A note on the total domination vertex critical graphs*

Xue-gang Chen

Mathematics, North China Electric Power University Beijing 102206, China

Moo Young Sohn

Mathematics, Changwon National University Changwon 641-773, Korea e-mail: mysohn@changwon.ac.kr

April 15, 2008

Abstract

In 2006, Mojdeh and Jafari rad [On the total domination critical graphs, Electronic Notes in Discrete Mathematics, 24 (2006), 89-92] gave an open problem: Does there exists a 3- γ_t -critical graph G of order $\Delta(G) + 3$ with $\Delta(G)$ odd and $\delta(G) \geq 2$? In this paper, we positively answer that for each odd integer $n \geq 9$, there exists a 3- γ_t -critical graphs G_n of order n + 3 with $\delta(G) \geq 2$. On contrary, we also prove that for $\Delta(G) = 3, 5, 7$, there is no 3- γ_t -critical graph of order $\Delta(G) + 3$ with $\delta(G) \geq 2$.

Key words: total domination number, total domination vertex critical.

1 Introduction

A domination and its variations in graphs have been studied extensively [3, 4]. The literature on this subject has been well surveyed in the two books by Haynes, Hedetniemi and Slater [1,2]. For notation and terminology in graph theory, we refer to [1]. Let G = (V(G), E(G)) be a simple graph of order n(G). A subset $S \subseteq V$ is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted

^{*}This work was supported by Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund)(KRF-2007-521-C00038) and the first author was supported by Doctoral Research Grant of North China Electric Power University (200722026).

by $\gamma(G)$, is the minimum cardinality of dominating sets. A subset $S \subseteq V$ is a total dominating set of G if every vertex of G is adjacent to a vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of total dominating sets. A total dominating set of cardinality $\gamma_t(G)$ is called a $\gamma_t(G)$ -set.

The degree, neighborhood and closed neighborhood of a vertex v in a graph G are denoted by d(v), N(v) and $N[v] = N(v) \cup \{v\}$, respectively. For a subset S of V, we set $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$. The graph induced by $S \subseteq V$ is denoted by G[S]. The minimum degree and maximum degree of a graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The cycle, path and complete graph on n vertices are denoted by C_n , P_n and K_n , respectively. A vertex of degree one is called a leaf. A vertex v of G is called a support vertex if it is adjacent to a leaf. Let S(G) be the set of all support vertices of G. The corona of a graph H, denoted by Cor(H), is the graph obtained from H by adding a leaf edge to each vertex of H.

Goddard et al. introduced the concept of total domination critical graphs [3]. A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a leaf and the total domination number of G-v is less than the total domination number of G. Such a graph is called γ_t -critical. If such a graph G has total domination number k, we call it k- γ_t -critical. They gave the following open problem:

Problem 1. Characterize γ_t -critical graphs G with order $\Delta(G) + \gamma_t(G)$.

Mojdeh and Jafari rad obtained some partial results on Problem 1 [4]. Furthermore, they suggested the following open problem.

Problem 2. Does there exist a 3- γ_t -critical graph G of order $\Delta(G) + 3$ with $\Delta(G)$ odd and $\delta(G) \geq 2$?

In this paper, we prove that there is no $3-\gamma_t$ -critical graph of order $\Delta(G)+3$ with $\Delta(G)=7$ and $\delta(G)\geq 2$. We find a family of $3-\gamma_t$ -critical graphs of order $\Delta(G)+3$ with $\Delta(G)\geq 9$, $\delta(G)\geq 2$ and $\Delta(G)$ odd. Thus, the Problem 2 is positively answered.

2 Main results

To prove the main result, we review the following lemmas from [3].

Lemma 3 (Goddard et al. [3]). If G is a γ_t -critical graph, then $\gamma_t(G-v) = \gamma_t(G) - 1$ for every $v \in V - S(G)$. Furthermore, a $\gamma_t(G-v)$ -set contains no neighbor of v.

