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Abstract

A graph G is called uniquely k-list colorable, or UkLC for short, if
it admits a k-list assignment L such that G has a unique L-coloring.
A graph G is said to have the property M(k) (M for Marshal Hall)
if and only if it is not UkLC. In 1999, M. Ghebleh and E.S. Mah-
moodian characterized the U3SLC graphs for complete multipartite
graphs except for nine graphs. At the same time, for the nine ex-
empted graphs, they give an open problem: verify the property M(3)
for the graphs K> 2,r, for r = 4,5,...,8, K23.4, K1.4,4, K1.4,5, and
Ki.s,4. Until now, except for Ki.s,4, the other eight graphs have
been showed to have the property M(3) by W. He et al.. In this
paper, we show that graph Ki.5,4 has the property M(3), and as
consequences, Ki.4,4, K2,2,4 have the property M(3). Therefore the
U3LC complete multipartite graphs are completely characterized.
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1 Introduction

List colorings are generalizations of usual colorings that recently attracted
considerable attention. Originally, the idea of list colorings of graphs is due
independently to V.G. Vizing [13] and to P. Erdés, A.L. Rubin, and H.
Taylar [3]. For a survey on list coloring we refer the interested reader to
D.R. Woodall [14] and Ch. Eslahchi, M. Ghebleh, and H. Hajiabolhassan
[4]. Here we mention some definitions and results about list colorings which
are referred throughout the paper.

We consider undirected, finite, simple graphs. For the necessary defini-
tions and notation we refer the reader to standard texts, such as [1].

For each vertex v in a graph G = (V, E), let L(v) denote a list of colors
available for v. L = {L(u)|u € V(G)} is said to be a list assignment of G.
If |L(v)| = k for all v € V(G), L is called k- list assignment of G. A list
coloring from a given collection of lists is a proper coloring c such that c(v)
is chosen from L(v). We will refer to such a coloring as an L-coloring.

The concept of unique list coloring was introduced by J.H. Dinitz and
W.J. Martin [2] and independently by E.S. Mahmoodian and M. Mahdian
[11], which can be used to study defining sets of k—coloring [12] and critical
sets in Latin squares [9]. Let G be a graph with n vertices and suppose that
for each vertex v in G, there exists a list of k colors L(v), such that there
exists a unique L-coloring for G, then G is called uniquely k-list colorable
graph or a UKLC graph for short. For a graph G, it is said to have the
property M(k) (M for Marshal Hall) if and only if it is not uniquely k-list
colorable. So G has the property M(k) if for any collection of lists assigned
to its vertices, each of size k, either there is no list coloring for G or there
exist two list colorings.

M. Mahdian and E.S. Mahmoodian characterized uniquely 2-list col-
orable graphs [10]. They showed that

Theorem A ([10]). A connected graph has the property M(2) if and
only if every block of G is either a cycle, a complete graph, or a complete
bipartite graph.

It seems that characterizing UkLC graphs for any k is not easy. Even
the U3LC graphs seem to be difficulty to characterize. In {6] M. Ghebleh
and E. S. Mahmoodian showed that there are some complete tripartite
graphs which have the property M(3) and there are some complete tripar-
tite graphs which are UkLC for any k (for example, the graph K33 has
the property M(3), the graph K333 is a USLC graph). It is very signi-
ficative that M. Ghebleh and E. S. Mahmoodian have given some results
which are helpful for characterizing UkLC graphs [6]. At the same time,
they characterized USLC graphs for complete multipartite graphs except
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for finitely many of them. They showed that

Theorem B ([6]). If G is a complete multipartite graph which has an
induced UkLC subgraph, then G is UKLC.

Theorem C ([6]). The graphs K333, Koaua, Ko3s, Ko29, Ki222,
K1,1,2,3, K1,1,1,2,2, Kiea6, K1s5,5, and Ki.64 are USLC.

Where K., means a complete r-partite graph in which each part is of
size s, and notations such as K, are used similarly.

Theorem D ([6]). Let G be a complete multipartite graph that is not
Kooy, forr=4,5,...,8, K234, K144, K1u4,5, o7 K1454 then G is USLC
if and only if it has one of the graphs in Theorem C as an induced subgraph.

