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Abstract

Let P(n, k) denote the number of graphs on n + k vertices that
contain Py, a path on n vertices, as an induced subgraph. In this
note we will find upper and lower bounds for P(n, k). Using these
bounds we show that for k fixed, P(n,k) behaves roughly like an
exponential function of n as n gets large.

1 Introduction

In this note we will consider a graphical enumeration problem of graphs
containing very long induced paths. Our graph terminology is standard
and for any undefined terms we refer the reader to [3].

Let P(n, k) denote the number of simple graphs on n + k vertices that
contain P,, a path on n vertices, as an induced subgraph. We will give
an upper and lower bound for P(n, k) by representing such graphs as a
combination of an array and a labeled graph. From these bounds it will
follow that for fixed values of k that

9(nk+(5))
2k

Our main tool will be to use Burnside’s Lemma to count equivalency
classes. We state the theorem below and note that its proof can be found
in several places including [2].

P(n, k) ~

Theorem 1 (Burnside’s Lemma). Let C be a collection of objects acted
on by a group A, let N be the number of equivalence classes under A, and
for m € A let |Cx| be the number of elements in C fived under m. Then

N =3 realCxl/|Al
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This note proceeds as follows. We first introduce a representation of
graphs that are counted by P(n,k). We then count such representations
to derive upper and lower bounds and look at its asymptotic behavior. At
the end we will make some remarks about the proof and related problems.

2 Representing our graphs

If G = (V,E) is a graph with H = (V’, E’) as an induced subgraph of G,
then G can be decomposed into three structures. Namely, the induced sub-
graph H, the induced subgraph H’ (the induced subgraph on the vertices
V \ V'), and the edges connecting H and H'.

This third structure can be represented by an array where each column
is associated with a vertex of H and each row with a vertex of H’. Each
entry of the array is marked with one of two colors according to whether
the two corresponding vertices are connected by an edge.

Applying this to our problem, given G = (V,E), a graph on n + k
vertices with a vertex set N C V which induces P, then we construct the
following object to represent G. Our object consists of a k x n array and a
graph on k labeled vertices where the following holds.

1. Each vertex of N corresponds to a column and two columns are ad-
jacent if and only if the corresponding vertices are adjacent.

2. The set V \ N is labeled by {1,2,...,k} where the ith vertex corre-
sponds to the ith row of the array, the corresponding labeled induced
subgraph on V' \ N is the graph on & labeled vertices in our object.

3. We color the entries of the array either ‘edge’ or ‘not edge’ depending
on whether the vertex that corresponds to the column is adjacent to
the vertex that corresponds to the row.

When we graphically represent these objects we will use dark for ‘edge’
and white for ‘not edge’, we also suppress the labeling on the graph with &
vertices by putting each vertex next to its corresponding row.

Clearly, given such an object we can reconstruct G. However, given a
G which contains a long induced path there are possibly many such objects
which can be constructed. This can occur for two reasons.

First, we can have P, as an induced subgraph of G in more than one
way. An example of this is shown in Figure 1.

We will address this when we find the lower bound.

The second reason that we can have multiple objects is that there is
freedom in how we assign vertices to the rows and columns. When assign-
ing vertices to the columns we must assign one of the end vertices of the
path to either the first or last column and then the remaining choices are
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Figure 1: A graph with multiple Py’s and corresponding objects

determined. So there are two distinct ways to assign the vertices to the
columns, the difference between the two a reversing of the columns in the
array.

Similarly, when we label the vertices for the induced subgraph on V'\ N
we have complete freedom on assigning the labels and so there are k! ways
of assigning these k vertices to the rows, the difference between any two
such assignments a permutation of the rows.

Different choices in our assignment can be represented by an action of
Sy X Zy on the array. This action is composed of two parts, the element of
Sy, determines how to permute the rows while the element of Z, determines
whether to reverse the columns. This gives us the following lemma.

Lemma 1. For a fixed set N that induces P, in the graph G, the set of
arrays which can be generated by the above construction is an equivalence
class under the action of Si x Z5 on all of the colorings of the array by two
colors.

