Some Equitably 2-colorable cycle
decompositions of K, + I *

Shanhai Li'?
1Department of Mathematics, Shanghai JiaoTong University
Shanghai 200240 China
2School of Statistics and Mathematics, Shandong Economic
University, Jinan Shandong 250014 China
Hao Shen

Department of Mathematics, Shanghai JiaoTong University
Shanghai 200240 China

Abstract

Let G be a graph in which each vertex has been colored
using one of k colors, say ¢, ¢z, -+, ck. If an m-cycle C in G
has n; vertices colored ¢;, ¢ = 1,2,---,k, and n; —n;| < 1
for any i,j € {1,2,---,k}, then C is equitably k-colored. An
m-cycle decomposition C of a graph G is equitably k-colorable
if the vertices of G can be colored so that every m-cycle in C
is equitably k-colored. For m = 4, 5 and 6, we completely
settle the existence problem for equitably 2-colorable m-cycle
decompositions of complete graphs with the edges of a 1-factor
added.

Keywords: Graph coloring; cycle decomposition; equitable col-
oring.
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1. Introduction

Let G and H be graphs. A G-decomposition of H is a set G={G1,G3,
-++,Gp} such that G; is isomorphic to G for 1 < i < p and G partitions the
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edge set of H. Most commonly, H = K, the complete graph on v vertices.
Other popular choices for H are K, — I, the complete graph with the edges
of a 1-factor removed, and K, + I, the complete graph with the edges of a
1-factor added.

An m-cycle, denoted by (z1,Z2,--,Zm), is the graph with vertex set
{z1,22,--,Tm} and edge set {{z1,x2},{22,23},- -, {Zm,21}}. An m-
cycle system of H is a G-decomposition of H where G is an m-cycle. The
existence problem for m-cycle system has recently been solved; see (2], (4]
and [5].

A coloring of an m-cycle decomposition C of a graph G is an assignment
of colors to the vertices of G. A k-coloring of C is a coloring in which
k distinct colors are used. A k-coloring of an m-cycle decomposition C
induces a coloring of each m-cycle in C. If n; is the number of vertices
colored ¢; in an m-cycle C € C, then C is equitably k-colored if [n; —n;| < 1
for any i,j € {1,2,---,k} and an m-cycle decomposition C is equitably k-
colored if every C € C is equitably k-colored. An m-cycle decomposition is
equitably k-colorable if it can be equitably k-colored.

The existence question for equitably 2-colorable m-cycle decompositions
of K, and K, — I, where m € {4,5,6}, has been completely settled in [1].
In this paper, we consider the existence of equitably 2-colorable m-cycle
decompositions of K, + I. Throughout the paper, we use colors black and
white, unless otherwise stated, b and w are used to denote the number of
black and white vertices in K, + I. Furthermore, an edge which connects
two black (white) vertices is said to be a one-colored black (white) edge,
and an edge which connects two differently colored vertices is said to be
a two-colored edge. We make frequent use of the following important result.

Lemma 1.1 [5] An m-cycle decomposition of K, + I exists for all admissi-
ble v, that is, for all even v such that 3 < m < v and m divides the number
of edges in K, + 1.

Our main result is the following theorem which completely settles the
existence question for equitably 2-colored m-cycle decompositions of K, +1
for m € {4,5,6}.

Main Theorem There exists an equitably 2-colorable m-cycle decompo-
sition of K, + I, m € {4, 5,6}, for all admissible values of v.
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2. Equitably 2-colorable 4-cycle decomposi-
tions

Every equitably 2-colored 4-cycle must contain two black and two white
vertices, which may only be arranged in two formations; see Figure 1.

Type 1 Type 2
Figure 1: Possible equitable 2-colorings of 4-cycles.
Now we prove the following theorem:

Theorem 2.1 There exists an equitably 2-colorable 4-cycle decomposition
of K, + I if and only if v =0 (mod 4), v > 4.

Proof. From Lemma 1.1, a 4-cycle decomposition of K, + I exists if and
only if v = 0 (mod 4), v > 4. As v is even, we color v/2 vertices black
and v/2 vertices white. Note that there are é’uz 4-cycles in any 4-cycle
decomposition of K, + I.

Let the vertex set of K, +I be |J {0:,1;,--+, (v — 2);}. Color the

i=0,1
vertices with subscript 0 black and color the vertices with subscript 1 white.
Let the edges in I be {j, (” —J)k+1}, where j =0,1,---,(v—4)/4, k € Zs.
We obtain v/4 cycles of ’I‘ype 2 (see Figure 1) by forming the 4-cycles

(Jo, 1, ( ; —J)o,( —.7)1)

for j=0,1,---, (v —4)/4. We generate the remaining v(v — 2)/8 cycles of
Type 1 (see Figure 1) by forming the 4-cycles

(Jo, (7 + Do, 41, (G + 1)

forj=0,1,---,(v—4)/2and 1 =1,2,---, %2 — j. It can be easily checked
that this gives an equitably 2-colored 4-cycle decomposition of K, +I. O
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3. Equitably 2-colorable 5-cycle decomposi-
tions

When considering cycles of odd length, if b vertices of a cycle are colored
black and w vertices white, we cannot have b = w. Instead, each cycle
within the decomposition must satisfy |[b — w| = 1. We introduce the fol-
lowing definitions first.

