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Abstract. A dominating broadcast of a graph G of diameter d is
a function f: V(G) — {0,1,2,...,d} such that for all v € V(G)
there exists u € V(G) with d(u,v) < f(u). We investigate
dominating broadcasts for caterpillars.

1 Introduction

Think of the vertices of a dominating set for a graph as consisting
of locations on which to build broadcast towers. Each vertex
with a tower can broadcast to all of its neighbours, and the goal
is to minimize the number of towers while still ensuring every
vertex can receive a broadcast. Erwin [3] generalized this idea
to towers having different broadcasting power, so that a tower
of power k can broadcast to all vertices within distance k while
incurring cost k. The goal of such a dominating broadcast is
to minimize the total cost such that every vertex can receive a
broadcast from some tower. We formalize these concepts below.

Let G = (V, E) be a graph. We assume throughout that G is
connected and nontrivial. For any vertex v, let N(v) be the set
of neighbours of v and N[v] = N(v) U {v}. Let d(v) = |[N(v)|
be the degree of v. Let N[S] = U,es N[v]. A dominating set
for G is a set D C V with V C N[D]. The domination number
¥(G) = min{|D| : D is a dominating set for G}.

The distance d(u, v) from vertex u to vertex v is the minimum
length of a path from u to v. The eccentricity of v is e(v) =
maxuevd(u,v), the diameter of G is diam(G) = max,eve(v),
and the radius is rad(G) = min,ecve(v). A broadcast is a function
f:V —{0,1,2,...diam(G)} such that for every v, f(v) < e(v).
The set of broadcast dominators for f is V; = {v : f(v) > 0}. For
any vertex v, the set of vertices that v can hearis Hy(v) = {u €
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Vi : d(u,v) < f(v)}. The cost of a broadcast f incurred by a set
S CVis f(S) = Tuesf(v); the cost of f is f(V). A broadcast
f is dominating if |H(v)| > 1 for all v € V, and efficient if
|H(v)| = 1 for all v € V. Note that the characteristic function
xp of a dominating set D is a dominating broadcast with cost
|D|. The dominating broadcast number v,(G) = min{f(V) :
f is a dominating broadcast for G}. An optimal broadcast is
a dominating broadcast f with f(V) = 1(G). A dominating
broadcast f is radial if |V§| = 1; a radial broadcast can always
be defined by choosing v € V with e(v) = rad(G), and setting
f(v) = rad(G), f(u) =0 for all u # v. A radial graph is a graph
with a radial optimal broadcast, so 1;(G) = rad(G).

Erwin [3] determined upper bounds for 7,(G).
Theorem 1 [3] For any graph G, %(G) < min{rad(G),v(G)}.

Dunbar et. al. [2] proved that dominating broadcasts could
be made efficient. Their proof actually gives a more general
result, so we sketch the proof below.

Theorem 2 [2] Every graph G has an optimal broadcast which
is efficient.

Theorem 3 Let f be an optimal broadcast of a graph G with
Hi(v) > 1 for some vertex v. Then there ezists an optimal
broadcast g of G with Hy(v) < Hs(v), |Vy| < |V5|, and such that
d(z) > 2 for allz € Vy — Vj.

Sketch of Proof [2] If f is a non-efficient dominating broadcast
of G then there exists v € V and u,w € V; such that d(u,v) <
f(u) and d(w,v) < f(w). Assume without loss of generality that
f(u) < f(w) and let = be the vertex at distance f(w) — f(u)
from v on the shortest path from v to w. Define a broadcast g
by g(z) = f(u) + f(w),g(x) = g(w) = 0, and g(y) = f(y) for
y#u,w,z. O

Dunbar et al. [2] also defined graphs to be of Type I if
1(G) = v(G), Type II if 1(G) = rad(G), and Type III oth-
erwise, and asked which graphs belong to each type. We answer
this question for caterpillars.
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2 Caterpillars

A caterpillar is a tree such that removing all leaves results in
a path called the spine. We call a vertex which is adjacent to
a leaf a stem and a vertex of degree 2 which is not adjacent to
a leaf a trunk, so all vertices in a caterpillar are either leaves,
stems, or trunks, and the first and last spine vertices are stems.
Thus for a caterpillar C' with r spine vertices, diam(C) = r + 1
and rad(C) = [=2].

