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Abstract

The total chromatic number x,.(G) is the least number of colours
needed to colour the vertices and edges of a graph G such that no
incident or adjacent elements (vertices or edges) receive the same
colour. This work determines the total chromatic number of grids,
particular cases of partial grids, near-ladders, and of k-dimensional
cubes.

1 Introduction

Let G := (V(G), E(G)) be a simple graph with vertex set V(G) and edge
set E(G). An element of G is a vertex or an edge of G. An edge {u,v} is
denoted by uv or vu. For a vertex v € V(G), N(v) is the set of vertices of
G that are adjacent to v.

For § C V(G)U E(G) and C a set of colours, a partial total colouring of
G is a mapping ¢ : S — C such that, for each pair of adjacent or incident
elements z,y € S, we have ¢(z) # ¢(y). If S = V(G) U E(G), then ¢
is a total colouring. If |C| = k, then the mapping ¢ is called a (partial)
k-total colouring. If ¢(x) = c or there exists an element y incident with or
adjacent to = such that ¢(y) = c, then we say that ¢ occurs in z; otherwise
c is missing in x. If § C E(G), then ¢ is a (partial) edge colouring and if
§ C V(G), then ¢ is a (partial) vertex colouring.

The total chromatic number of G, x.(G), is the least integer k for
which G admits a k-total colouring. Clearly, x,.(G) > A(G) + 1. Sanchez-
Arroyo [11] showed that deciding whether x,(G) = A(G) + 1 is NP-
complete. McDiarmid and Sénchez-Arroyo [9] showed that even the prob-
lem of determining the total chromatic number of k-regular bipartite graphs
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is N P-hard, for each fixed k > 3. The Total Colouring Conjecture (TCC),
posed independently by Behzad [1] and Vizing [14], states that every simple
graph G has x,(G) < A(G) + 2. If x.(G) = A(G) + 1, then G is a type 1
graph; if x,.(G) = A(G) +2, then G is a type 2 graph.

In this work we study the total chromatic number of some subclasses of
bipartite graphs. Behzad et. al. [2] determined the total chromatic number
of complete graphs, including the bipartite case. A k-partite graph is a
generalization of bipartite graphs in which the vertex set is partitioned into
k sets. A complete k-partite graph is a k-partite graph where every vertex of
one part is adjacent to every vertex of all other parts and a balanced k-partite
graph is a k-partite graph with all parts of the same size. Bermond 3]
determined the total chromatic number of all balanced complete k-partite
graphs. Yap [15] extended a previous result of Rosenfeld [10] showing that
every complete k-partite graph verifies the TCC. Chew and Yap (7] and
Hoffman and Rodger 8] showed that every complete k-partite graph having
odd number of vertices is type 1.

Almost all graphs analysed in this work are planar graphs. The TCC
was verified for planar graphs with maximum degree 7 in [12]; the total
chromatic number was determined for planar graphs with large girth in [5];
and with maximum degree greater than 11 in [4]. Moreover, Zhang et.
al. [17] showed that outerplanar graphs with maximum degree greater than
or equal to 3 are type 1.

Section 2 determines the total chromatic number of grids and of some
particular cases of partial grids. Section 3 shows that near-ladder graphs
with |V(G)/2| even are type 1; otherwise are type 2. Section 4 shows that
Qp, the k-dimensional cube, is type 1.

2 Grids and partial grids

A simple graph G, xn, With vertex set the cartesian product of {1,...,m}
and {1,...,n}, that is V(Gmxna) := {(4,5), where i € {1,...,m} and
j€{1,...,n}}, and edge set E(Gmxn) := {(i,5)(k,1) : li — k[ + |5 = | =1,
(3,7) (k,1) € V(Gmxn)}, is called an m x n grid. In fact, Gmxn is a carte-
sian product of P,, and P,, path graphs on m and n vertices respectively.
It is easy to see that grids are planar and bipartite. A partial grid is an
arbitrary subgraph of a grid. We consider only connected partial grids.