Let C' be a collection of representative colorings of the k x n array with
two colors, i.e., every coloring of our k X n array is equivalent with exactly
one coloring of C under the action by Sy x Z2. By Lemma 1 for each graph
G and N C V which induces a P, there is exactly one element of C that
will appear in a constructed object for G.

Note that restricting our colorings to C does not completely overcome
the arbitrariness of how we choose to associate vertices with the rows and
the columns. Ambiguity can still arise when there is a non-identity element
in S, x Zy for which the coloring is invariant. We will address this when
we find the lower bound.

2.1 Counting our inequivalent colorings

The elements of C' will form the basis for our upper and lower bounds.
Our next step is to use Burnside’s Lemma to find the cardinality of C.
Notationally, for o € Sy let e(¢) and o(o) denote the number of even and
odd cycles respectively in the cycle decomposition of o.
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Theorem 2. Let |Clixn denote the number of equivalence classes under
the action of Sk X Z given above on the k x n array with two colors. Then

-1
1
— l I ; E : (0)+|(n+1)/2]o(o)
|C|kxn = 2k! ( (2‘" +z) + 2ne o o\o ) ,

i=0 o€ESk
moreover, |Clixn/2™* — 1/2k! as n — o0.

Proof. To apply Burnside’s Lemma we find the number of colorings of the
array that are fixed under the action of o X @ € Sk x Zy. We consider three
cases. .

First case: a cycle in 6 with columns fired. We choose an arbitrary
coloring for the row that corresponds to the first element of our cycle. Then
in order for our coloring to remain fixed every other row corresponding to
the elements of the cycle must have the same coloring. So for every cycle
of o we get n choices.

Second case: an even cycle in o with columns reversed. We choose an
arbitrary coloring of the row that corresponds to the first element of the
cycle. Then as we go through the elements of the cycle we reverse the order
and fill in the rows as we go. When we return to the row that corresponds to
the first element of the cycle we will have made an even number of reversals
and so we will match up with what we started with. So for every even cycle
of o we get n choices.

Third case: an odd cycle in o with columns reversed. We start as in the
previous case, now though when we return to the row that corresponds to
the first element of the cycle we will have made an odd number of reversals
and we will have the reverse of what we started with. In order to match up,
the coloring of the first row has to be symmetric. So for every odd cycle of
o we get |(n + 1)/2] choices.

We now apply Burnside’s Lemma and get that

-1 n(e(0)+0(2)) ne()+L(n+1)/2]0(0)
[Clkxn T 2 + 9

o€ESk 0€Sk

7 >

@ Gi)

where (i) comes from elements with columns fixed (case 1) while (ii) comes
from elements with columns reversed (cases 2 and 3).

Examining (i) note that e(c) +o(0) is the number of cycles in . We can
group the permutations of Sy according to how many cycles the permuta-
tions have into k groups (for 1,2,.. ., k) each with s(k, 7) elements where i is
the number of cycles. Here s(k, ) denotes the (unsigned) Stirling numbers
of the first kind. Using a property of the (unsigned) Stirling numbers of
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the first kind we have that

k k k-1
Y 2rlelrelo) = N s(k,i)2™ = Y s(k, i)(2") = [ +9).
ocESk i=1 i=1 i=0

Substituting this in for (i) gives us our first result for |C|xxn.
For (ii) note that for o in Sy that 2e(o) + o(c) < k and so

ne(o) + |(n+1)/2] o(o) < [(n +1)/2] (2¢(0) + o(0)) < [(n+1)/2] k.
As an immediate consequence we have

Z gne(o)+|(n+1)/2]o(0) < Z gl(n+1)/2)k _ klgl(n+1)/2]k
o€ S CESk

Putting this in for (ii), along with what we have already done for (i),
we have

k=1 k—1
1 1
H n I I | | l(n+1)/2]k
2k' (1_0(2 Z)) < |Clk><n - 2k' (1_0(2n Z) w2 )

Dividing through by 2" we see that

k-1 k-1
-n Iclkxn _ +1)/2 x
% l_!)(“‘ 27" < S S 2k, |0| (1 +1427™) 4 k12(l(n+1)/2]-n)
1=l i=

Letting n — oo, the first and last terms go to 1/2k! giving the second
result. O

3 Upper and lower bounds

3.1 Upper bound

Recall that any graph which contains P, as an induced subgraph has a
presentation as some array from C and a labeled graph. Since there are

|Clkxn and 2(2) such arrays and graphs respectively, we immediately get
the following.

