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Linear filters have been the primary tool for signal processing for some
time. They are easy to design, and in most cases, they offer excellent
performance. This is particularly true for spectral separation where the
desired signal spectrum is significantly different from that of the interfer-
ence. Not all signal processing problems can be satisfactorily addressed
through the use of linear filters. Linear filters tend to blur sharp edges, fail
to remove heavy tailed distribution noise effectively, and perform poorly
in the presence of signal-dependent noise([1],[2],[3]). Median-type filters
have been subject to growing interesting since the discovery of the stan-
dard median filter by Tukey[4], who applied it to the smoothing of statis-
tical data. Pratt[5] was the first to use median filter in image processing.
Later median-type filters have shown their usefulness in many one-and two-
dimensional applications. The success of median-type filters is based on
two intrinsic properties: edge preservation and efficient noise attenuation
with robustness against impulsive-type noise. As median-type filters are
nonlinear, they cannot be analyzed with classical linear techniques. They
have been characterized statistically, using order statistics(6]-[8], and syn-
tactically, using the idea of roots(invariant signals)[9]-[13]. The syntactic
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analysis has been quite successful, as it has shown which signals are invari-
ant to these filters. For finite length signals, Gallagher and Wise[9] proved
arbitrary finite length signal is a median filter root if it consists of constant
neighborhoods and edges only(see also Tyan[14]). They also proved that
repeated median filtering of any finite length signal will result in a root sig-
nal after a finite number of passes. The property of median filters is very
significant and is called the ” convergence of property”, the tightest known
bound on the number of passes of the median filter necessary to reach a root
can be found in[15]. Wendt[22] proved that symmetric weighted threshold
filters make any of finite length signals converge to a root or to cycle of
period 2, which means that the output of the filter oscillates between two
signals on successive passes of the filter. Center weighted median filters[16],
which give more weight only to the center value of the window, are possess
the convergence property. Zheng[18],[19] considers weighted median filters,
with symmetric nondecreasing weights. In the usual case a root consists
only of CNs (constant neighborhoods) and edges. For infinite length sig-
nals, Astola et al [17]showed that the median, recursive median and hybrid
filters may have oscillatory infinitely long root signals. Eberly et al[20]
proved that the set of roots with no monotone segment of length N+1 is
finite, and each root is periodic. Given N, the authors give a constructive
procedure able to list all such roots. Mao et al[21] presented a class of infi-
nite length signals associated to the width of window of the median filter,
and this median filter can make any signal in this class converge to a root.
To my knowledge, there has been little research on two-dimensional sym-
metric weighted filters, particularly for infinite two-dimensional signals. In
this paper, we obtain a fundamental result on dynamical behavior of sym-
metric weighted filter. Our method is effective to one-dimensional infinite
length signals or finite two-dimensional signals by modifying sightly.

In this paper, k is a fixed positive ‘integer, Z is the set of integers, and
N is the set of nonnegative integers. R is the set of real numbers.

Suppose that

w(i,j) € N,i,j = 0,+£1,%2,---, %k, w(i,j) = w(—i,-j), w(0,0) is
odd, and H = (1 + E:j=_k w(i,7)). Let z = {z(m,n)} is a two-
dimensional sequence, and () = {z(!)(m,n)}, for m,n € Z,

oD (m,n) =

Median{w(i —m, j —n)$z(i,j) i m—k <i<m+k,n—k < j <n+k},
which is denoted by wz[m,n : k], where n{z = z,---,z. In particular,

n

0Oz =9.

Let R, = {{z(m,n)}|z(m,n) € R,m,n € Z} and a mapping
WFy : Ry — R;,
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where for each z = {z(m,n)} € R,, let WF(z) = (V) = {z((m,n)} €
R;, we call WF, symmetric weighted mapping on the space R,, and

(WF)P(z) = 2P = {z(p)(m, n)},for p>1.

For a fixed z = {z(m,n)} € Ry,if, for any m,n € Z,limp_ 00 2P (m, n) =
7(m,n) is a real number, we say that z is convergent with respect to the
mapping WFy , denoted by z(P) — r(p — o0), where r = {r(m, n)}.