In this section we prove that G,xn, With m,n > 2 and different from
C,, is type 1 and determine x,.(G) for some particular cases of partial grids.
Partial grids are harder to work with than grids; for instance, recognition
of grids is polynomial, but is an open problem for partial grids ([6]).
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THEOREM 1
Each graph G, xn, with m,n > 2 and different from Cy, is type 1.

Proof: First we consider the case when m > 2 and n > 2. Let G := Gmxn
be a grid. Let 7 be a colour assignment for G that uses 5 colours defined
as:

7((4,5)) = (2j+i-2)mod3; (1)
m((2,5)(5,5 +1)) = (2j+i-1) mod3; (2)
w((6,§)(i+1,5)) = 4-(mod2). (3)

Now, we prove that 7 is a total colouring for G. In order to do this we
show that the colour of each element of G is different from the colours of
each of its adjacent and incident elements.

We start by considering edges (%, )(i + 1, ), coloured in (3). By con-
struction, these edges have colours 3 or 4 and these colours do not occur
in (1) or (2). Moreover, adjacent edges coloured in (3) have colours with dif-
ferent parities. We conclude that (3) is an edge colouring for the subgraph
of G induced by these edges.

Now, we analyse the vertices of G. Let (,7) be a vertex of G. By
construction, 7((%, 7)) = (27 + ¢ — 2) mod 3. First, we consider the vertices
of G that are adjacent to (,7). These are, when they exist, (i,7 — 1),
(¢4, +1), (¢ = 1,7), and (¢ + 1, ), which have colours (2j + i — 1) mod 3,
(25+1) mod 3, (25+1%) mod 3, and (2j+i—1) mod 3, respectively. Note that
each colour is of the form (a — b) mod 3, where a = 2j + ¢ and b € {0,1}.
Moreover, vertex (%,7) has b = 2, differing from the others by at least 1
unit and at most 2 units. Therefore, the colours of its adjacent vertices are
different from 7((z, 5)).

Consider now the edges incident with (3, j), that are, when they exist,
edges (4,5 — 1)(3,5), (3,5)(i,5 + 1), (i = 1,5)(, 7), and (3,5)(i + 1, 5), which
have colours (25 + ¢) mod 3, (2j + ¢ — 1) mod 3, 4 — (i — 1) mod 2, and
4 — i mod 2, respectively. The colours of the first two edges differ from the
colour of (%, j) by the same reasons of the previous case and the last two
use colours 3 and 4, which are not used in the vertices of G.

In order to finish the proof of this case we have to show that two adjacent
edges whose colour was given by (2) have different colours. To see this,
consider an edge (%, j)(4, 7 + 1) and its two adjacent edges (i, j — 1)(i, ) and
(4,5 +1)(3, j + 2) whose colours are (2j 4+ ¢ — 1) mod 3, (27 +%) mod 3, and
(2§ +7+1) mod 3, respectively. Again, these three colours are different and
we are done.

Now, we assume that one of {m,n} is 2. By symmetry, we can assume
that m = 2. These graphs have maximum degree 3 because n > 2 and
their colourings can be obtained directly from the previous colouring .
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Note that all edges whose colour was assigned in (3) have the same colour.
We conclude that only four colours are used and the result follows. O

Let G be a connected partial grid. If A(G) = 0 then G is composed by
only one vertex, a type 1 graph. If A(G) = 1, then G = K3, a type 2 graph.
If A(G) = 2, then it is a path of length at least 2, a type 1 graph, or a
cycle that is type 1 when |V(G)| = 0 mod 3, and type 2 otherwise ([16]). If
A(G) = 4, then G is type 1 since it is a subgraph of & Gmxa with m,n > 2
that preserves the maximum degree and those grids are type 1. Therefore,
the remaining case is A(G) = 3. For these graphs we determine the total
chromatic number of some cases.

THEOREM 2
Let G be a connected partial grid with maximum degree 3. If the length of
the largest induced cycle of G is 4, then G is type 1.