For perfecting the Theorem D, it is clear that the leaving work is to
determine whether the nine graphs above are USLC or not. So M. Ghebleh
and E.S. Mahmoodian give the open problem as follows.

Problem ([6]). Verify the property M(3) for the graphs exempted in The-
orem D, i.e. K2, form=4,5,...,8, K234, K144, Ki.a5, and Kius 4.

Last year, except for Kj.s54, the other eight graphs were showed to
have the property M(3)(namely, they are not USLC) by W. He et al..
They showed the following.

Theorem E ([7]). Graph Kj 3, has the property M(3), wherer = 4,5,6,7,
8.

Theorem F ([8]. Graphs Ki.4,5 and Ky,4,4 have the property M(3).
Theorem G ([15]). Graph K34 has the property M(3).

The fact is that it is difficult to verify the property M (3) for the nine
exempted graphs in Theorem D with some common techniques(the proof
of Theorem F takes eight pages, and the proof of Theorem G takes twenty
pages). In this paper we will show that Ki.54 has the property M(3) (as
consequences, K1.q,5 and K> 2 4 have the property M(3)):

Theorem 1.1. K54 has the property M(3).

Combine Theorem Theorem E, Theorem F, Theorem G and Theorem
1.1 together, we can give an improved version of Theorem D in the following.
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Theorem 1.2. Let G be a complete multipartite graph, then G is USLC if
and only if it has one of the graphs in Theorem C as an induced subgraph.

Thus, the USLC complete multipartite graphs are completely charac-
terized.

We will give the proof of Theorem 1.1 in section 3. In section 2, we
state some propositions which are helpful in proving our main results. In
section 4, we give some propositions of complete multipartite graphs whose
m-number are equal to 4, which are useful in characterization of U4LC
complete multipartite graphs.

2 Some Propositions

For K).s4, denote the six parts by X; = {v;}, for i = 1,2,3,4,5, and
Xe = {‘Us,‘v7,’l)3,‘09}. Let

C('Ui):Cil, fO’I‘ i=1,2,-'-,9 (*)

be a 3-list coloring with L(v;) = {ci1,¢i2,ci3} assigned to the vertices of
Ki.54- And denote {cg1,¢71,¢81,c01} = S. Under the above assumption,
the following propositions are preparations to prove our main theorem in
section 3.

Proposition 2.1. For Kj.54, suppose c is a unique 3-list coloring given
by (*), then
(I)C'll #cjl: 151,]S5,i7£’J;C;19£CJ], 151S576Sj59'
(2) All vertices in part X¢ take at least two colors in c, i.e. |S| 2> 2.
(8) All colors in {Jyek,., , L(v) are used in c.

Proof. (1) It is obvious.

(2) By contradiction. If |S| = 1, we can remove the color which appears
in S, from the lists L(v;), for i = 1,2,3,4,5, resulting in the new lists
L'(v;) of size at least 2, for i = 1,2,3,4,5. By the property M(2) of
Ki.s = Ks (Theorem A) we can obtain another L-coloring ¢’ for K.5
which is extendible to vertices of Kj.5,4. This is a contradiction to ¢ being
a unique 3-list coloring.

(3) Otherwise, if there is some unused color in the list of some vertex
we can obtain a new L—coloring of Kj.54 by simply putting that unused
color on that vertex. g

Definition 2.1. For Ki.sa, let c be a 3-list coloring given by (x). If
there exist v;,,Viy,+-+,vi, € {v1,V2,V3,v4,v5}, such that ci,;y € L(vy,),
Ciz1 € L(‘Uiz), <oy Ciyl € L(‘Ui(k_l)), ¢i;1 € L(v.-,‘), 2 < k <5, then we
say ¢ having a coloring rotation of size k in {v),v2,v3,v4,v5}, denoted
CR(cillycigly"',cikl)‘
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Proposition 2.2. For Ki,s,4, suppose ¢ is a unique 3-list coloring given
by (*), then there is no coloring rotation in {vy, vz, vs,vs,vs}.