1 Main result and propositions

The main result in this paper is the following theorem.

Theorem 1 Suppose that z = {z(m,n)} € Rs . Then, when p —
0o, both z(®P) and z(?P=1) are convergent. Moreover, if let z(2P) o o
and z?P~1) — B, then (MFi)%(a) = a, (MF)*(8) = B, and MF(a) =
B, MF(B8) = a.

In the section, suppose below that z = {z(m,n)} € R, with z(m,n) €
{-1,1} for m,n € Z.

We next give some relevant propositions for proving the above theorem.

Proposition 1 Suppose that the real sequence v = {v(n)}ncz satisfies
the following three conditions
(i) v(n) = v(-n),n € Z;

(i) 1=12(0) > v(1) >--->‘U(2k)=‘/HL+];

(iii) »(r) = ,/HL_Hv(r — 2k) for each v > 2k.
Then v(n) > 0 and 3°, ., v(m)v(n) < co. Moreover, for each
(m,n),m,n € Z, we have

m+k n+k m+k n+k

Do vl wl el d) - Y, S wiuGh) >0, (1)

i=m—k j=n-—k i=m—k j=n—k
where u(m,n) =1 or —1,m,n € Z.

Proof v(n) > 0 and 3, .z v(m)u(n) < co are trivial. Now we
prove (1).

Since SSTY  SSIEY L w(i, )i, 5)| = 2H + 1,

m+k ntk

Yo Y wligul,j) #0.

i=m—k j=n—k

297



If
m+k n+k

> 3w =), wii)- Y, wig) >0,
i=m—k j=n—k u(i,j)=1 u(i,j)=-1
we have

> w,j)2H+1 and ) w(ij) < H

u(i,j)=1 u(i,j)=-1
Thus
_2 Tk 0@ (w(, Du, )
= Y GGG - Y vEi)w,b)
u(i,j)=1 u(i,j)=—1
> minv[m — k,m + k]minv[n — k,n + k] Z w(i,j)
u(i,j)=1
—maxv[m — k,m + k| maxv[n — k,n + k| z w(i, )
"(i:j)=“1
> (H+1)minv[m —k,m + k|minv[n — k,n + k]
—(H)max v[m — k, m + k| maxv[n — k,n + k],
where min v[i, j] = min{v(i), v(i+1), - - -, v(j) }, max v[i, 5] = max{v(i), v(i+
1),---,v(5)}. By the definition of sequence v, foranyn -k <i<n+k
v(n—k) 2 v(i) > v(n+k) and v(n+k) = ,/ﬁ—lv(n —k) forn>k,

v(n—k) S v(i) < v(n+k)and v(n—k) = [/ fgv(n+k) forn < -k,

#1 Sv(@@) <1 for |n| < k.
So we have
(H +1) - minv[m — k, m + klminvfn — k,n + k]
—H - maxv[m — k,m + k]maxv[n — k,n+ k] > 0.
m+k n+k
Thus Y. Y v(i)v()w(s, 7)u(i, j) > 0. (1) holds.

t=m—k j=n—k

If Z E w(i, j)u(i, §) <0, then Z Z w(i, 5)(—u(i, 7)) > 0.

i=m—k j=n—k t—m—k;—n—
By a similar argument, we can get 2 Z v()v(5)w(i, 7)(—u(i, 7)) >

i=m—k j=n—k

0. Therefore (1) holds. n]
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Secondly by the definition of M Fj, we immediately have

Proposition 2 Suppose that z = {z(m,n)} € R, with z(m,n) =1 or
—1 for each (m,n),m,n € Z. Then

m+k nitk

L, if 3 X w(i)z(G5) >0,
2 (m, ) = ki mn el
=1, if Y XY w(i,f)z(i ) <
i=m—kj=n—k

Now let {v(n)}ncz be the sequence defined in Proposition 1. For each
z = {z(m,n)} € Rs,z(m,n) =1 or —1, let

B@)= )Y v(m)u(n)u(s)(E)b(m,n;s, )M (m, n)z(s, 1),
m,n;s,t€Z
where
wim—-s,n—-1t), if lm-s|,|n-t| <k,
b(m,n;s,t) = { ( 0 ) l othlel!wise ' m,n,s,te€ Z.