Proof: First, we need an additional definition and two auxiliary results
stated in Lemma 3 and Lemma 4. We define a ladder graph, Ly, as a Gaxn,
n > 2, and call its four vertices of degree 2 corners.

LEMMA 3
Every tree is type 1, except for Ko that is type 2.

Proof: Let T be a tree. If T has no edges, then T is type 1. If T is Ka,
then T is type 2. Suppose now that A(T) > 2.

Let u € V(T) be a vertex of degree 1. Let T := T —u. If T' is Ko,
then it is type 2 and we can easily extend any 3-total colouring of T/ to T
without adding new colours. Now, we can assume that T” is not isomorphic
to K. By induction hypothesis, there exists a (A(T”) + 1)-total colouring
for T".

Let v be the vertex of T adjacent to u. If A(T') = A(T'), then v is not
a vertex of maximum degree in T”. Therefore, there exists a colour missing
in v. Thus, assign this missing colour to edge wv. If A(T") = A(T) - 1,
then v is a vertex of maximum degree in T”. Therefore, we assign a new
colour to edge uv. Finally, in both cases, we assign to vertex u a colour
different from the colours of uv and v. ]

LEMMA 4

If G is a connected partial grid with maximum degree 3 having largest
induced cycle with length 4, then G can be decomposed in connected sub-
graphs each of which is isomorphic to a ladder or a tree. Moreover, there
exists an ordering of these subgraphs G, ...,Gx, where, for each G;, i > 1,
there exists exactly one Gj, such that j < i and V(G;)NV(G;) # 0. In
particular, |[V(G;) NV (G;)| = 1.
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Proof: Let F' be the subgraph induced by the edges of G that do not belong
to ladders. Note that F is a forest since a largest induced cycle has length
4. Let G* be the intersection graph of the maximal ladders of G and
the connected components of F. Two maximal ladders are always vertex
disjoint because A(G) = 3. Therefore, if two vertices of G* are adjacent,
then one of them represents a maximal ladder and the other a connected
component of F'. Clearly G* is connected. Moreover, we claim that it is a
tree; otherwise there would exist in G a cycle of length greater than 4 or a
vertex of degree greater than 3.

Now, choosing a vertex to be the root, we perform a depth-first-search
in G* labeling the vertices 1,...,k in the order that they are visited. The
subgraph represented by vertex i is called G;.

By construction, G; and G}, i # j, have at most one vertex in common.
Moreover, for each G; there exists only one G; such that V(G;)NV (G;) ;é 0
that is the father of ¢ in the depth-first tree. Therefore Jj<i.

Let G be a graph as stated in the hypothesis. Let Gy,...,G be the
ordering of the connected subgraphs of G stated in Lemma 4. Note that
each connected subgraph G; has a 4-total colouring, either by Lemma 3, or
by Theorem 1. Let m; be such a 4-total colouring for G;.

Starting from m, and following the order, we adjust the colours of 7; as
follows to ensure that UX_, m; is a total colouring for G. Let G; be the next
graph in the ordering. By Lemma 4, there exists only one G;, with j < 1,
such that V(G;) N V(G;) # @ and, in particular, |V(G;) NV (G;)| =
Adjust the colours of m; so that: (i) v € V(G;)NV(G;) has the same colour
in m; as in m;; (ii) the edges of G; that are incident with v have colours
missing in v in G;. Note that by Lemma 4 and because the maximum
degree of v in G is 3, these adjustments of colours are always possible. O

THEOREM 5
Let G be a connected partial grid with maximum degree 3. If G has at
most three vertices of degree 3, then G is type 1.

Proof: We consider three cases depending on the number of vertices of
degree 3.

CASE 1 Graph G has exactly one vertex of degree 3.