We assume throughout that all dominating broadcasts f are
chosen such that V; contains no leaves, since every leaf in V;
can be replaced by its stem without changing the cost (and
similarly we will assume dominating sets contain no leaves). For
a caterpillar C' we call the pattern of stems and trunks along the
spine its form, using s to denote a stem and ¢ to denote a trunk.
So, for example, K, has form s for m > 2, and P; has form
stts. The proof of the following lemma. is clear.

Lemma 4 If caterpillars C and C' have the same form, where
the sequence of spine vertices of C is viva...v, and of C' is
W1W2... Wy, then for any dominating broadcast f of C, the func-
tion f' defined by f'(u) = 0 for all leaves u € V(C") and
fl(wi) = f(v) fori=1,2,...,q is a dominating broadcast of C'
with f(V(C)) = f/(V(C"). Similarly, for any dominating set
D of C which contains no leaves, the set D' defined by w; € D’
if and only if v; € D is a dominating set of C'.

Thus for any caterpillar C' with form F we can define v,(F) =
Y(C) and ¥(F) = 4(C). For example, y(sststtsssts) = 7, since,
by assumption, every leaf must be dominated by its stem. More-
over, although any trunk adjacent to a stem can be dominated
by that stem, for any three trunks in a row, one trunk must be
a dominator; so, for example, y(stttsttssttittttts) = 8 since it
has five stems and three non-overlapping sequences of form ttt.

Lemma 5 Let C be a caterpillar. Then v(C) = o + 7, where o
is the number of stems in C and 7 is the mazimum number of
non-overlapping sequences of three trunks in a row.
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(a)stttts (b)ssttts (c)sstsss

Figure 1: Three caterpillars of form s7t?7s.

We use exponential notation to indicate repeated sequences
in caterpillars, so stststts will be written (st)3ts. We use ? to
indicate a spine vertex which may be either a stem or a trunk.
The three caterpillars in Figure 1 all have form s7¢77s and thus
radius 4; (a) is Type I with , = v = 3, (b) is Type III with
v = 3 and v = 4, and (c) is Type II with 4, =4 and v = 5.

3 Caterpillars of Type I

In this section we classify those caterpillars for which v, = 4.

Lemma 6 If form F contains a subsequence of form F' = sss,
ss(tttts)*s, ss(tttts)*ttts (or its mirror image sttt(stttt)*ss), or
sttt(stttt)*sttts, where k > 0, then v(F) < v(F).

Proof. Let D be a minimum dominating set. For each F’
define a dominating broadcast f on F' by listing the values of f
in order for each spine vertex in F’ and setting f(u) = xp(u)
foru € F — F'": f(sss) = 2 for 020; f(ss(tttts)*s) = 2k + 2 for
02(00002)%0; f(ss(tttts)*ttts) = 2k + 3 for 02(00002)*0001; and
f(sttt(stttt)ksttts) = 2k + 4 for 1000(20000)¥20001. By Lemma
5, xp(sss) = 3, xp(ss(ttits)*s) = 2k + 3, xp(ss(tttts)*ttts) =
2k + 4, and xp(sttt(stitt)*sttts) = 2k + 5. Thus, in each case,
f(V) < xp(V), and so (F) < y(F). O

Now let f be an optimal broadcast for a caterpillar C, and
z € V5. We will say 2z covers a sequence of spine vertices of C if
z dominates all of the spine vertices and all of their leaves.

Lemma 7 Let f be an optimal broadcast for caterpillar C, z €
Vs, F the form of the mazimum sequence of spine vertices z can
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cover, and k the length of F. If F = 7% then f(2) = [%51];
if F = 5?2 then f(2) = [£]; and if F = s?*25 then f(z) =
[5£1]. Conversely, say F = F\?F; where ? is the form of z. If
k =2f(z) +1 then Fy, F; both have f(z) vertices and a t on the
end away from z; if k = 2f(z) then one of Fy, F> has length f(2)
and at on the end away from z and the other has length f(z)—1;
and if k = 2f(z) — 1 then Fy, F5 both have length f(z) — 1.