Proposition 3 Suppose that z = {z(m,n)} € R, with z(m,n) =1 or
—1 for each m,n € Z. Then for eachpe N
E(z?) — E(z(P-1)) =

m+k n+tk
Z v(n)v(m)-[ Z Z v(s)'v(t)z(p)(s,t)]-[:z:("“)(m,n)—x(p'l)(m,n)],
m,nezZ s=m—kt=n—k

(2)
where items in the series are non-negative, and {E(z(p‘l))}»] is a
bounded increasing sequence.

Proof Now we first prove that { E(z(P~1)},, is a bounded sequence.
In fact, by Proposition 1,2, and the definition of E(z),

|B=E-D)|
= | D v(mu(n)u(s)u(t)b(m,n : 5,8)z®)(m, n)z®1(s,¢)|
mn,s,teZ
< Z v(m)v(n)v(s)v(t)b(m,n : s,t)
mn,s,teZ
) m+k n+k
= D umpm)] Y Y ulsh(t)w(s,t)
mmnez s=m—kit=n—k
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m+k n+k

< Z v(m)v(n) Z Z w(s, t)

m,nezZ s=m—kt=n—k
< (2H+1) Z v(m) Z v(n) < o0.
meZ nez

Secondly, we prove that (2) holds.
By b(m, n; s,t) = b(s, t; m,n), we have
E(x(”)) - E(a:(P-l))
=Y s,tez Vm)v(n)u(s)v(t)b(m, n;s, £)z(P+D) (m, n)2(P)(s, t)
— Yt mmez 2(8)U(E)u(m)u(n)b(s, t; m, n)z®) (s, t)z(2~ 1) (m, n)
= Em n,s,t€Z v(m)v(n)u(s)v(t)b(m n;s, t)x(P) (8, t)
[z(P+1)(m n) — (P~ (m,n)]

= E'm NEZ v('m)v(n)[ Z v(s)v(s)b(m n; s, t)z(p) (31 t)]
- [®*D(m, n) - 2P~ B) (m, n)]
=Y ez V(mu(n)] S e syultyus, £z (s, 1)

[x(P+l)(m n) —_ z(p slTE:r: n)]
If m+k nt+k
Z Z v(s)u(t)w(s, t)z® (s,t) > 0,
s=m—k t=n—k
by (1)

m+k ntk

z Z w(s, )z (s, t) > 0.

s=m—k t=n—k

By Proposition 2, z(P*1)(m,n) =1, so
x(?+1) (ma n) - z(p—l)(m’ n) 2 0)

thus
v(m)o(n)[Taecim_k Teom—k v(s)u(t)w(s, t)a® (s, 1)]
[&®+D(m,n) — 2P~ (m,n)] 2 0;

If

m+k ntk
Yo ) ush(tyu(s, t)z®(s,t) <0,
s=m—kt=n—k
by (1)
m+k ntk
> Y wist)e®(s,t) <o0.
s=m—kt=n—k
By Proposition 2, z(P+1)(m,n) = -1, so
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2?1 (m, n) — 2= (m, n) <0,
thus

v(m)o(r) [T Srta sk v(s)(Euls, iz (s, )]

2@+ (m, n) — P~V (m, n)] > 0.
This shows that the items in the series (2) are non-negative. Therefore
{E(z(P~D)},5, is an increasing sequence.

Now let z = {z(m,n)}mnecz € Rs with z(m,n) = 1 or —1 for each
(m,n),m,n € Z. By Proposition 3, for each (m,n),m,n € Z, we have

m+k n+k
Jim [ Yo DT wshEyw(s, )z (s, )] [zP+V (m, n)—z®=D(m, n)]} = 0.

s=m-—kt=n—k

(3)
Since z{P)(m,n) = 1 or —1 for any p € N and any m,n € Z, by Proposition
m+k ntk
min| Y. Y w(s)(t)w(s,t)z® (s,t)| > 0.