We prove the assertion by induction. Since there exists a vertex of degree
3, graph G has at least 4 vertices. Moreover, there exists only one vertex of
degree 3; thus, we conclude that there exists at least one vertex of degree
1. If [V(G)| = 4, then G is isomorphic to K} 3, a type 1 graph.
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Let G be a graph as in the hypothesis and let v be a vertex of degree 1.
Let G' := G —v. If A(G') =2, then G’ is a path or a cycle. So, there exists
a 4-total colouring n’ for G’. If A(G’) = 3, then G’ has a 4-total colouring
7' by induction hypothesis.

We construct 7, a 4-total colouring for G, from n’. Let u be the vertex
adjacent to v. The degree of u in G’ is at most 2. Therefore, there exists
a colour that can be assigned to edge uv. Moreover, vertex v is adjacent
only to u and it is incident only with uv. Therefore, there exist two colours
that can be assigned to v and the result follows.

CASE 2 Graph G has exaclty two vertices of degree 3.

Let » and v be the two vertices of degree 3. Suppose first that there exists
a vertex w of degree 1 adjacent to one of {u,v}. Let G’ := G — w. Graph
G’ has exactly one vertex of degree 3. By Case 1, G’ has a 4-total colouring
#', which can be easily expanded to a 4-total-colouring of G as described
there.

Thus, we can assume that every vertex adjacent to u or v has de-
gree at least two. Suppose first that there exists an induced path P :=
(x1,Z0,Z3,Z4), such that z; € {u,v}, z2,23 & {u,v}, and, if possible,
x4 ¢ {u,v}. Let G’ :== G — {z2,z3}. Graph G’ has at most one vertex of
degree 3. Therefore, by previous cases, G’ has a 4-total colouring 7’. It
is easy to see that m' can be expanded to a 4-total colouring of G, with
perhaps a few minor colour adjustments.

Finally, if the previous cases do not apply, we claim that G is isomorphic
to one of the type 1 graphs exhibited in Figure 1.

Figure 1: Each case has exactly two vertices of degree 3 and is type 1.

CASE 3 Graph G has exactly three vertices of degree 3.

We prove this case by induction. Since G has three vertices of degree 3,
[V(G)| = 7. If [V(G)| = 7, then G is not a tree and the size of a largest
induced cycle is 4. Therefore, by Theorem 2, G is type 1.

Graph G has at least one vertex of degree 1, say v. Let G’ := G —v.
Graph G’ has two or three vertices of degree 3 depending on the degree of
the vertex adjacent to v. If G’ has two vertices of degree 3, then there exists
a 4-total colouring 7’/ for G’ by Case 2. If G’ has three vertices of degree 3,
then there exists a 4-total colouring 7’ for G’ by induction hypothesis. For
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each case we construct a 4-total colouring for G from #’ as it was done in
Case 1. O

3 Near-ladder graphs

The near-ladder graph, B, is a 3-regular bipartite connected graph with
bipartition (Xx, Yx), Xk := {Zo,...,Zk-1} and Yi := {yo,...,yk-1}, such
that for each z; € Xk, N(2:) := {¥i, Y(i+1) mod k» Y(i+2) mod k }-

Y2 T2 Zo Y2 T2

n z3 Yo
Figure 2: Graphs B4 and Bs.

Near-ladders have several automorphisms. We remark two of them: (i)
the o-automorphism, in which graph Bj is rotated once along the vertical
axis, is defined as o(z;) := yiy2 and o(y;) := z;; (ii) the 7-automorphism,
in which graph Bj is flipped along the horizontal axis, is defined as 7(z;) :=
yi+1 and 7(y;) := z;—;. All operations on indexes are modular.

Near-ladders with k of different parities have important differences in
their structures. Graphs By, k even, are planar graphs (yet not outerpla-
nar) and By, k odd, are not. Figure 3 shows drawings that manifest this

property.

(a) Planar drawing. (b) Dashed edges induces a
subdivision of K3 3.

Figure 3: Near ladder graphs:(a) k even; (b) & odd.

