Connectivity of Bi-Cayley Graphs
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Abstract : Let G is a finite group and S is a subset (possibly,
contains the identity element) of G, we define the Bi-Cayley graph
X=BC(G,S) to be the bipartite graph with vertices Gx{0,1} and
edges {{(g,0),(sg,1)} : g€G,s€S}. In this paper, we show that if
X=BC(G, S) is connected, then x(X)=4(X).

Key words: Bi-Cayley graph; connectivity; atom

1. Introduction

Let X=(V, E) be a simple connected graph, with V' (X) the set of vertices
and E(X) the set of edges. A vertex disconnecting set of X is a subset U
of V' such that the subgraph X\U induced by V\U is either trivial or not
connected. The connectivity x(X) of a nontrivial connected graph X is the
minimum cardinality of all vertex disconnecting sets of X. If we denote by
4(X) the minimum degree of X, then x(X)<é(X).

We denote by Aut(X) the automorphism group of X. The graph X is
said to be vertez transitive if Aut(X) acts transitively on V(X), and to be
edge transitive if Aut(X) acts transitively on E(X). It is proved that these
two kinds of graphs usually have high connectivity. For instance, connected
vertex transitive graphs have maximum edge connectivity[1], and connected
edge transitive graphs have maximum vertex connectivity|[8].

For a group G, and a subset S of G such that 15¢S and S~!=S,
the Cayley graph C(G,S) is a graph with vertex set G and edge set
{(z,82)|z€G, s€S}. For each element g€G, it is easy to see that the right
translation R(g), defined by R(g)(z)=2g for all z€G, is an automorphism
of C(G,S). All these right translations R(g) form a subgroup R(G) of
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Aut[C(G, S)), which acts transitively on G. Thus, Cayley graphs are ver-
tex transitive, and so the edge connectivity of any connected Cayley graph
attains its regular degree. Therefore, the research on the connectivity of
the Cayley graph is focused on the vertex connectivity. Results on this
subject are referred to [4,7,8].

For studying semisymmetric graphs, which are regular edge transitive
but not vertex transitive, Xu defined the so-called Bi-Cayley graph(2].
For a finite group G and a subset S (possibly, contains the identity el-
ement) of G, the Bi-Cayley graph X=BC(G,S) of G with respect to S
is defined as the bipartite graph with vertex set Gx{0,1} and edge set
{{(9,0), (s9,1)}|9€G, s € S}. Clearly, the translation BR(g), defined by
(z,0)—(zg,0), (z,1)—(zg,1) for any z€G, is an automorphism of X. Since
all these automorphisms form a subgroup BR(G) of Aut(X), which acts
transitively on Gx{0} and Gx{1} respectively, thus Aut(X) has at most
two orbits, and these two orbits are a bipartition of X. Generally, Bi-
Cayley graphs are not definitely vertex transitive[9]. But if $°=S"1g for
some c€Aut(G) and g€G, then BC(G, S) is vertex transitive(9].

So far, the research on the Bi-Cayley graph is primarily focused on its
isomorphisms|[2,9], few results, if any, are known on graphic properties of
Bi-Cayley graphs. In this paper, we study the vertex connectivity of Bi-
Cayley graphs, and we will prove that the vertex connectivity of any con-
nected Bi-Cayley graph is its regular degree.

2. Atom and connectivity
Let X be a (simple and undirected) graph and F a subset of V(G). Set

N(F) = {zeV(X)\F : 3yeF,st. zycE(X)};
C(F)=FUN(F);
R(F)=V(X)\C(F).

If F={z}, then we write N(z) and C(z) instead of N(F) and C(F), re-
spectively. Clearly, for a non-empty subset F' of V(X), N(F) is a vertex
disconnecting set if R(F)#0. A subset FCV(X) is said to be a fragment if
|N(F)|=«(X) and R(F)#0. A fragment of minimum cardinality is called
an atom of X. The notion of atom was introduced by Watkins[4]. On
the cardinality of an atom, Hamidoune and Watkins proved following two
results, respectively.