Lemma 4 (Goddard et al. [3]). If a graph G has nonadjacent vertices u and v with $v \notin S(G)$ and with $N(u) \subseteq N(v)$, then G is not γ_t -critical.

Mojdeh and Jafari rad [4] found the following lemma about total domination vertex critical graph G of order $\Delta(G) + \gamma_t(G)$ with $\delta(G) \geq 2$.

Lemma 5 (Mojdeh and Jafari rad [4]). There is no $3-\gamma_t$ -critical graph G of order $\Delta(G) + 3$ with $\Delta(G) = 3, 5$ and $\delta(G) \geq 2$.

By combing these lemmas, first we obtain the following theorem.

Theorem 6. There is no $3-\gamma_t$ -critical graph G of order $\Delta(G)+3$ with $\Delta(G) \leq 7$, $\delta(G) \geq 2$ and $\Delta(G)$ odd.

Proof. By Lemma 5, it suffices to show for the case of $\Delta(G)=7$. To the contrary, suppose that G is a 3- γ_t -critical graph of order $\Delta(G)+3$ with $\Delta(G)=7$ and $\delta(G)\geq 2$. For any vertex $u\in V(G)$, let S_u be a $\gamma_t(G-u)$ -set. Choose $v\in V(G)$ such that $d(v)=\Delta(G)$. Since $n(G)=\Delta(G)+3$, we can assume that $V(G)-N[v]=\{u,w\}$. Since G is 3- γ_t -critical, by Lemma 3, it follows that $S_v=\{u,w\}$ and $N(u)\cup N(w)-\{u,w\}=N(v)$. Furthermore, $N(u)\cap N(w)=\emptyset$. Otherwise, say $t\in N(u)\cap N(w)$, then $\{v,t\}$ is a $\gamma_t(G)$ -set, which is a contradiction. It divides into three cases depending on $|N(u)\cap N(v)|$.

Case 1. $|N(u) \cap N(v)| = 1$. Let $N(u) \cap N(v) = \{u_1\}$ and $N(w) \cap N(v) = \{w_1, \dots, w_6\}$. Then $u_1w_j \notin E(G)$ for $j = 1, 2, \dots, 6$. Otherwise, if there exists a vertex w_j such that $u_1w_j \in E(G)$, then $\{w, w_j\}$ is a $\gamma_t(G)$ -set, which is a contradiction. For any $\gamma_t(G - w_1)$ -set S, by Lemma 3, it follows that $v, w \notin S$. In order to dominate u in graph $G - w_1$, we have $S = \{u, u_1\}$. Since $uw_2, u_1w_2 \notin E(G)$, w_2 is not dominated by S in $G - w_1$, which is a contradiction.

Case 2. $|N(u) \cap N(v)| = 2$. Let $N(u) \cap N(v) = \{u_1, u_2\}$ and $N(w) \cap N(v) = \{w_1, \cdots, w_5\}$. By Lemma 3, $S_{w_j} \cap \{u_1, u_2\} \neq \emptyset$ for $j = 1, 2, \cdots, 5$. By the Pigeonhole Principle, we can assume that $u_1 \in S_{w_1} \cap S_{w_2} \cap S_{w_3}$. It is obvious that $S_{w_j} \cap \{w_4, w_5\} \neq \emptyset$ for j = 1, 2, 3. By the Pigeonhole Principle, we can assume that $S_{w_1} = S_{w_2} = \{u_1, w_4\}$. Since $\{u_1, w_4\}$ is a $\gamma_t(G - w_1)$ -set and $u_1w_2 \notin E(G)$, it follows that $w_2w_4 \in E(G)$. So, $\{u_1, w_4\}$ is not a $\gamma_t(G - w_2)$ -set, which is a contradiction.