For By and elements i, ¥it+1, Ti¥i+2, Yi+1Tit1, the pairs z;, i 1741
and y;41, Z;¥i+2 are called equivalent pairs. The edges of an equivalent pair
arc called a parallel pair.
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LEMMA 6

Let G := By, and let w be a 4-total colouring for the subgraph Gax obtained
by removing exactly one parallel pair from G. Then, for each remaining
equivalent pairs T;, Yi+1Zi+1 and Yiy1, Tiviza: (i) the edges of parallel pair
T;iyi2 and yi;1Tip have different colours; (ii) either m(z;) = 7(yi+1Tit1)
or ©(yit+1) = m(Ziyi+2), but not both.

Proof: In order to prove (i) item, suppose that m(zigi+2) = T(Yi+1Zi41)-
Elements yi;2, Ti+1, and Tit1yi+2 have distinct colours and different from
7(ziyir2). Moreover, m(ziy1) = 7(YiraTi+2) and m(yire) = m(Tis1¥it3).
Therefore, elements T;i2, ¥i+3, and Ziyo¥it3 have only two colours as-
signed: m(zi¥it2) and m(Tiz1¥it2), & contradiction. We conclude that
m(Tiyire) # T(Yir1Ti41)-

Now, we prove (ii) item. First note that n(z;) # m(yi+1), 7(zi) #
7(ziYis2), and T(Yit1) # m(Yi+1Tis1) because they are adjacent or incident.
Moreover, we have already proved that m(z;yit+2) # T(Yi+1%i+1). Suppose
that 7(z;) # T(Yis1Zi41) and T(Yit1) # 7(Ziviz2). We conclude that 7(z;),
7(¥ix1), T(Yit1Ti+1), and m(ziyis2) are pairwise distinct. Edge ziyiy1 is
incident with or adjacent to all these four elements. Therefore, 7(z;yi+1)
must be different from each one, contradiction. We conclude that either
T(2:) = T(Yi41Zis1) OF T(Yiy1) = T(Tiviz2)-

Suppose now that m(z;) = m(yi+1Zi+1) and 7(yiz1) = T(T:yi+2). Then,
w(Zi41), T(Yir2), and 7(Ti41Yit2) are different from 7(z;) and 7(yit1), 2
contradiction since only four colours are allowed and Ti41, Yi+2, Ti+1Vi+2
are adjacent to or incident with each other. ]

Let 7 be a partial 4-total colouring for Bx. Consider the equivalent
pairs T;, Yi+1Zi41 and yig1, Tiviro. If m(z:) = 7(yiy12is1), then we say
that for these equivalent pairs the anchor is z;; otherwise y; is said to be
the anchor.

LEMMA 7

Let G := By, and let 7 be a 4-total colouring for the subgraph G2 obtained
by removing exactly one parallel pair from G. If z; is an anchor, then y; and
yis2 are the anchors of their respective equivalent pairs. Otherwise, that
is if yiyy is the anchor, z;—; and z;;1 are the anchors of their respective
equivalent pairs.

Proof: Suppose that z; is an anchor; then 7(z;) = m(yit1Zis1). We first
prove that y;.o is an anchor. By Lemma 6, either 7(yi+2) = m(Zi41 Yita) Or
7(Tis1) = T(Yit2Tit2). Suppose that 7(ziy1) = T(Yi+2Tit2). Since ziy
is incident with yiy1%is1, T(Zis1) # T(Yi+1%i41). Therefore, m(ziyis2),
7(Yi+2), and (z;41Yi2) are different from m(z;) and 7(z;41). We conclude
that there exist only two colours in {m(z;¥i+2), T(¥i+2), T(ZTir1¥is2)}, &
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contradiction since these elements are adjacent to and incident with each
other. If y; is not an anchor, then z;.; is an anchor by Lemma 6. Then,
¥i+1 is an anchor by our previous argument, but this contradicts Lemma, 6
since z; is an anchor. Now, the case in which y;+; is an anchor follows from
T-simmetry. O

THEOREM 8
Let G ;= By, k odd. Then, G is type 2.