Theorem 3. We have P(n,k) < IClkx,.2(§).
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3.2 Overcounting

To get our lower bound we will create a combination of colorings and la-
beled graphs which will correspond to non-isomorphic graphs. This will
be achieved by making restrictions on the colorings of our arrays that will
overcome the two problems of overcounting that are inherent in our upper
bound.

The first problem we will address is having a long induced path in more
than one way. In Figure 1 we saw that one graph can have P, as an induced
subgraph in multiple ways. When looking at all combinations of colorings
of C and labeled graphs this caused some graphs to be counted multiple
times. We can get around this problem by use of the following lemmas.

Lemma 2. Let G = (V,E) and let N C V be a collection of n vertices
which will induce a graph with maximum degree q. Then for all v € N we
have deg(v) < |V| -n+gq.

Proof. Since the maximum degree of a vertex in the induced graph is g,
if v € N then v can be adjacent to at most g other vertices of N. In
particular v is not adjacent to n — g of the vertices of V' lying in N. Thus,
the maximum degree that v can have is |V| — (n — g). a

Lemma 3. If the k x n array in a representation of G has at least k +
3 entries in each row colored ‘edge’ then G contains P, as an induced
subgraph in only one way.

Proof. Each row corresponds to a vertex in the graph, and by our assump-
tion each vertex corresponding to a row has degree at least k + 3. By
Lemma 2, with [V| = n + k and the maximal degree of P, as 2, it follows
that none of the k vertices that correspond to the rows can lie in an in-
duced subgraph which is P,. Thus only n of the n + k vertices can lie in
an induced subgraph which is P, and so we have only one way to have P,
as an induced subgraph. O

So by Lemma 3, adding the restriction that our colorings have at least
k + 3 or more entries in each row colored ‘edge’ eliminates the problem of
having P, as an induced subgraph in more than one way. We now derive
an upper bound for the number of graphs not satisfying this property.

Lemma 4. Let D be a maximal collection of inequivalent colorings with
two colors of the k X n array under the action of Sk x Z3, such that each
coloring of D contains at least one row with k + 2 or fewer elements colored

‘edge.” Then
k+2 n
|D| < (z (’i)) lclk—lxn~
=0
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Proof. Consider the collection of k x n arrays where the first row contains
k + 2 or fewer elements colored ‘edge’, and the remaining k — 1 rows come
from Ci—1xn. Since there are a total of Zf:oz (1) different ways that the
first row can have k + 2 or fewer elements colored ‘edge’, and there are
|Cli—1xn colorings, we have at most

k+2 ¥
(Z ( )) Icik—lxn
1=0 ¢
such objects.

All that remains is to show that a coloring in D is equivalent to one of
them. To see this, start with any element in D then act on it to send a
row with k 4 2 or fewer elements colored ‘edge’ to the first row. Rows 2
through k are a coloring of the (k—1) x n array and so there is an element
in Sy x Z» which acts on these k — 1 rows which takes it to a coloring of
Ck—1xn- We can extend this action to the k x n array. Doing so the first
row will still have k + 2 or fewer elements colored ‘edge’ and the remaining
rows are a coloring in Cy_«n, as desired. O

The second source for overcounting is because some colorings of C' are
invariant under multiple actions. This can cause the object associated with
a graph to have several possible labeled graphs associated with a fixed
coloring of the array. An example of this situation is shown in Figure 2.

ab cd a b cd
€ €
7 g§
go F
ho h ©

d cba dcba

h o
o6
glo
e

Figure 2: Objects with a fixed coloring and multiple labeled graphs
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The different actions for which the coloring is invariant corresponds to
different sets of choices in how we assign vertices, this can possible lead
to different labeled graphs. If we add the restriction that our colorings
remain invariant only under the identity automorphism then this problem
is eliminated. We need to get a bound on the number of colorings which
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satisfy this condition, this will be done by separating into two cases and
examining each case in turn as done in the following lemmas.