Definition Let v and A be given positive integers and K be a set of posi-
tive integers. A pairwise balanced design (v, K, A\)-PBD is an ordered pair
(V, B), where V is a v-set and B is a set of subsets of V (called blocks),
such that |B| € K for each B € B and each pair of distinct elements is
contained in exactly A blocks.

If A = 1, we simply write (v, K)-PBD for (v, K,1)-PBD. The integer v
is the order of the PBD. We denote by (v, {k,s*})-PBD a PBD of order v
having one block of size s, and the other blocks of size k.

Definition A group divisible design, denoted GDD(K, M;v), is a triple
(X,G,B), where X is a v-set, G is a set of subsets (called groups) of X, G
partitions X, B is a set of subsets (called blocks) of X such that

(1) |G| € M for each G € G,

(2) |B| € K for each B € B,

(3) IBNG| £ 1 for each B € B and each G € G,

(4) Each pair of elements of X from distinct groups is contained in a
unique block.

When K = {k} and M = {m}, we simply write GDD(k, m;v) for
GDD({k},{m};v). The following result is well-known, and is useful in prov-
ing the main theorem of this section.

Lemma 3.1 [3] For all positive integers z there exists a (2z + 1,3)-PBD
or a (2z +1,{3,5*})-PBD.

Corollary 3.2 For all positive integers z there exists a GDD(3,2;2z) or a
GDD(3,{2,4*}; 2z).

Proof. Take a (2z+1,3)-PBD or a (2z+1,{3,5*})-PBD (see Lemma 3.1),

and delete an element “a” (for the (2z + 1, {3,5*})-PBD, “e” is contained
in the unique block of size 5) and take the truncated blocks as groups. This
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gives a GDD(3, 2;2z) or a GDD(3, {2,4*}; 2z) respectively. O

We also make use of the following existence results. We use Kp(n) to
denote the multipartite graph with p parts with n vertices in each part. Al-
though there exists an equitably 2-colored 5-cycle decomposition of K35
[1], for convenience we reproduce it here, since this decomposition will be
used later in this paper.

Lemma 3.3 [1] There exists an equitably 2-colored 5-cycle decomposition
of K. 3(5)-

Proof. Let the vertex set of K35 be _ U {0;,1;,---,4;}, with the ob-

=

vious vertex partition. Color the vertices 0;,2; and 4; black for i = 1,2,3
and color the remaining vertices white. A suitable decomposition of Kys)
is given by the following cycles :

(117 129 01,02a 03)7 (11, 32, 01’22323)') (11913’ 017427 43))
(113 33: 01) 031 22)’ (3131‘27217021 23)1 (31) 321 233 01143)7
(31, 131 21’42303), (3113&21’23:42)7 (12a13)02,43s41)7
(12,33,22,21,03), (32,13,22,43,21), (32,33,42,41,03),
(11,42,13,41,02), (31,02,33,41,22), (12,43,32,41,23).

m}

Lemma 3.4 There exists an equitably 2-colored 5-cycle decomposition of
K 10 + I.

Proof. Let the vertex set of K19 + I be Zyg. Color the vertices 0,1,---,5
black and color the vertices 6,7,8,9 white. Let the edges in I be {0, 9},
{1,7}, {2,4}, {3,5} and {6,8}. A suitable decomposition of Ko + I is
given by the following cycles:

(0,1,5,7,8), (0,3,2,8,9), (0,5,9,3,6), (0,7,1,4,9), (1,2,4,8,6),
(1,3,4,7,9), (1,7,3,5,8), (2,0,4,6,9), (2,4,5,6,7), (3,5,2,6,8).
(m]

Lemma 3.5 There exists an equitably 2-colored 5-cycle decomposition of
Ko+ 1.

Proof. Let the vertex set of K29+ I be Zp. Color the vertices 0,1,--+,11

black and color the vertices 12,13,---,19 white. Let the edges in I be
{0,16}, {1,17}, {2,6}, {3,4}, {5,15}, {7,10}, {8,13}, {9,19}, {11,18}
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and {12, 14}. A suitable decomposition of Kag + I is given by the following

cycles:

(12,13, 11,10,0),
(12,14,3,1,2),
(12,14, 4,3, 10),
(12,15,1,4,3),
(12,16,0,3,5),
(12,17,0,5,1),
(12,18,0,6,11),
(12,19,2,10,4),
(12,6,14,1,8),
(12,9,4,15,7),

(13,14,0,2,5),
(13,15,0,4,6),
(13, 16,2, 6, 10),
(13,17,1,6,9),
(13,18,3,11,1),
(13,19,1,7,3),
(13,0,9,19,8),
(13,2,6,18,4),
(13,7,18,9,8),
(14,15,3,6,7),

(14,16,4,2,9),
(14,17,7,0,8),
(14,18,2,7,10),
(14,19,7,4,11),
(14,5,16,3,2),
(15,16,9,5,6),
(15,17,8,5,10),
(15,18,8,3,9),
(15,19,4,8,11),
(15,2,11,19,5),

(15,5,17,2,8),
(16,17,4,5,11),
(16,18,5,7,8),
(16,19,6,8, 10),
(16,0,11,18,1),
(16,7,10,17,6),
(17,18,11,7,9),
(17,19,10,9,11),
(17,3,19,9,1),
(18,19,0, 1, 10).