Proof: We first prove that G is not type 1. Suppose the contrary and let =
be a 4-total colouring for G. By r-automorphism, we assume that n(zg) =
m(y171). Applying Lemma 7 successively, we have that all vertices z;, y;
with ¢ even are anchors. Therefore, zx—1 and yo are anchors, which implies
that m(zx—1) = 7(yozo) and w(yo) = 7(zx-1y1), contradicting Lemma 6.
We conclude that there is no 4-total colouring for By, with £ odd. Moreover,
Rosenfeld [10] and Vijayaditya [13] proved that x,.(G) < 5 for cubic graphs.
Therefore, x,.(Bx) = 5, a type 2 graph. D

Let By := (X, Yx) and By := (X, Y;) be two near-ladder graphs.
It is easy to check that the glueing operation, defined below, generates
Bk+e = (Xk+z, Yk+g) from Bk and Be.

(i) relabel the vertices of X, U(Y?z \ {¥0}) adding & in each of its indexes,
that is X¢ := {Zk, Tk41,.. ., Trte—1} a0d Yy := {yo, Yk+1, . - -, Yrse—1};

(ii) relabel vertex yo € Y3 with ys;

(iil) let Xpye := Xp U Xy, Yiye := Y UY,, and E(Bite) = (E(Bx)U
E(Be) U Ein) \ Eout, where Ein := {Toyo, YeTk, Y1Tk+e—1, Th—1Yk+1}
and Eout := {ZoYk, Y1Tk—1, Tk Y0, Yk+1Tk+e—1}

Figure 4 shows an example of the glueing operation.

THEOREM 9
Each By, with k even is type 1.

Proof: The proof is by induction. For the basis case we construct 4-total
colourings m4 and mg for B4 and Bg, respectively, shown in Figure 5.

By induction hypothesis, there exists a 4-total colouring for Bx_4, k > 8.
Adjust mx_4 so that zg is the anchor of equivalent pairs zg, y17; and yi,
ToYy2, and so that mk_4(xo) = m4(Z0), Tk—4(Zoyo) = ma(Toyo), Te—a(Toy1) =
74(Zoy1), and me—_4(Toy2) = ma(zoy2). Note that, by Lemma 6, these ad-
justments imply that me—a(y1) = 74(y1) and Tk 4(v1Z8—5) = m4(y173).

Graph B, k even and k > 8, can be obtained by glueing B, and By_s.
A 4-colour assignment 7 for By, can be constructed from 74 and 7,_4 as
follows.
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To 70 7o vo]
Y1 z yl T
To va T4 : iloI
71 - Y5 d>

Figure 4: Glueing of By and Bg. The dashed edges in By and Bg are the
edges of E,y: and the dashed edges of Byo are edges of E;y.

2 2
3 2 3 4 1 2
1193 1T+ 37 1 ¢
3 |2 [a 3 2 |27 j2 (3 |s
o1l 3l2l, o1 43l aln 2]l
4 4 1 3 4
4 4

Figure 5: 4-total colouring of B4 and Bs.

(i) if e is an element of Bj corresponding to an element of B; \ Eout,
i =4,k — 4, then w(e) := m;(e);

(i) colour edges of E;, as follows: m(zoyo) := ma(Zoyo), m(yazs) :=
Ta(Zoyo), m(zays) := T4(y123), and T(Y1Zk-1) := Ta(v123)-

Now, we show that 7 is a total colouring for Bx. By construction of
, each element of By received a colour. Colourings of the two subgraphs
induced by S := {xo,---73,¥1,-.-,¥a} and by V(Bx) \ S are partial total
colourings of By, since the colours of their elements came from 4 and Tg—g4.
Since 74 is a total colouring, 7(zo) # 7(ya) (remember that y4 € V(Bx)
corresponds to vertex yo € V(B4)) and n(y1) # 7(z3). Analogously, since
Tk—q is a total colouring, m(z4) # m(yo) and 7 (ys) # 7(zx-1). By previous
adjustments in mx_4, m(xo) = m(z4) and m(y;) = 7(ys). We conclude that
7(z0) # T(yo), T(ya) # T(za), W(y1) # w(k-1), and 7(z3) # 7(ys).