Proof. Suppose that the maximum sequence of spine vertices
Z can Cover is UpUp_;...u1201Vs...0. If u, is a stem then z must
dominate its leaf so p = f(z) — 1, while if u, is a trunk, then
p = f(z) or p= f(z) — 1, depending on the type of vertex to the
left of u,; and similarly for v,. The proof follows immediately
from this observation. O

In what follows, when we use the same superscript for ? in
two caterpillars, for example 77, we mean that the p vertices
indicated by 77 have the same form in each caterpillar. We say
that a sequence 77?9 of spine vertices splits into subsequences 77
and 77 if there exists an optimal broadcast f with y, 2 € Vi, y #
z, such that y covers the right end vertex of 7?7 and 2 covers the
left end vertex of ?9. Splits into more than two subsequences
are defined recursively.

Lemma 8 For any p,q > 0, the form 7Pstt?? splits into either
st and t79 or Pstt and t7971 (the latter case requiring q > 1 ).

Proof. Let voviv; denote the sequence stt, and let f be an
optimal broadcast. Choose z € V; such that z covers the stem
vo; then 2z also covers the trunk v;. If 2z does not cover vy, then
[ splits 7Pstt?9 into ?Pst and t79, so assume z covers vs. Let k be
the length of the maximum sequence 77 stt?7 that z can cover,
so k = p' + ¢ + 3, where p’ < p,¢’ < q. Then, by Lemma 7,
k=2f(z)+1,2f(2), or 2f(z) — 1.

Suppose first ¢’ = 0, and let vs be the right neighbour of v,.
If v is a stem, then whatever covers v also covers trunk Vg, SO
[ splits 77'stt?7" into ?”'st and ¢79. Otherwise vs is a trunk and
f splits ?7'stt?¢" into ?7'stt and 791,

So assume ¢’ > 1. If p’ is odd, let = be the centre vertex of
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?7'st, and if p’ is even, let = be the leftmost of the two centre
vertices. Similarly, if ¢ is even, let y be the centre vertex of 79,
and if ¢ is odd, let y be the rightmost of the two centre vertices.
We define a dominating broadcast f’ such that = covers vo and
vy, y covers vy, f'(z)+ f'(y) = f(2), f'(2) =0, and f'(u) = f(u)
for u # x,y, 2; so f splits 77’ stt?7 into 77'st and t?79:

Ifk = 2f(z)+1 thenp +¢' = 2f(z)—2is even, and, by Lemma
7, the form must be 77 ~'stt?? ~'t. Define f'(x) = [241] and

f'ly) = |'9-'| Then whether p/,q' are both odd or both even,
f'l@) + f'y) = 25" = f(2).

If k =2f(2) 'chen p' +q¢ = 2f(z) — 3 is odd, and, by Lemma
7, the form must be either 77 '~154179 or 77 stt79 ~'t. In the first
case, define f'(z) = |'"——'| and f'(y) = I'L] Since one of p', ¢’
is odd and the other even, f'(z)+ f'(y) = & = f(2). The second
case follows by symmetry.

If k = 2f(z) — 1 then p’ + ¢ = 2f(2) — 4 is even. Define f'
by f'(z) = I'L”'l and f'(y) = fg—] Then, whether p’ and ¢
are both odd or both even, f'(z) + f/(y) = B! = f(2). O

Lemma 9 Suppose 7Pt¥s?? splits into 7P and t'“s‘?q for k >
3,p > 1,q > 0. Then tFs? splits further into & — copies of
ttt followed by tt and ts? if k = 0(mod 3); into kg copies of
ttt followed by ts?? if k = 1(mod 3); and into ——2 copies of ttt
followed by tts? if k = 2(mod 3).