Proof. By contradiction. Assume that there exists a coloring rotation
CR(cillyci217"" cikl) in {U],v2,03,1)4,05}. Let C,('Ui,) = Ci,1, c’(v‘iz) =
Cizly *** cl(vi(k_l)) = Ci.1, C’('Uik) = Ci;1, C’('UJ) = cjlyj % ilyi2,"',iky
then ¢’ is a different L-coloring for K1.5,4- (|

Proposition 2.3. For Ki,5,4, suppose c is a unique 3-list coloring given by
(x), then ci1 & {cj2,¢j3}, for 6 <4,5 <9, and cix € {11, c21, 31, 41,651},
fori=26,7,8,9, and k = 2,3.

Proof. If i = j, it is obvious. If i # j, to the contrary, there exist some
io, jo, where 6 < i, jo < 9 and g # jo, such that c;j1 € {cjo2,Cjo3}, then
Cip1 # Cjq1. We can obtain a different L-coloring ¢’ by putting ¢’ (Vj0) = Cig1,
and c'(v) = c(v), for k # jo,k = 1,2,---,9. Since ¢;; ¢ {cja,cj3}, for
6 <1i,7 <9, and all colors in UuE Kiesa L(v) are used in ¢ by Proposition
2.1(8), it is clear that ¢; € {c11,¢21,¢31,¢41,¢51}, for i = 6,7,8,9, and
k=23. a

Proposition 2.4. For K54, suppose ¢ is a unique 3-list coloring given
by (), then there exists ig € {1,2,3,4,5}, such that {cig2, Cig3} € S.

Proof. Otherwise, for any i € {1,2,3,4, 5}, there is at most one of ¢;» and
¢i3 in S. Noting that K,5 = K5, we can remove the color which appears
in S, from the lists L(v;) of parts X, resulting in the new lists L’(v;)
of size at least 2, for i = 1,2,3,4,5. By the property M (2) of complete
graphs(Theorem A), we can obtain another L-coloring ¢’ for K;.5 which is
extendible to vertices of K.5,4. This is a contradiction to ¢ being a unique
3-list coloring. O

Proposition 2.5. For K),.54, suppose ¢ is a unique 3-list coloring given
by (*), then there are ezactly two colors in S, and two vertices of each color
in Xg.

Proof. By Proposition 2.1(2), |S| = 2, 3 or 4. If the statement of Proposi-
tion 2.5 is not true, depending on the value of | S| we consider three cases.
For each case we will show that there exists a different L-coloring of K 1x5,4-
That is a contradiction to ¢ being a unique 3-list coloring.

Case 1. |S| = 2, but the last statement of the Proposition 2.5 is not
true.

Without loss of generality, say cg1 = 6,¢717 = g1 = ¢g; = 7. Noting
that H = K.s.4[v1,v2,--,v6] = Kg is a induced subgraph of Ki.5,4, we
can remove the color 7 from the lists L(v;), resulting in the lists L'(v;) of
size at least 2, for ¢ = 1,2,3,4,5,6. By the property M(2) of H(Theorem
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A) we can obtain another L-coloring ¢’ for H which is extendible to Kj.s,4-

Case 2. |S|=3.

Without loss of generality, say cg; = 6,¢71 = 7,¢81 = co1 = 8. Add a
new edge between vg and v7, the resulting graph is denoted G. Noting that
H = G[v1,v2,- -+ ,v7] = K7 is an induced subgraph of G, we can remove the
color 8 from the lists of H. Similarly to the proof of case 1, by the property
M (2) of H we can obtain another L-coloring ¢’ for H which is extendible
to G, and which is a legal L-coloring for K.5.4.

Case 3. |S|=4.

Without loss of generality, say cg = 6,c71 = 7,c81 = 8,¢01 = 9. Add
one edge between any pair of vertices in {vs, v7,vs, v}, the resulting graph
is Ko. By the property M (2) of Ko(Ky has property M(3) naturally) we can
obtain another L-coloring ¢’ for Ko which is a legal L-coloring for K.5,4-

Summarize the three cases above, the Proposition 2.5 holds. O

For clarity, without loss of generality we write ¢;y = 1, for i = 1,2,3,4,5,
by Proposition 2.1(1), write S = {6, 7} by Proposition 2.5.