Theorem 2.1(6] If X=(V, E) is a connected vertex-transitive graph, then
the cardinality of an atom of X is at most &(X).
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Theorem 2.2[4] Let X=(V, E) be a nontrivial connected graph which
is not a complete graph. Then

(i) &(X)=4(X) if and only if every atom of X has cardinality 1;

(i) if &(X) < §(X), then each atom has cardinality at most [(|V] —
£(X))/2] and induces a connected subgraph of X.

An imprimitive block for a group U of permutations on a set T is a
proper, nontrivial subset A of T such that if o € U then either o(4) = A
orc(A)NA=0. A subset A of V(X) is called an imprimitive block for X
if it is an imprimitive block for Aut(X) on V(X).

Theorem 2.3[3] If X=(V,E) is a nontrivial connected graph which is
not a complete graph, then distinct atoms of X are disjoint. Thus if
k(X) < 8(X), the atoms of X are imprimitive blocks of X.

Theorem 2.4[3] Let X=(V, E) be a nontrivial connected graph. If W is
a minimum vertex disconnecting set and A an atom of X, then ANW = 0,
or ACW.

3.Connectivity of Bi-Cayley Graphs

Before proceeding, we cite a result proved by Mader.

Theorem 3.1[5] If X=(V, E) is a connected vertex transitive graph which
is K4~ free, then x(X)=48(X).

Thus, for a connected vertex transitive Bi-Cayley graph, we have the
following result:

Corollary 3.2 If X=BC(G,S) is a connected vertex transitive Bi-Cayley
graph, then x(X)=6(X).

Proof. By Theorem 3.1, the result is obvious since X is a connected
vertex transitive bipartite graph which is Ky~ free. O

In what follows we always assume that X=BC(G, S) is a connected Bi-
Cayley graph, and let X; = {(=z,%)|z € G},i =0, 1.

Lemma 3.3 If x(X) < §(X), then Aut(X) has exactly two orbits Xp, X;.

Proof. By the definition of Bi-Cayley graph, BR(G) acts transitively on
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(ii) |4] < &(X).

Proof. (i) By Lemma 3.3, Aut(X) has exactly two orbits Xp, X;. By
Lemma 3.4, the induced subgraph Y=X[A4] is a nontrivial connected sub-
graph of X, thus at least one vertex of X;(i = 0, 1), respectively, lies in an
atom. By the transitivity of X;, every vertex of X lies in an atom.

(i) Let F=N(A). Since A=Ag U A, and A;(i = 0,1) is nontrivial,
F; = FnX;(i = 0,1) is not empty respectively. For any (z,i) € Fi(i =0,1),
by (i), (z,%) lies in an atom A’ of X. By Theorem 2.4, A'CF, then
|A| = |A'| <|F| = s(X). O

Theorem 3.7 If X=BC(G,S) is connected , then x(X) = §(X).

Proof. Suppose to the contrary that x(X) < §(X). By Theorem 2.3,
distinct atoms are disjoint. Thus, by Lemma 3.6, V(X) is a disjoint
union of distinct atoms. Let A be an atom of X, then there exist o; €
Aut(X)(@ =1,---,k), such that

By Lemma 3.4, the induced subgraph Y=X|[A] is a nontrivial connected
subgraph of X, and A;=A N X;(i = 0,1) is nontrivial. By Lemma 3.3,
Aut(X) has exactly two orbits Xo, X1, thus for any 1 < i, < k and
i # 7, gi(Ae) N 0;(Ao) = 0 and 0i(Ao),0;(46) C Xo. So, we have Xp =
Ufz1 9i(4o), and X; = U, 0:(41). Since |Xo| = |X;], we have |4o| =
|A1] and |A[|X:](i = 0,1).

If G is a prime-order group, then we will deduce a contradiction. Other-
wise, by Lemma 3.5, Aut(Y’) acts transitively on 4; = ANX;(i =0, 1), then
Y isregular. Let d = §(Y') and F = N(A4), since A=A¢UA4, and A;(i = 0, 1)
are nontrivial, F; = F N X;(i = 0,1) are not empty. Since every vertex of
A; has §(X) — d neighbours in F, we have |F| = x(X) > 2(6(X) — d). By
k(X) < §(X), we have d > §(X)/2, and |4| > 2d > §(X) > &(X). By
Lemma 3.6, we deduce a contradiction. O
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