Case 3. $|N(u) \cap N(v)| = 3$. Let $N(u) \cap N(v) = \{u_1, u_2, u_3\}$ and $N(w) \cap N(v) = \{w_1, \cdots, w_4\}$. By Lemma 3 and the Pigeonhole Principle, we can assume that $u_1 \in S_{w_1} \cap S_{w_2}$. It is obvious that $S_{w_1} \cap \{w_3, w_4\} \neq \emptyset$, $S_{w_2} \cap \{w_3, w_4\} \neq \emptyset$ and $S_{w_1} \neq S_{w_2}$. Without loss of generality, we can assume that $S_{w_1} = \{u_1, w_3\}$ and $S_{w_2} = \{u_1, w_4\}$. So $w_2w_3, w_1w_4 \in E(G)$ and $u_1w_1, w_1w_3, u_1w_2, w_2w_4 \notin E(G)$. It divides into two subcases.

Subcase 3.1. $w_1 \in S_{u_2} \cup S_{u_3}$ or $w_2 \in S_{u_2} \cup S_{u_3}$. Assume that $w_1 \in S_{u_2}$. Then $S_{u_2} = \{u_3, w_1\}$. Since $u_1w_1, w_1w_3 \notin E(G)$, it follows that

 $u_1u_3, u_3w_3 \in E(G)$. If $u_2w_3 \in E(G)$ then $N(u) \subseteq N(w_3)$. By Lemma 4, G is not a γ_t -critical, which is a contradiction. So $u_2w_3 \notin E(G)$. Since $S_{w_1} = \{u_1, w_3\}$, $u_1u_2 \in E(G)$. Since $u_2w_1, u_2u_3 \notin E(G)$, it follows that $S_{w_3} = \{u_2, w_4\}$ and $u_3w_4 \in E(G)$. So $\{w, w_4\}$ is a $\gamma_t(G)$ -set, which is a contradiction.

Subcase 3.2. $w_1, w_2 \notin S_{u_2} \cup S_{u_3}$. Assume that $w_3 \in S_{u_2}$. Since $u_1w_1, w_1w_3 \notin E(G)$, $\{u_1, w_3\}$ is not a $\gamma_t(G - u_2)$ -set. So $u_3w_3 \in E(G)$. By the similar way as Subcase 3.1, $u_1u_2 \in E(G)$. So $w_4 \in S_{u_3}$ and $u_1u_3, u_2w_4 \in E(G)$. Then $S_{u_1} = \{w, w_1\}$ or $S_{u_1} = \{w, w_2\}$. Without loss of generality, we can assume that $S_{u_1} = \{w, w_1\}$. Then $u_2w_1, u_3w_1 \in E(G)$. If $u_3w_2 \in E(G)$, then $\{u_3, w_1\}$ is a $\gamma_t(G)$ -set, which is a contradiction. So $u_3w_2 \notin E(G)$. Hence $S_{w_4} = \{u_3, w_3\}$. Since $u_2w_3 \notin E(G)$, $u_2u_3 \in E(G)$. If $u_2w_2 \in E(G)$, then $\{u_2, w_2\}$ is a $\gamma_t(G)$ -set, which is a contradiction. So $u_2w_2 \notin E(G)$. Hence $S_{w_3} = \{u_2, w_1\}$ and $w_1w_2 \in E(G)$. So $\{u_3, w_1\}$ is a $\gamma_t(G)$ -set, which is a contradiction.

This completes the proof.

By a similar philosophy of Theorem 6, we have the following corollary.

Corollary 7. Suppose that G is a graph of order $\Delta(G) + 3$ with $\Delta(G)$ odd and $\delta(G) \geq 2$. Let $d(v) = \Delta(G)$ and $V(G) - N[v] = \{u, w\}$. Say d(w) > d(u). If d(u) = 2, 3, then G is not $3-\gamma_t$ -critical.

To find a positive answer for Problem 2, we first prove the following lemma.