Proof. Let f be the optimal broadcast for the original split,
and let vov1vs...UxUk4+1 denote the sequence ?tks. Then there
exist y, z € V},y # 2, such that y covers vp and z covers v;. Let
2’ be the right neighbour of z. Define f’ by f'(2') = f(2) — 1,
f'(z) =0, f'(v2) = 1, and f'(u) = f(u) otherwise. If k =3 then
whatever covers stem v, also covers trunk vs, so f’ splits ttts'?q
into tt and ts?9. If k > 3 then f’ splits t*s?7? into ¢ttt and t*—3s
and the result follows by induction. O

Lemma 10 If 77?9 splits into 7 and 79, for p,q > 1, then
P(?P?9) = (7)) + 1(?9).
Proof. Let f be the optimal broadcast for the split. Then f|»
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and f|r are dominating broadcasts of 77 and 79 respectively, so
(77?9 = floo () + fl2a(?7) = %(7") + 1(79).

Conversely, let fi, fo be optimal broadcasts of 77,79 respec-
tively. Then f' = f; U f, is a dominating broadcast of 77?7 so
Yo(7P79) < f1(7P79) = 2(7P) + 1(79). O

Lemma 11 v,(7Pst(ttt)*ts?9) = v(?Pst) + k + 75(£s79),
forp,q,k > 0.

Proof. By Lemma 8 and Lemma 9, the sequence splits either
into 7Pst, k copies of ttt, and ts79, so that the result follows from
Lemma 10 (using 7,(ttt) = 1), or into ?7stt, k — 1 copies of tit,
tt, and ts?9. The latter case is thus a split into ?Pst(ttt)* and
ts?9, so, by Lemma 9 in mirror image, can be resplit into the
former case. O

Lemma 12 ,(77sts79) = v(7Ps??) + 1, for p,q,k > 0.

Proof. Let C be a caterpillar of form ?Psts?9, with v;vovs the
spine vertices of form sts. Let C’ be a caterpillar of form 7Ps?9
with v’ the spine vertex of form s. For z € V(C) — {v1vaus}, let
z' be the corresponding vertex in V(C") — {v'}.

Let f be an optimal broadcast of C' and choose 2z € Vf such
that 2 covers stem v;; then z also covers trunk v,. Suppose
first z does not cover stem vs. Choose y € V; such that y
covers vs; then y also covers trunk vs. But then, by Theorem 3,
there exist an optimal broadcast g and z € V, such that z covers
V1, V2, V3. SO We may assuie z Covers vy, vs, v3. Let y be the right
neighbour of z if 2z is to the right of v;, and the left neighbour
otherwise. If z = v, define f' on V(C’) by f'(v') = f(z) -1
and f'(z') = f(z) otherwise. If z # vy, define f' on V(C') by
f'(W) =0, f'(2) =0if 2 # v, 03, f(y) = f(2) -1, and f'(z') =
f(z) otherwise. Either way, f’ is a dominating broadcast for C’
so 1(C) = f(V(C) = f(V(C') + 1 2 (C") + 1.

Conversely, let f' be an optimal broadcast on C’ and choose
' € V; such that 2’ covers v’ in C'. Let g’ be the right neighbour
of 2’ if 2’ is to the left of v/, and the left neighbour otherwise. If
Y,z # v/, define f on V(C) by f(y) = f'(2')+1, f(v1) = f(v2) =
f(vs) =0, and f(z) = f'(z') otherwise. If 2/ = ¢/, define f on
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V(C) by f(v2) = f'(')+1, f(v1) = f(vs) =0, and f(z) = f'(z')
otherwise. If 4/ = v and ¥/ is to the left of 2/, define f on V(C)
by f(vs) = f(2') +1,f(n) = f(v2) = 0, and f(u) = f'(v)
otherwise. If ¢ = v’ and ¥ is to the right of 2/, define f on
V(C) by f(v1) = f'(')+1, f(v2) = f(vs) =0, and f(z) = /(')
otherwise. In each case f is a dominating broadcast for C, so
%(C) < f(V(C)) = F(V(C) +1=m(C)+1. O

Lemma 13 ,(?Pst*s79) = 7,(?Pst*3579)+1, forp,q > 0,k > 5.