=}

Theorem 3.6 There exists an equitably 2-colorable 5-cycle decomposition
of K, + I if and only if v = 0 (mod 10), v > 10.

Proof. By Lemma 1.1, a 5-cycle decomposition of K, + I exists if and
only if v = 0 (mod 10), v > 10. Let v = 10z, > 1. By Corollary 3.2,
we can take either a GDD(3,2;2z) or a GDD(3,{2,4*}; 2z) and simultane-
ously construct K, + I and its equitably 2-colored 5-cycle decomposition
as follows. Replace each element of the design with five vertices, coloring
three vertices black and two vertices white. Within each set of vertices
arising from a group of size 2 of the design, let there be two one-colored
black edges and one one-colored white edge and two two-colored edges in
I. Similarly, within any set of vertices arising from a group of size 4, let
there be three one-colored black edges and one one-colored white edge and
six two-colored edges in I. ‘

By Lemma 3.3, we can place an equitably 2-colored 5-cycle decompo-
sition of Kj3(5) on each set of vertices arising from a block of the design.
Furthermore, by Lemmas 3.4 and 3.5, we can place an equitably 2-colored
5-cycle decomposition of Ko + I or K9 + I on g for each set of vertices g
arising from a group of the design of size 2 or 4 respectively. It is not diffi-
cult to check that the result is an equitably 2-colored 5-cycle decomposition
of K, + 1. O
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4. Equitably 2-colorable 6-cycle decomposi-
tions

For 6-cycles, we proceed in much the same manner as for 4-cycles. We use
the following existence results when proving Theorem 4.3.

Lemma 4.1 There exists an equitably 2-colored 6-cycle decomposition of
Kes + 1.

Proof. Let the vertex set of K¢+ be Zg. Color the vertices 0,1 and 2 black
and color the vertices 3,4 and 5 white. Let the edges in I be {0,3},{1,2},
and {4,5}. A suitable decomposition of Kg + I is given by the following
cycles:

{0,1,2,5,4,3}, {0,2,4,1,3,5}, {0,4,5,1,2,3}.
(m]

Lemma 4.2 [1] There exists an equitably 2-colored 6-cycle decomposition .
of K, 6,6+

Proof. Let the vertex set of K¢ be |J {0i,1:,---,5;}, with the obvious
i=1,2

i=1,
vertex partition. Color the vertices 0;, 2; and 4; black, for i = 1,2, and color
the remaining vertices white. A suitable decomposition of Kg g is given by
the following cycles:

(Oh 02a417 521 11732)1 (21)22y01112, 31,52)1 (41’42,21a321 517 12)a
(411227 11302a31)32)1 (01,42,31122751,52)1 (21,02,51)427 11)12)'
o

Let G and H be graphs. The join of G and H, denoted G Vv H, is the
graph with vertex set V(G)UV (H) and edge set E(G)UE(H)U{{u,v}|u €
V(G) and v € V(H)}. Now we prove the following:

Theorem 4.3 There exists an equitably 2-colorable 6-cycle decomposition
of K, + I if and only if v =0 (mod 6), v > 6.

Proof. By Lemma 1.1, a 6-cycle decomposition of K, + I exists if and only
if v =0 (mod 6), v > 6. Let v = 6z, > 1. Let the vertex set of K, + I be
U Vi where V; ={0;,1;,---,5;}. Color the vertices 0;, 1; and 2; black

=1,z
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fori=1,2,--+,z, and color the remaining vertices white. Let the edges in
I be {Oi, 3i}, {1,', 2i}1 and {45, 5,'}, fori= 1, 2, s, T

By Lemma 4.2 we can place an equitably 2-colored 6-cycle decomposi-
tion of Kgg on V; VVj, for 1 <i < j <z. By Lemma 4.1, we can place an
equitably 2-colored 6-cycle decomposition of K¢ + I on V; for 1 < i < z.
It is not difficult to check that the result is an equitably 2-colored 6-cycle
decomposition of K, + I. m|

5. Conclusion

By Theorems 2.1, 3.6 and 4.3, we have the main result of this paper.

Theorem 5.1 For m € {4,5,6}, there exists an equitably 2-colorable m-
cycle decomposition of K, + I for all admissible values of v.

As a consequence of Theorem 5.1, we have the following corollary:

Corollary 5.2 For m € {4,5,6}, there exists a 2-colorable m-cycle decom-
position of K, + I for all admissible values of v.
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