Lemma 8. Let G be a connected graph with $\Delta(G) = 9$ or $\Delta(G) \geq 11$. Then there are positive integers t, x_1, x_2, \dots, x_t satisfying the following three conditions;

(1)
$$t + x_1 + x_2 + \cdots + x_t = \Delta(G)$$

 $(2) \ t \geq 3$

(3)
$$2 \le x_1 \le x_2 \le \cdots \le x_{t-2} \le x_{t-1} = x_t$$
.

Now we construct a family of $3-\gamma_t$ -critical graphs of order $\Delta(G)+3$ with $\delta(G) \geq 2$ and $\Delta(G)=9$ or $\Delta(G)\geq 11$.

Let H be a copy of K_t with $t \geq 3$. Let $V(H) = \{1, 2, \dots, t\}$. Let H_i be a graph with a vertex set $V(H_i) = \{w_{i1}, w_{i2}, \dots, w_{ix_i}\}$ for $i = 1, 2, \dots, t$. Suppose that $2 \leq x_1 \leq x_2 \leq \dots \leq x_{t-2} \leq x_{t-1} = x_t$. Let F be the graph obtained from $H_1 \cup H_2 \cup \dots \cup H_t$ by adding edges $w_{ij}w_{i+1,k}$ for $i = 1, 2, \dots, t-1, j = 1, 2, \dots, x_i, k = 1, 2, \dots, x_{i+1}$ and $j \neq k$. Let G be the graph obtained from $H \cup F$ and three new vertices v, u, w by adding edges iw_{jk} for $1 \leq i, j \leq t, i \neq j$ and $1 \leq k \leq x_j$, and then joining v to

every vertex in $H \cup F$, joining u to every vertex in $H \cup \{w\}$ and joining w to every vertex in F. Then $\Delta(G) = t + x_1 + x_2 + \cdots + x_t$. Two figures in Figure 1 are examples of 3- γ_t -critical graphs with $\Delta(G) = 9, 11$.

Theorem 9. Let G be the graph defined as above. Then G is a $3-\gamma_t$ -critical graph.

Proof. It is obvious that $\gamma_t(G) = 3$. So we only prove that G is γ_t -critical graph. First, $\{v, w_{11}\}$, $\{v, 1\}$ and $\{u, w\}$ is a total dominating set of G - u, G - w and G - v respectively. For any vertex $i \in V(G)$, $\{w, w_{11}\}$ is a total dominating set of G - i. For any vertex $w_{jk} \in V(G)$, $\{j, w_{j+1,k}\}$ is a total dominating set of $G - w_{jk}$, where $j = 1, 2, \dots, t-1$ and $k = 1, 2, \dots, x_j$. For any vertex $w_{ik} \in V(G)$, $\{t, w_{t-1,k}\}$ is a total dominating set of $G - w_{tk}$, where $k = 1, 2, \dots, x_t$. In general, for any vertex $v \in V(G)$, $\gamma_t(G - v) = 2$. So G is a $3-\gamma_t$ -critical graph.

Note that if we add an edge $e = w_{ij}w_{i\ell}$ between the vertices w_{ij} and $w_{i\ell}$ in $V(H_i)$ for $1 \leq j$, $\ell \leq x_i$ and $j \neq \ell$, then $G \cup \{e\}$ is also a 3- γ_t -critical graph. By Lemma 8 and Theorem 9, we have the following theorem.

Theorem 10. There is a family of $3-\gamma_t$ -critical graphs G of order $\Delta(G)+3$ with $\Delta(G) \geq 9$, $\delta(G) \geq 2$ and $\Delta(G)$ odd.

References

[1] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

- [2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1997.
- [3] W. Goddard, T.W. Haynes, M.A. Henning, L.C. Merwe, *The diameter of total domination vertex critical graphs*, Discrete Math. **286** (2004), 255-261.
- [4] D.A. Mojdeh, N.Jafari rad, On the total domination critical graphs, Electronic Notes in Discrete Mathematics, 24 (2006), 89-92.