Proof. Let C be a caterpillar of form 7st*s?9, with vov1...UxVk41
the spine vertices of form st*s, and let C' be a caterpillar of form
Pst¥~3579, with vv)...v}_, the spine vertices of form st*~3s. For
z € V(C) — {vov1...vk+1}, let &’ be the corresponding vertex in
V(C") — {vpv}...v%_a}-

By Lemma 8 and Lemma 9, ?Pst*s?9 splits as either ?Pst, ttt,
and t¥=4s79; or ?Pstt, ttt, and t*~5579. Let f be the optimal
broadcast for such a split, and choose z € V; such that z covers
trunk vs; then 2z covers v,_1v,v,4; of form ttt for either r = 3
or 7 = 4, and f(z) = 1. Define f' on V(C’) by f'(v}) = f(v)
for0<i<r-—1, fi(vi) = f(vi—sg) for r+1 < i < k-2, and
f'(z') = f(z) otherwise. Then f’ is a dominating broadcast for
C’, 50 %(C) = f(V(C)) = F'(V(C')) + 1 2 w(C") + 1.

Conversely, by Lemma 8, 7Pst*~3577 splits as either ?Pst and
tk=4579, or 7Pstt and t*~5579. Let f’ be the optimal broadcast
for such a split, and choose ¥,z € V{,y' # 2’ such that ¢/
covers stem vg, and thus also trunk v}, and 2’ covers trunk v;.
Let p = 2 if 2’ covers v4 and p = 3 otherwise. Define f on
V(C) by f(up-1) = F(vps1) = 0, f(vp) = 1, f() = f'(vy) for
0<i<p—landp+1<i<k+1,and f(z) = f(z') otherwise.
Then f is a dominating broadcast for C, so 1,(C) < f(V(C)) =
f(V(C)+1=%(C)+1. O
For any form F we define the b—decomposition of F' as follows:
1. For all k£ > 5, replace all sequences st*s with sttts if k = 0
(mod 3), stttts if k =1 (mod 3), and stts if k =2 (mod 3).

2. For all k > 1, replace all maximal sequences (st)*s with s.
3. Remove tt from each stts sequence.
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The b—decomposition of F consists of the resulting components
F, F,, ...F,. For example, stssstttttstttttttststststits — stssstt
sttttststststits — sssttstittstits — sss and sttttstits. Note
that whatever covers a stem also covers a neighbouring trunk;
so, for example, ,(ssst) = 7s(sss). This observation, along
with Lemmas 11, 12, and 13, gives us the following result:

Lemma 14 Let F\, F,...F, be the b—decomposition of form
F. Then w(F) = y(F) if and only if %(Fy) = Y(F}) for i =
1,2,..,p.

The next five lemmas characterize the Type I caterpillars.
Note that the only possible st*s sequences (k > 0) in any com-
ponent of a b—decomposition are ss, sttts and stttts.

Lemma 15 Let F' be a component of a b—decomposition. If F'
contains two ss sequences, two sttts sequences, or one ss and
one stits sequence (with possible overlap on one s, giving sss,
sstits, stttss, or stttstits), then v(F”) < y(F).

Proof. Choose two such sequences in F’ with no other such
sequence between them. Either they overlap, they are adjacent,
or the sequence between them is (tttts)*tttt for some k£ > 0. In
each case, by Lemma 6, ,(F") < y(F'). O

Lemma 16 Let F' be a component of a b—decomposition. If F'
contains no sttts or ss sequences, then v,(F') = ~(F").