>1
s s=m-—kt=n—k

Then by (3), zP+1)(m, n)—z(P~D(m,n) — 0asp — co. Thus zP*+D(m,n) =
z(P=1)(m, n) if p is large enough. Therefore both {z(2P)},5; and {z(?P~1} 5,
are convergent.

We write the above result as the following,

Proposition 4 Suppose that z = {z(m,n)} € R, with z(m,n) =1 or
~1 for each (m,n),m,n € Z. Then both {z(?P)},>, and {z(?P~D} 5, are
convergent.

2 Proof of main result

We first define some notations.
Let z = {z(m,n)},y = {y(m,n)} € R, , and let X be a real number.
In this case, £ + v and Az are defined as

(:L‘ + y)(m7 n) = a:(m, n) + y(ml n’)1 ()\:L‘)(m,n) = ’\x(m: n)l m,n € Z;
z4 and z_ are defined as
$+(m1 n) = ma.x{O,x(m, n)}a :z:_(m, n) = max{O, —z(m, n)}v m,n € Z;

z4+ and z_ are called the positive part and the negative part of z respec-
tively and both of them are non-negative sequences.
{z(3, )} m—k<i<m+kn—k<j<n+k are denoted by z[m,n : kJ;
minzfm,n: k] =min{z(i,j) : m-k<i<m+kn-k<j<n+k}
maxzm,n: k] =max{z(;,j) :m-k<i<m+kn-k <j<n+k}.
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If z(s,7) < y(i,5) for integers 4,j,m —k <1 < m+kn—-k<j<
n + k, we write z[m,n : k] < y[m,n : k|. In particular, we write T < y if
z(m,n) < y(m,n) for all integers m,n € Z.

Lemma 1 Suppose that z = {z(m,n)},y = {y(m,n)} € R, . Then

(i) max zPtD[m,n : k] < max (P [m,n : k] for any integers m,n € Z
andp € N;

(ii) If z[m,n : k] < y[m,n : k] for some m,n € Z, then z(M(m,n) <
y(Y(m,n). Particularly z P) < yP) for eachpe N ifz < y;

(iii) If y = {y(m,n)} € R, is a constant sequence, then (z + y)P) =
z® 4+ y(P) for each p € N;

(iv) If A > 0, then (Az)® = Az(P) for each p € N;

(v) For eachp € N, sz) = (:z:(”)).l.,x(_p) = (z)_, and zP) = :c(f) -
)

(vi)For some integers m,n, if z()(m,n) > a, then there are at least
H +1 items in wz[m,n : k| larger than a; if {0 (m,n) < a, then there are
at least H + 1 items in wz[n — k,n + k] less than a.

Proof (i) Foreachi,jm—-k<i<m+kn—-k<j< n + k, there
are at least H + 1 items in wzli,j : k] no larger than maxz{m,n : kJ, so
2 (i, §) < maxz[m,n : k|. Thus maxz(D[m,n : k| < maxz[m,n : k]. For
general p € N, the argument are similar.

(ii), (iii),(iv) and (vi) are trivial.

(v) Fix m,n € Z. Suppose z((m,n) > 0. Then there are at least
H + 1 items in wz[m,n : k] no less than 0 and

:z:f,_l)(m, n) = z()(m,n) = ()4 (m, n), :c(_l)('m,'n.) =0 = (z(")_(m,n).
Similarly, when z(!)(m,n) < 0,
2 (m,n) = 0 = (V). (m, n), 27 (m, n) = =z (m, ) = (zV)-(m, n).

Thus (v) holds for p = 1. By the similar argument, we can prove that (v)
holds for p € N.

Proposition 5 Suppose that z = {z(m,n)} € Rs. Then both {z%}p>1
and {x(?P~D},5 are convergent.

Proof Assume that for any integers m,n, z(m,n) =aor b, a <b.

