 2x)$ respectively.

We also make use of the following existence results. We use $K_{p(n)}$ to denote the multipartite graph with p parts with n vertices in each part. Although there exists an equitably 2-colored 5-cycle decomposition of $K_{3(5)}$ [1], for convenience we reproduce it here, since this decomposition will be used later in this paper.

Lemma 3.3 [1] There exists an equitably 2-colored 5-cycle decomposition of $K_{3(5)}$.

Proof. Let the vertex set of $K_{3(5)}$ be $\bigcup_{i=1,2,3} \{0_i,1_i,\cdots,4_i\}$, with the obvious vertex partition. Color the vertices $0_i,2_i$ and 4_i black for i=1,2,3 and color the remaining vertices white. A suitable decomposition of $K_{3(5)}$ is given by the following cycles:

```
\begin{array}{llll} (1_1,1_2,0_1,0_2,0_3), & (1_1,3_2,0_1,2_2,2_3), & (1_1,1_3,0_1,4_2,4_3), \\ (1_1,3_3,0_1,0_3,2_2), & (3_1,1_2,2_1,0_2,2_3), & (3_1,3_2,2_3,0_1,4_3), \\ (3_1,1_3,2_1,4_2,0_3), & (3_1,3_3,2_1,2_3,4_2), & (1_2,1_3,0_2,4_3,4_1), \\ (1_2,3_3,2_2,2_1,0_3), & (3_2,1_3,2_2,4_3,2_1), & (3_2,3_3,4_2,4_1,0_3), \\ (1_1,4_2,1_3,4_1,0_2), & (3_1,0_2,3_3,4_1,2_2), & (1_2,4_3,3_2,4_1,2_3). \end{array}
```

Lemma 3.4 There exists an equitably 2-colored 5-cycle decomposition of $K_{10} + I$.

Proof. Let the vertex set of $K_{10} + I$ be Z_{10} . Color the vertices $0, 1, \dots, 5$ black and color the vertices 6, 7, 8, 9 white. Let the edges in I be $\{0, 9\}$, $\{1, 7\}$, $\{2, 4\}$, $\{3, 5\}$ and $\{6, 8\}$. A suitable decomposition of $K_{10} + I$ is given by the following cycles:

$$(0,1,5,7,8), (0,3,2,8,9), (0,5,9,3,6), (0,7,1,4,9), (1,2,4,8,6), (1,3,4,7,9), (1,7,3,5,8), (2,0,4,6,9), (2,4,5,6,7), (3,5,2,6,8).$$

Lemma 3.5 There exists an equitably 2-colored 5-cycle decomposition of $K_{20} + I$.

Proof. Let the vertex set of $K_{20} + I$ be Z_{20} . Color the vertices $0, 1, \dots, 11$ black and color the vertices $12, 13, \dots, 19$ white. Let the edges in I be $\{0, 16\}, \{1, 17\}, \{2, 6\}, \{3, 4\}, \{5, 15\}, \{7, 10\}, \{8, 13\}, \{9, 19\}, \{11, 18\}$

277

and $\{12,14\}$. A suitable decomposition of $K_{20}+I$ is given by the following cycles:

```
(14, 16, 4, 2, 9),
                                                                      (15, 5, 17, 2, 8),
(12, 13, 11, 10, 0),
                        (13, 14, 0, 2, 5),
(12, 14, 3, 1, 2),
                        (13, 15, 0, 4, 6),
                                               (14, 17, 7, 0, 8),
                                                                      (16, 17, 4, 5, 11),
                                                                      (16, 18, 5, 7, 8),
                        (13, 16, 2, 6, 10),
                                               (14, 18, 2, 7, 10),
(12, 14, 4, 3, 10),
(12, 15, 1, 4, 3),
                        (13, 17, 1, 6, 9),
                                               (14, 19, 7, 4, 11),
                                                                      (16, 19, 6, 8, 10),
(12, 16, 0, 3, 5),
                        (13, 18, 3, 11, 1),
                                               (14, 5, 16, 3, 2),
                                                                      (16, 0, 11, 18, 1),
(12, 17, 0, 5, 1),
                        (13, 19, 1, 7, 3),
                                               (15, 16, 9, 5, 6),
                                                                      (16, 7, 10, 17, 6),
                                               (15, 17, 8, 5, 10),
                                                                      (17, 18, 11, 7, 9),
(12, 18, 0, 6, 11),
                        (13, 0, 9, 19, 8),
                        (13, 2, 6, 18, 4),
                                               (15, 18, 8, 3, 9),
                                                                      (17, 19, 10, 9, 11),
(12, 19, 2, 10, 4),
(12, 6, 14, 1, 8),
                        (13, 7, 18, 9, 8),
                                               (15, 19, 4, 8, 11),
                                                                      (17, 3, 19, 9, 1),
(12, 9, 4, 15, 7),
                        (14, 15, 3, 6, 7),
                                               (15, 2, 11, 19, 5),
                                                                      (18, 19, 0, 1, 10).
```

Theorem 3.6 There exists an equitably 2-colorable 5-cycle decomposition of $K_v + I$ if and only if $v \equiv 0 \pmod{10}$, $v \ge 10$.