Proof. The only possibility for F” is s(tttts)*, for some k > 0, so
by Lemma 5, 7(F') = 2k + 1. If k = 0 then F' = s, and (s) =
1 = v(s). So suppose k > 1. By Lemma 8 in mirror image, F”
splits as either sttt and ts(tttts)*~!, or stt and tts(tttts)—L. In
the first case, by Lemma 10, v,(F') = 7, (sttt)+ys(¢s(tttts) ).
Then y(sttt) = 2 and 7, (ts(tttts)F~1) = yy(s(tttts)*~1) = 2(k —
1) + 1 by induction, so y(F') = 2+2(k—1)+1 = 2k + 1.
In the second case, y,(stt) = 2 = y(sttt) so we may assume
that whatever covers the last ¢ of stt also covers the first ¢ of
tts(tttts)*1, reducing the second case to the first case. O

Lemma 17 Let F' be a component of a b—decomposition. If F’
contains no stits sequences and ezactly one ss sequence, then

Y(F') = v(F).
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Proof. The only possibility for F”’ is s(tttts)Ps(tttts)?, for some
p,q>0. Let k = p+q. Then, by Lemma 5, y(F') = 2k + 2. If
k = 0 then F' = ss, and y,(ss) = 2 = y(ss). So suppose k > 1.
If p > 1, then F' has the form stttts(tttts)P~'s(tttts)?; apply the
same inductive argument as in Lemma 16. If ¢ > 1, apply the
same inductive argument in mirror image. O

Lemma 18 Let F' be a component of a b—decomposition. If F’
contains no ss sequences and exactly one stits sequence, then
Yo(F') = y(F').

Proof. The only possibility for F' is s(tttts)”ttts(tttts)q for
some p,q > 0. Let £ = p+q. Then, by Lemma 5, y(F') = 2k+3.
If k = 0 then F' = sttts, and y(sttts) = 3 = fy(sttts). Ifk>1,
apply the same argument as in Lemma 17. O

The last five lemmas prove the following theorem.

Theorem 19 Let F be the form of a caterpillar. Then v(F) =
Y(F) if and only if each component of the b—decomposition of
F contains at most one ss or stits sequence in total, including
overlaps.

This can be rewritten in terms of the original caterpillar.

Theorem 19’ Let C be a caterpillar. Then ~,(C) = v(C) if and
only if between any two sequences of form stPs and st’s, where
p=q=0 (mod 3), there is at least one (possibly overlapping)
sequence of form st™s, where r =2 (mod 3).

4 Caterpillars of Type II

Next we determine when a caterpillar C is radial. Note that
rad(C) = [M] so C is radial if and only if v,(C) = [Mﬂ] .
Also, given any optimal broadcast f for which V; contains no
leaves, repeated application of Theorem 3 results in an efficient
optimal broadcast g for which Vj contains no leaves.

Lemma 20 Let C be a non-radial caterpillar and choose an
efficient optimal broadcast f for C such that V; contains no
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leaves and |Vy| = min{|V,| : g is an efficient optimal broadcast
and V;, contains no leaves}. Let Vi = {21, 2,,...,2,}, the z’s
listed in the order they occur along the spine. Let C; be the
mazimum sub-caterpillar covered by z; for i = 1,2,...,r, and
u;v; the edge between C; and Ciyq fori=1,2,...,7 —1; then u;
and v; are both trunks, and diam(C;) is even, for all i.

Proof. Since C is not radial, » > 1. Note that z; dominates
u; and z;4; dominates v;. If, say, u; is a stem with leaf w then
either z; dominates w and thus also v;, or 2;;; dominates w and
thus also u;; either way contradicting efficiency. So u; and v; are
trunks for ¢ = 1,2,...,r — 1.

By Lemma 10, 1,(C) = ¥;7(C;) and f|c, is optimal on C;
for i = 1,...,r, so each C; is radial and v(C;) = [d'“mT(C‘)]
Suppose diam(C;) is odd for some %; then either i > 1 or ¢ < r
so without loss of generality suppose i < r. Let C' = C; U
{uv:}UCi41. Since u; and v; are trunks, diam(C’) = diam(C;) +
1+diam(C;41). By Lemma 10, 1%(C") = 7%(Ci) + %(Ciy1) =
[ di“";(c‘)] + [di“m(zc"“)]. If diam(C;41) is also odd, then v,(C’) =
diam(gC.»)+l +diam(C,-+1)+1= diam(ZC’)+1 — rad(C"). If diam(C’H.l) is

2 . . 7]
even, then 'Yb(C’) — dm,m(ZC,')+1 + diam(Ciy1) _ dum;(C) — rad(C’).