In order to conclude the proof, we have to analyse the edges of E;,. Let
uv be an edge of E;,,. Without loss of generality, by the glueing operation,
u is a vertex from By, v from By._4 and there exist exactly two edges in
Eoyut, uw; and wpv corresponding to edges of By and Byj._4 that do not
exist in Bg. By the adjustments done in mx_4 we conclude that these three
edges have the same colour and the result follows. ]
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4 k-dimensional cube

In this section we show that k-dimensional cubes are type 1 graphs. A
k-dimensional cube Qk, k > 1, or k-cube for short, is a graph whose set
of vertices is comprised by the ordered &-tuples of 0’s and 1’s, two vertices
being joined if and only if they differ in exactly one coordinate. For a vertex
v of Qi we denote v by (bi1bs...b), where b; € {0,1} and (b1b2...b) is
its ordered k-tuple. It is not difficult to see that the k-cube is bipartite,
k-regular, with 2% vertices and k25~ edges.

It is well known that Qy can be recursively constructed. Let Gy and G,
be two graphs isomorphic to Q. Then, Q4+, can be obtained from Gy and
G in the following way: (i) for each vertex v € V(G;) that corresponds to
vertex (by ... bx) of Qi, denote v by (by ... bg ¢) ((by...bx 0) and (by...bx 1)
are called a corresponding pair); (ii) V(Qk4+1) := V(Go) U V(G;) and
E(Qr+1) := E(Go)UE(G1)UM, where M := {uv : u € V(Gy), v € V(G1)
and u,v is a corresponding pair}.

We show that x.,.(Qx) = A(Qx) + 1, for each k > 3. Note that Q; is
isomorphic to K3 and Q3 is isomorphic to Cs, that are both type 2 graphs.

THEOREM 10
For Qg, k > 3, there exists a (k + 1)-total colouring of Q). such that only
four colours occur in its vertex set.

Proof: We prove the assertion by induction. For the basis case we construct
an explicit 4-total colouring for the 3-cube, shown in Figure 4. We call these
four colours base colours.

4 2 1
3 4
1
1 4 3 2 3
1 4
3
2 1
3 4 2

Figure 6: 4-total colouring of Q3.

We construct 7, a colour assignment for Q. that uses k + 2 colours,
from two previously coloured copies of Q. The following algorithm de-
scribes the construction procedure:

(i) Let Gp and G be two copies of Q. By induction hypothesis there
exists a (k + 1)-total colouring m; for G;, i = 0,1 such that only
four colours occur in its vertex set. Let 1,...,k + 1 be the used
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colours and let 1,...,4 be the base colours. Adjust the colours so
that corresponding pairs have the same colours.

(ii) For Gy, exchange colours 1 «+ 4 and 2 < 3.

(iii) Construct Q+1 from Go and G, by using the previous recursive
procedure.

(iv) Assign colour k + 2 to the edges of perfect matching M that join the
two copies.

We show that 7 is a (k+2)-total colouring of G := Qg+1. Clearly, 7 uses
k + 2 colours and each element of Q41 received a colour. Moreover, the
colouring of each subgraph H; induced by vertices {v : v = (b1 ...bx, 1)},
i = {0,1}, is a partial (k + 1)-total colouring. Note that there do not exist
incident edges ey and e; such that e; € H;. Moreover, the edges of (iv)
received a new colour.

In order to finish the proof we have to show that the ends of edges
coloured in (iv) have different colours. These edges join the correspond-
ing pairs in Ho and H;. Let vp, v; be a corresponding pair, where v; =
(b ...bk, ). From (i), m(vo) = m(v1) and from (ii) 7(v1) # m(vo) and the
result follows. ]
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