Proposition 2.6. For Ki.s.4, suppose c is a unique 3-list coloring given
by (x), then there must be two colors = and y such that they can be used
to L-recolor the vertices in Xg, where either z € {1,2,3,4,5}, y € {6,7}
respectively or {z,y} C {1,2,3,4,5} (not considering parts X;, for i =
1,2,3,4,5).

Cé1 C71 Cg1 Co
Proof. Consider the 3 x 4 array cg2 Cr2 Cg2 Co2 |. By Proposi-

C63 C73 Cg83 Co3
tion 2.5, without loss of generality, let cgy = c;1 = 6,c81 = co1 = 7.

By Proposition 2.3, c;ix € {1,2,3,4,5}, for i = 6,7,8,9 and k£ = 2,3.
If {ce2,ce3} N {cra,cra} # @ or {cs2,cea} [ {co2,co3} # P, then it is
clear that there exist z in {1,2,3,4,5} and y € {6, 7} satisfying the de-
sired conditions. Otherwise, |{ce2, C63,Cr2,cr3}| = |{c82,C83,Co2,Co3}| = 4
and |{ce2, Ce3, 72, €73} {C82, C83, Co2, Co3}| = 3. Without loss of general-
ity, {ce2,Ce3,Cr2} = {C82,C83,c02} = {1,2,3}. It is clear that {cs2,ce3}
MN{cs2,cea} # @, say 1 € {ce2,c63} N{cs2,Cs3}, then z = 2 and y = 3
satisfy the desired conditions. [m]

3 Proof of Theorem 1.1

Now we can give the proof of Theorem 1.1.
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Proof. By contradiction. Suppose that ¢ is a unique 3-list coloring of
K1,5,4 with L(’Ui) = {c,-l,cig,c,-a} and C(’Ui) =c¢p, fori=1,2,-.-,9. With-
out loss of generality, let c;; = i, for i = 1,2,3,4,5, and let S = {6,7} by
Proposition 2.5. According to Proposition 2.6, we consider two cases and
in each case obtain a different L-coloring ¢’ of Kj.54 from the given lists.
That is a contradiction to c being a unique 3-list coloring of K.s 4.

Case 1. There are two colors in {1,2,3,4,5} can be used to L-recolor
the vertices in Xg.

Without loss of generality, let colors 1 and 2 can be used to L-recolor the
vertices of part Xe. Firstly, we let ¢/(v;) = l;, where l; € {1,2} ) L(v;), for
i=6,7,8,9. Secondly, by Proposition 2.4 and Proposition 2.5, there exists
io € {1,2,3,4,5}, such that {ciy2,ci;3} = {6,7}. In order to give ¢(v;) for
1= 1,2,3,4,5, according to the value of iy, we consider two subcases as
follows.

Subcase 1.1. ip = 1 or 2, say ip = 1, that is L(v1) = {L,6,7}.

If {6, 7} ﬂL(‘Uz) 75 2, say 7 € L('Ug), let cl(v2) =1, C,(vl) =6, cl(vi) =1,
fori = 3,4,5. Then ¢ is a different L-coloring for K1.5,4. If {6,7} (| L(vs) =
@, then {3,4,5} () L(vz) # ®, say 3 € L(vz). Consider L(v3), if {6,7}N
L(v3) # ®, say 7 € L(v3). Let ¢(v3) = 7,¢/(v2) = 3,c/(v1) = 6, ¢/(v;) =1,
for i = 4,5, then ¢’ is a different L-coloring for Ky.5,4. If {6,7} () L(vs) = &,
as 2 ¢ L(vs) by Proposition 2.2(Otherwise there exists a coloring rota-
tion CR(2,3)), so {4,5} N L(vs) # ®, say 4 € L(v3). Consider L(vy), if
{6,7} N L(vs) # @, say 7 € L(vs). Let c/(vg) = 7,¢(v3) = 4,¢(v2) =
3,c'(v1) = 6, c/(vs) = 5, then ¢ is a different L-coloring for Kj.s4.
If {6,7}(L(vs) = ®, as {2,3}NL(va) = ® by Proposition 2.2(Other-
wise there exists a coloring rotation CR(2,3,4) or CR(3,4)), so L(vs) =
{4,1,5}. Consider L(vs), as {2,3,4} () L(vs) = ® by Proposition 2.2, so
{6, 7}0[/('05) # P, say 7 € L(vs). Let c’(v5) = 7,6'(1)4) = 5,(2'(’03) =
4,c'(v2) =3, ¢'(v1) = 6, then ¢’ is a different L-coloring for K.s 4.