In either case, C’ has an optimal broadcast f’ which is radial.
Extending f' to V(C) by f'(u) = f(u) for v € V(C) — V(C")
gives an optimal broadcast f' of C with |V{| < |V}|. By repeated
application of Theorem 3, C has an efficient optimal broadcast
g with [Vo| < V| < |Vj|, a contradiction. Thus diam(C;) is
even fori=1,2,...,r. O

Theorem 21 A caterpillar with odd diameter is radial if and
only if when the edge between any two adjacent trunks is removed
at least one of the resulting two components has odd diameter.
A caterpillar with even diameter is radial if and only if when
the edges between any two disjoint pairs of adjacent trunks are
removed, at least one of the resulting three components has odd
diameter.

Proof. Suppose first C is not radial. Let f, u;, v;, and C; be as
in Lemma 20, so u; and v; are trunks and diam(C;) is even. If
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diam(C) is odd, then since diam(C) = diam(C})+1+diam(C —
C1), removing u,v; gives two components of even diameter. Sim-
ilarly, if diam(C) is even then removing u;v; and uav, gives three
components Cy,Ca and C — Cy — Cs, all of even diameter.

Conversely, suppose that diam(C) is odd and there exist
two adjacent trunks on the spine of C such that when the
edge between them is removed, each of the two components
C; and C, has even diameter. Then since diam(C) is odd,
rad(C) = 4em@* Byt rad(Cy)+rad(Cy) = Hem(Gilpdion(C)
d‘l’f—gﬂ_—l < rad(C), so the union of radial broadcasts on each of
C, and C, forms a dominating broadcast with smaller cost than
a radial broadcast on C, and thus C is not radial.

Now suppose that diam(C) is even and there exist two dis-
joint pairs of adjacent trunks on the spine of C' such that when
the edge between each pair is removed, all three of the result-
ing components Cj, Ca, C3 have even diameter. Since diam(C)
is even, rad(C) = di—“'gigl. But rad(C;)+rad(Cp)+rad(Cs) =
diam(C1)+diam(Ca)+diam(Cs) _ diam(zC)—Z < I‘&d(C), so the union of

2

radial broadcasts on Cj,Cs and Cj; forms a dominating broad-
cast with smaller cost than a radial broadcast on C, and thus C
is not radial. O

5 Conclusion

We have completely characterized caterpillars of Type I, Type
11, and Type III, so the next step would be to characterize trees.
We give one partial result.

Theorem 22 If T is a tree with v,(T) = y(T') then no vertez of
T has more than three non-leaf neighbours.

Proof. Let D be a minimum dominating set for . Suppose for
some v € V(T) there exist vy,ve,v3,94 € N(v) with d(v;) > 2
for i = 1,2,3,4. Let w; € N(v;) — {v} for i = 1,2,3,4. If
v € D, then v does not dominate any w;, so there exist distinct
T, T2, T3, T4 € D such that z; dominates w; for i = 1,2, 3,4. But
then d(v,z;) < 3 for i = 1,2,3,4. Define f on V by f(v) = 4,
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f(vi) = f(wz) = f(w‘t) =0 for i = 1’2)3)4 and f(U) = XD(u)
otherwise. Then f is a dominating broadcast with f(V) = |D| -
1, so 7b(T) < 7(T)

So suppose v ¢ D. Then some non-leaf neighbour of v must
dominate v, so without loss of generality we may assume v; €
D. Then v, does not dominate v, v3,v4, S0 there exist distinct
wp, w3, wq € D such that w; dominates v; for i = 2,3,4. But
then d(v,w;) < 2 for ¢ = 2,3,4. Define f on V by f(v) =
3, f(v;) = 0 for ¢ = 1,2,3,4, f(w;) = 0 for i = 2,3,4 and
f(u) = xp(u) otherwise. Then f is a dominating broadcast
with f(V) = |D| -1, so v(T) < v(T). O

Blair et al. [1] give a O(nr) algorithm for determining , for
a tree with n vertices and radius r (as well as algorithms for
interval graphs and series-parallel graphs).
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