Lemma 5. Let D be a maximal collection of inequivalent colorings with
two colors of the k x n array under the action of Sk x Z; such that for each
coloring of D there is a non-identity action, not reversing the columns, for
which the coloring is fixed. Then

iD| < (k 1 1)|C|k—1xn

Proof. For each coloring in Cr_1xn We construct k — 1 colorings of the
(k—1) x n array by first putting the coloring in rows 2 through k and then
for the first row we duplicate, in turn, each of the rows 2 through k. An
example of this construction is shown in Figure 3.

= . i o ¢

Figure 3: An example of the construction in Lemma 5

This constructs at most (k — 1)|C|,—1xk colorings. All that remains is
to show that each coloring of D is equivalent to at least one of the colorings
that we have constructed.

This follows by noting that the only way a coloring can remain invariant
under a non-identity action not reversing columns is for there to be a du-
plicate row in the array. We now apply the same argument as in Lemma 4
(now sending a duplicate row to the first row) to see that we have all pos-
sible colorings. O

Lemma 6. Let D be a maximal collection of inequivalent colorings with
two colors of the k x m array under the action of the group Sy x Z3 such
that for each coloring of D there is an action, reversing the columns, in
which the coloring is fixed. Then

D] < [’_“_ZJF_QJ ol(n+1)/2]k

Proof. Consider a row of a coloring in D. If the row of is not symmetric
then in order for the coloring to remain invariant under an action which
reverses the order of the columns there must be some row which has the
coloring in reverse order. In particular, the rows of d are either symmetric
or they can be placed in pairs which are the reverse of each other.
Suppose that we have j rows that are paired together. Then the re-
maining k — 2j rows must be symmetric. For every pair of rows we get
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to make a full choice for one row and the other row will have its coloring
determined, so we get a total of nj choices. For the symmetric rows we get
to color half the row and the other half must be colored in reverse order to
be symmetric and so we get (k — 25)|(n + 1)/2] choices.

The number of pairs that we can have is between 0 and |k/2], so we
get [D| < Z]l.:/o2j 23+ (k=2)1(n+1)/21 | Since n < 2|(n + 1)/2] we have

Lk/2§ Lk/2}
Z onj+(k—27)(n+1)/2] <’ z 92jl(n+1)/2]+(k—25)|(n+1)/2]
j=0 =0
Lk/2] k
— Z 2[(n+l)/2]k = ([__J 1) 2[('n+1)/2]k
2
Jj=0

_ lk + 2J ol(n+1)/2]k
. .

Any coloring that is invariant under an action which reverses the columns
will be equivalent to one of these, i.e., we permute the rows to put the pairs
in order at the top of the array and the symmetric rows at the bottom.
This concludes the proof. O

3.3 The lower bound
Theorem 4. We have

k42
(IChxn—(Y_ (’:) +(k=1))[Cle-1xn— [" : 2J 2l /218)9(3) < P, ).

i=0

Proof. Let D be a maximal collection of inequivalent colorings of the k x n
array where every coloring satisfies the following two conditions.

1. Every row of the coloring has at least k£ + 3 entries colored ‘edge’.

2. The only action in Sy x Zs for which the coloring is fixed is the
identity.

Consider all combinations of arrays with colorings of D and graphs on k
labeled vertices.

Any graph on n + k vertices which contains P, as an induced subgraph
is represented at most once in this set of combinations. To see this, let G
be a graph on n + k vertices. Then if the array in the constructed object
for G is not in D it is not one of our graphs.

So suppose that the array constructed in our object for G is in D. Then
by our restrictions of our arrays and Lemma 3 we know that the graph
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contains P, as an induced subgraph in exactly one way, so there is only one
coloring of D which can be used in a representation of the graph.

