A Note on Star Arboricity of Crowns

Ming-Ju Lee Jen-Teh Junior College of Medicine, Nursing and Management Houlong, Miaoli, Taiwan 356, R.O.C.

Chiang Lin
Department of Mathematics
National Central University
Chung-Li, Taiwan 320, R.O.C.
e-mail: lchiang@math.ncu.edu.tw

ABSTRACT. The star arboricity sa(G) of a graph G is the minimum number of star forests which are needed to decompose all edges of G. For integers k and n, $1 \le k \le n$, the crown $C_{n,k}$ is the graph with vertex set $\{a_0, a_1, \dots, a_{n-1}, b_0, b_1, \dots, b_{n-1}\}$ and edge set $\{a_i b_j : i = 0, 1, \dots, n-1; j \equiv i+1, i+2, \dots, i+k \pmod{n}\}$. In [2], Lin et al. conjectured that for every k and n, $0 \le k \le n-1$, the star arboricity of the crown $0 \le n-1$ if $0 \le$

A star forest is a forest whose components are stars. The star arboricity sa(G) of a graph G is the minimum number of star forests which are needed to decompose the edges of G. The star arboricity of regular graphs can be bounded below as follows:

Proposition 1 [1, 3] Suppose that G is a d-regular graph with $d \geq 2$. Then $sa(G) \geq \lceil d/2 \rceil + 1$.

For integers k and $n, 1 \le k \le n$, the $\operatorname{crown} C_{n,k}$ is the graph with vertex set $\{a_0, a_1, \dots, a_{n-1}, b_0, b_1, \dots, b_{n-1}\}$ and edge set $\{a_i b_j : i = 0, 1, \dots, n-1\}$; $j \equiv i+1, i+2, \dots, i+k \pmod{n}$.

In [2] the star arboricity of crowns were investigated and the following conjecture was proposed.

Conjecture. For every k and n, $3 \le k \le n-1$,

$$sa(C_{n,k}) = \begin{cases} \lceil k/2 \rceil + 1 & \text{if } k \text{ is odd,} \\ \lceil k/2 \rceil + 2 & \text{if } k \text{ is even.} \end{cases}$$

It was proved in [2] that the above conjecture holds for (1) k = 3, 5, (2) $k = n - 1, n - 2, n - 3 \ge 3, (3)$ $k \ge 3$ is odd and $n = a\lceil k/2 \rceil + b$ where a and b are nonnegative integers with $a \ge b$.

In this note we show that the above conjecture is not true for the case n = 9t (t is a positive integer), k = 4 by proving the following

Theorem 2 For every positive integer t, $sa(C_{9t,4}) = 3$.

Proof. By Proposition 1, $sa(C_{9t,4}) \ge 3$. To show $sa(C_{9t,4}) \le 3$ we need to decompose $C_{9t,4}$ into 3 star forests. For a subset S of $E(C_{n,k})$ and an integer p, we denote by S+p the set $\{a_{i+p}b_{j+p}: a_ib_j \in S\}$. The subscripts of a_i and b_j are always taken modulo n.

Let S_1 be the subset $\{a_0b_1, a_0b_2, a_1b_3, a_1b_4, a_2b_5, a_2b_6, a_3b_7, a_4b_7, a_5b_8, a_6b_8, a_7b_9, a_8b_9\}$ of $E(C_{9t,4})$, and let F_1 be the subgraph of $C_{9t,4}$ induced by $S_1 \cup (S_1 + 9) \cup (S_1 + 18) \cup \cdots \cup (S_1 + 9(t-1))$.

Let S_2 be the subset $\{a_0b_4, a_2b_4, a_1b_5, a_4b_5, a_3b_6, a_5b_6, a_6b_7, a_6b_9, a_7b_8, a_7b_{10}, a_8b_{11}, a_8b_{12}\}$ of $E(C_{9t,4})$, and let F_2 be the subgraph of $C_{9t,4}$ induced by $S_2 \cup (S_2 + 9) \cup (S_2 + 18) \cup \cdots \cup (S_2 + 9(t-1))$.

Let S_3 be the subset $\{a_0b_3, a_2b_3, a_7b_{11}, a_1b_2, a_3b_4, a_3b_5, a_4b_6, a_4b_8, a_5b_7, a_5b_9, a_6b_{10}, a_8b_{10}\}$ of $E(C_{9t,4})$, and let F_3 be the subgraph of $C_{9t,4}$ induced by $S_3 \cup (S_3 + 9) \cup (S_3 + 18) \cup \cdots \cup (S_3 + 9(t-1))$.

We can see that each F_i (i = 1, 2, 3) is a star forest of $C_{9t,4}$, and that $C_{9t,4}$ is decomposed into F_1, F_2, F_3 . This completes the proof.

Acknowledgement

The authors are grateful to the referee for the helpful comments which improve the readability of the paper.

References

- [1] I. Algor and N. Alon, The Star Arboricity of Graphs, Discrete Math. 75 (1989), 11-22.
- [2] C. Lin, J.-J. Lin and H.-C. Lee, Some Decomposition Invariants of Crowns, Ars Combin. 66 (2003), 33-48.
- [3] M. Truszczyński, Decomposing Graphs into Forests of Stars, Congr. Numer. 54 (1986), 73-86.