Proof. By Lemma 1.1, a 5-cycle decomposition of $K_v + I$ exists if and only if $v \equiv 0 \pmod{10}$, $v \geq 10$. Let $v = 10x, x \geq 1$. By Corollary 3.2, we can take either a GDD(3,2;2x) or a GDD(3,{2,4*};2x) and simultaneously construct $K_v + I$ and its equitably 2-colored 5-cycle decomposition as follows. Replace each element of the design with five vertices, coloring three vertices black and two vertices white. Within each set of vertices arising from a group of size 2 of the design, let there be two one-colored black edges and one one-colored white edge and two two-colored edges in I. Similarly, within any set of vertices arising from a group of size 4, let there be three one-colored black edges and one one-colored white edge and six two-colored edges in I.

By Lemma 3.3, we can place an equitably 2-colored 5-cycle decomposition of $K_{3(5)}$ on each set of vertices arising from a block of the design. Furthermore, by Lemmas 3.4 and 3.5, we can place an equitably 2-colored 5-cycle decomposition of $K_{10} + I$ or $K_{20} + I$ on g for each set of vertices g arising from a group of the design of size 2 or 4 respectively. It is not difficult to check that the result is an equitably 2-colored 5-cycle decomposition of $K_{v} + I$.

4. Equitably 2-colorable 6-cycle decompositions

For 6-cycles, we proceed in much the same manner as for 4-cycles. We use the following existence results when proving Theorem 4.3.

Lemma 4.1 There exists an equitably 2-colored 6-cycle decomposition of $K_6 + I$.

Proof. Let the vertex set of K_6+I be Z_6 . Color the vertices 0,1 and 2 black and color the vertices 3,4 and 5 white. Let the edges in I be $\{0,3\},\{1,2\}$, and $\{4,5\}$. A suitable decomposition of K_6+I is given by the following cycles:

$$\{0,1,2,5,4,3\}, \{0,2,4,1,3,5\}, \{0,4,5,1,2,3\}.$$

Lemma 4.2 [1] There exists an equitably 2-colored 6-cycle decomposition of $K_{6,6}$.

Proof. Let the vertex set of $K_{6,6}$ be $\bigcup_{i=1,2} \{0_i, 1_i, \dots, 5_i\}$, with the obvious vertex partition. Color the vertices $0_i, 2_i$ and 4_i black, for i=1,2, and color the remaining vertices white. A suitable decomposition of $K_{6,6}$ is given by the following cycles:

$$\begin{array}{lll} (0_1,0_2,4_1,5_2,1_1,3_2), & (2_1,2_2,0_1,1_2,3_1,5_2), & (4_1,4_2,2_1,3_2,5_1,1_2), \\ (4_1,2_2,1_1,0_2,3_1,3_2), & (0_1,4_2,3_1,2_2,5_1,5_2), & (2_1,0_2,5_1,4_2,1_1,1_2). \end{array}$$

Let G and H be graphs. The join of G and H, denoted $G \vee H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup \{\{u,v\} | u \in V(G) \text{ and } v \in V(H)\}$. Now we prove the following:

Theorem 4.3 There exists an equitably 2-colorable 6-cycle decomposition of $K_v + I$ if and only if $v \equiv 0 \pmod{6}$, $v \geq 6$.

Proof. By Lemma 1.1, a 6-cycle decomposition of $K_v + I$ exists if and only if $v \equiv 0 \pmod{6}$, $v \geq 6$. Let $v = 6x, x \geq 1$. Let the vertex set of $K_v + I$ be $\bigcup_{i=1,\dots,x} V_i$, where $V_i = \{0_i, 1_i, \dots, 5_i\}$. Color the vertices $0_i, 1_i$ and 2_i black

for $i = 1, 2, \dots, x$, and color the remaining vertices white. Let the edges in I be $\{0_i, 3_i\}, \{1_i, 2_i\}$, and $\{4_i, 5_i\}$, for $i = 1, 2, \dots, x$.

By Lemma 4.2 we can place an equitably 2-colored 6-cycle decomposition of $K_{6,6}$ on $V_i \vee V_j$, for $1 \leq i < j \leq x$. By Lemma 4.1, we can place an equitably 2-colored 6-cycle decomposition of $K_6 + I$ on V_i for $1 \leq i \leq x$. It is not difficult to check that the result is an equitably 2-colored 6-cycle decomposition of $K_v + I$.

5. Conclusion

By Theorems 2.1, 3.6 and 4.3, we have the main result of this paper.

Theorem 5.1 For $m \in \{4,5,6\}$, there exists an equitably 2-colorable m-cycle decomposition of $K_v + I$ for all admissible values of v.

As a consequence of Theorem 5.1, we have the following corollary:

Corollary 5.2 For $m \in \{4, 5, 6\}$, there exists a 2-colorable m-cycle decomposition of $K_v + I$ for all admissible values of v.

Acknowledgements

The authors would like to thank Doctor Mary Waterhouse for her kindness in providing one of the references.

References

- [1] P.Adams, D.Bryant, M.Waterhouse, some equitably 2-colorable cycle decompositions, Ars Combin., to appear.
- [2] B.Alspach and H.Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B, 81(2001) no.1, 77-99.
- [3] C.C.Linder and C.A.Rodger, *Design Theory*, CRC Press, Boca Raton, Florida, 1997.
- [4] Mateja Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des., 10(2002) no.1, 27-78.
- [5] Mateja Šajna, Decomposition of the complete graph plus a 1-factor into cycles of equal length, J. Combin. Design, 11(2003),170-207.