Subcase 1.2. ip = 3,4 or 5, say ip = 5, that is L(vs) = {5,6,7}.

Subcase 1.2.1. {5,6,7} C (L(v1) U L(v2)).

There must be two colors in {5,6,7}, such that one appears in L(v,)
and the other appears in L(v;), say 5 € L(v1) and 6 € L(v;). Let
c(v1) = 5,d(v2) = 6,c'(vs) = 7, ¢'(v;) = 4, for i = 3,4, then ¢ is a
different L-coloring for Ki.s 4.

Subcase 1.2.2. |{5,6, 7} ((L(v1) U L(v2))} = 2.

Without loss of generality, assume {5,6,7} ((L(v1) U L(v2)) = {5,6}.
If one of 5 and 6 appears in L(v;) and the other appears in L(v;), say
5 € L(v,) and 6 € L(v;), we can obtain a different L-coloring of K- 1x5,4 SimM-
ilarly to subcasel.2.1. Otherwise, {5,6} C L(v) and {5,6,7} () L(v2) = ®,
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or {5,6} C L(vz) and {5,6,7}(\L(v1) = ®, say {5,6} C L(v1) and
{5,6,7} N L(vz) = ®, that is L(v1) = {1,5,6}. Since {5,6,7} () L(v2) = @,
then {3,4} (N L(v2) # @, say 3 € L(vz). Consider L(vs), if {5,6,7} (1 L(v3)
# ®, write a € {5,6,7} () L(vs). Let ¢'(v3) = a, ¢'(v2) = 3, (1) = b,
d(vs) = ¢, where b € {5,6}\{a}, {c} = {5,6,7}\{a,b}, ¢'(v4) = 4, then
is a different L-coloring for Kj.s.4. If {5,6,7} (N L(vs) = ®, as 2 ¢ L(v3) by
Proposition 2.2, so L(v3) = {3,1,4}. Consider L(v4), as {2,3}( L(vs) = @
by Proposition 2.2, so {5,6,7} " L(vq) # ®, write a € {5,6,7}( L(va),
let ¢(vs) = a, ¢ (v3) = 4, d(v2) = 3, d(v1) = b, d(vs) = c, where
b e {5,6}\{a}, {c} = {5,6,7}\{a,b}, then ¢ is a different L-coloring for
K1¢5,4-

Subcase 1.2.3. |{5,6, 7} N(L(»)UL(v2))| = L.

Without loss of generality, assume 5 € (L(v1) U L(v2)), and 5 € L(v).
Since {6,7}() L(v1) = ®, so {2,3,4}(L(v1) # @, say 2 € L(v1), that
is L(v1) = {1,2,5}. Consider L(vz), as {6,7}(1L(v2) = @, and 1 ¢
L(vs) by Proposition 2.2, so {3,4}(L(vz) # ®, say 3 € L(vz). Con-
sider L(v3), if {6,7} ) L(vs) # ®, say 6 € L(v3). Let ¢'(v1) =5, ¢/(v2) = 3,
d(v3) = 6, c'(vs) = 7, ¢/(vg) = 4, then ¢ is a different L-coloring for
Kiusa. If {6,7}NL(v3) = @, as {1,2}() L(v3) = & by Proposition 2.2,
so L(vs) = {3,4,5}. Consider L(vs), as {1,2,3} ) L(vs) = ® by Proposi-
tion 2.2, so {6,7} L(v4) # ®, say 6 € L(vs). Let '(v1) = 5, ¢ (v2) = 3,
¢ (v3) = 4, ¢(v4) = 6, ¢/ (vs) = 7, then ¢ is a different L-coloring for K1.s,4-

Subcase 1.2.4. {5,6,7}N(L(v1)UL(v2)) = &, that is {c12,c13} C
{2,3,4} and {022,023} Cc {1,3, 4}.