Because of our other restriction on the array there is only one possible
way of assigning the vertices to the columns and the rows so that the
coloring matches with the coloring of D. (If there were two distinct ways
of assigning the vertices to the columns and the rows then we could form
a non-identity automorphism for which the coloring would be invariant.)
It follows that for G there is only one labeled graph that we can associate
with the coloring of D. In particular, G can only show up once in the
combinations of the colorings of D and all labeled graphs. So we can
conclude that |D|2(§) < P(n, k). All that remains is to bound |Dj.

To bound |D| we start with Cixn and then get an upper bound for
the number of colorings which need to be removed in order to get D. Our
upper bound for the number of colorings that we need to remove comes by
combining Lemmas 4, 5 and 6. By Lemma 4, the number of graphs which
do not satlsfy the first condition placed on our array is bounded above
by 2‘=0 (DIClk-1xn- By Lemmas 5 and 6, the number of graphs which
do not satisfy the second condition placed on our array is bounded above
by (k - 1)|Clk-1xn + [ 2| 2ltn+1)/2]k  Subtracting these terms out from
|{Clkxn gives us our desued bound, concluding the proof. O

3.4 Asymptotic behavior
Theorem 5. Let k be fired. Then
o PuE) _ 2(3)
n—co 2"" ookl

Proof. Starting with our bound from Theorem 3 and dividing both sides
by 2™* we have

P(nk) _ |Clexn (s
onk  — 9nk 2( )
applying Theorem 2 it follows that

, P(n,k) _ 2(3)
Hmsup —oek— < a1
Starting with our bound from Theorem 4 and dividing both sides by
2"k and simplifying we have

P(n,k)
onk 2

k+2
[Clixn _ Eito () + (1) [Cli—1xn _ | E+2 | pumsy/at-mik ) (%)
onk on on(k-1) 2 )
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We proceed as before. The expression ( Zf:oz (1)) +(k—-1) is a polynomial

in n of degree k+ 2, this is dominated by 2" as n — co. All the other terms
are straightforward by the use of Theorem 2. It follows that

k
. P(n,k) _ 20
liminf —2— 2 S5

Combining the lim inf and lim sup gives us our desired result. a

Theorem 5 is equivalent to saying that for fixed values of k that

o(nk+(3))

P(n, k) ~ o7

So for fixed values of k we have that P(n,k) behaves as an exponential
function of n as n gets large. We note the rate of growth is much smaller
than that for all graphs (which is approximately 2(3) /n!). Showing, unsur-
prisingly, that graphs with very long induced paths become rare.

4 Generalizations and open problems

The approach presented here can be used for other graphs. For instance by
minor modifications to the argument we have the following. Let {H;}ism
be an infinite family of simple graphs where each H; is a graph on i vertices
with a trivial automorphism group and there is a universal q that bounds
the maximum degree of H; for all i. If H(n, k) denotes the number of simple
graphs on n + k vertices which contains H,, as an induced subgraph, then
for fixed values of k we have that

o(nk+(3))
K

Our approach, as is, will not work for all graphs. The advantage of the
path was that its nontrivial automorphism reduced the number of squares
to color in the array by essentially half. The graph shown in Figure 4 also
has the same automorphism group as the path but the actions on the k x n
array is notably different and the proof above cannot be easily adopted.

H(n, k) ~

n — 2 vertices

Figure 4: A more challenging graph
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This is the simplest case of a whole range of problems. We might ask if
there is a similar result for the infinite family in Figure 4. If the only thing
that is important is the size of the automorphism group of the induced
subgraph then we would expect approximately the same number of graphs
on n + k vertices with n > k with long induced paths as we would for
graphs which have Figure 4 as an induced subgraph. It is unknown if this
holds.

Another interesting problem would be to try to find a similar, non-
heuristic proof, for n-cycles. An initial conjecture would be as follows.

Conjecture 1. Let C(n, k) denote the number of graphs on n + k vertices
which contain C,, a cycle on n vertices as an induced subgraph. Then for

n > k we have
2nlc+('.;)
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