Setting
2a

b—a

ym,n) = so—a(m,n) = G +1), mnEZ
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Then y(m,n) € {-1,1},m,n € Z , and by Lemma 1 (iii) and(iv)

2a

() —
2P m, ) - (7=

y®)(m,n) = +1), mneZp>1.

b—a
Since {y(?P) },,21 and {y(P)},5 are convergent by Proposition 4, {z(??},5,
and {z(#~1} >, are convergent.

Suppose that z = {z(m,n)} € R, is a nonnegative real sequence and

t>0. Let L if )
, ifz(m,n)>t,
:c;(m,n)={ 0, if z(m,n)<t, nez.

Then z; = {x;(m, n)} € R, is a binary sequence, and
z(m,n)
z(m,n) =/ zi(m,n)dt, m,ne Z.
(i}

Proposition 6 Suppose that z = {z(m,n)} € R, is a nonnegative
sequence. Then both {z(*P},5, and {z(**~V} 5, are convergent.

Proof Fix any m,n € Z. If t > z(")(m,n), by Lemma 1(vi), then
there are at least H+1 items in wz{m, n : k] less than ¢, so there are at least
H 41 items in wz[m,n : k] equal to 0, this implies that :zzgl) (m,n) = 0;
If t < z(Y(m,n), by Lemma 1(vi), then there are at least H + 1 items
in wzn — k,n + k| larger than ¢, so there are at least H + 1 items in
wx¢[n — k,n + k| equal to 1, this implies that zfl) (m,n) = 1. Hence, if we
let L{(m,n) = maxz[m,n : k], by Lemma 1 (i), then

L(mn)
(N (m, n) =/ :z:gl)(m, n)dt, mneZ
(i}
Similarly we have
L(m,n)
I(P)(m, n) = / zsp)(m,n)dt, ne Z)p 2 1.
(i}

Fix any m,n € Z, by Proposition 5, both {xf‘”‘) (m,n)} and {zf”‘”(m, n)}
are convergent, therefore, by Lebesgue theorem on dominated convergence,
{z(®P)(m,n)} and {z(®»~1)(m,n)} are convergent.

Proof of Theorem 1 Suppose that z = {z(m,n)} € R,. Then
z4 and z_ are nonnegative sequences. By Proposition 6 and Lemma (v)
2(27’) = (z+)(2P) _ (z_)(27’) and x(2p—l) = (x+)(2p‘l) - (z_ )(2P_1) are con-
vergent as p — oo. Let

i (2r) = i (2p-1) =
Jim 2@ (m, n) = a(m,n),  lim s?*~D(m,n) = f(m,n), VYm,n e Z.
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Fix m,n € Z and € > 0. Then thereis P > 1 such that
2®P(i, §) — € < a3, ) < 2P (4,5) + &, Vli - nl,|j — m| < k,Vp > P.
By Lemma (ii) and (iii)
zPP)(m, n) —e < oP(m,n) < 2P+t (m, n) +¢,Vp > P.

Let p — o0,
B(m,n) — € < ofV(m,n) < B(m,n) +e.

Thus of!)(m,n) = B(m,n), since ¢ is arbitrary. Hence o) = B. Simi-
larly BV = a. Moreover, a(2) = a,8® = a. Therefore (M Fi)?*(a) =
a, (MF:)?(B) = B, and MF(a) = B, MF(B) = a.

This completes proof of Theorem 1.

If z(V) = z, z is called a root ;

If z1) 5 z and 2(®) = z for some s > 2, z is called a recurrent sequence.

Suppose that z is a recurrent sequence ,i.e., z(1) £ z, and there exists
a positive integer ¢ > 1, such that z(9) = z. Then we have

™) =z VYmeN.

Now let (2P and z(2P—1) converge to the recurrent sequence a and f3,
respectively.

Let m be even and m — oo, then z(™a) converges to a, so we have
z = a. By Theorem 1, z? = of? = o = z. This is the following

Corollary 1 If z is a recurrent sequence, then (M F )} (z) = z.

Acknowledgments I thank deeply the referees for their helpful sug-
gestions and comments.
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