If 2 € L(v), or 1 € L(wz), without loss of generality, say 2 € L(v1) and
L(v;) = {1,2,3}. Consider L(v2), as {5,6,7} (N L(v2) = ®, and 1 ¢ L(v2)
by Proposition 2.2, so L(vz) = {2,3,4}. Consider L(v3), as {1,2} (| L(v3) =
® by Proposition 2.2, so {5,6,7}(L(v3) # ®, say 5 € L(v3). Consider
L(vy), if {6,7}(L(vs) # &, say 6 € L(vy). Let ¢'(v1) = 3, d(v2) = 4,
d(v3) = 5, c(vq) = 6, ¢/(vs) = 7, then ¢ is a different L-coloring for
Kiusa. If {6,7}L(va) = ®, as {1,2} (" L(v4) = ® by Proposition 2.2,
so L(vs) = {4,3,5}. Consider L(v3) again, as {1,2,4}()L(v3) = @ by
Proposition 2.2, so {6,7}(L(vs) # ®, say 6 € L(v3). Let c/(v1) = 3,
d(va) = 4, d(v3) = 6, '(va) = 5, d(vs) = 7, then ¢’ is a different L-
coloring for K1.5.4.

If 2 ¢ L(v;) and 1 ¢ L(vz), then L(v;) = {1,3,4} and L(v2) =
{2,3,4}. Consider L(v3), as {1,2}(L(vs) = @ by Proposition 2.2, so
{5,6,7} N L(v3) # ®, say 5 € L(v3). Consider L(vs), if {6,7} N L(va) # @,
say 6 € L(vs). Let ¢'(v1) = 3, ¢'(v2) =4, ¢ (v3) =5, ¢'(va) = 6, ' (v5) =7,
then ¢ is a different L-coloring for Ki.s54. If {6,7}(L(vs) = @, as
{1,2} N L(v4) = ® by Proposition 2.2, so L(v4) = {4,3,5}. Consider L(vs)
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again, as {1,2,4}( L(vs) = ® by Proposition 2.2, so {6, 7}N L(v3) # @,
say 6 € L(vs). Let ¢'(v1) = 3, ¢/(v2) =4, d/(v3) =6, ¢/ (va) = 5, ¢/(vs) =7,
then ¢ is a different L-coloring for K 1%5,4-

Case 2. There are one color in {1,2,3,4,5} and one color in {6,7} can
be used to L-recolor the vertices in Xg.

Without loss of generality, we suppose the colors 1 and 7 can be used
to L-recolor the vertices of part X¢. Firstly, let ¢/(v;) = l;, where I; €
{1, 7} L(v;), for i = 6,7,8,9. Secondly, by Proposition 2.4 and Proposi-
tion 2.5, there exists i € {1,2,3,4,5}, such that {cij2,¢is3} = {6,7}. In
order to give ¢'(v;), for i = 1,2,3,4,5, according to the value of 7o, we also
consider two subcases as follows.

7

Subcase 2.1. 49 = 1, that is L(v,) = {1,6,7}.
2,3,4,5, then ¢’ is a different L-

Let d(v1) = 6, d(v;) = 14, for i =
coloring for Kj.s,4. ‘

Subcase 2.2. iy € {2,3,4,5}, say ip = 5, that is L(vs) = {5, 6, 7}.

If {5,6}(VL(v1) # ®, say 5 € L(v1). Let d(v;) = 5, d(vs) = 6,
d(v;) =i, for i = 2,3,4, then ¢’ is a different L-coloring for Kisa. If
{5,6} N L(v1) = ®, then {2,3,4}NL(v1) # ®, say 2 € L(v,). Consider
L(vz), if {5,6} N L(vz) # ®, say 5 € L(va). Let ¢'(v1) = 2, c/(v3) =
5, ¢(vs) = 6, ¢(v;) = i, for i = 3,4, then ¢’ is a different L-coloring
for Kius,4. If {5,6}L(v2) = ®, as 1 ¢ L(vp) by Proposition 2.2, so
{3,4} N L(v2) # @, say 3 € L(vo). Consider L(v3), if {5,6} " L(vs) # &,
say 5 € L(v3). Let d(v1) = 2, d(w) = 3, d(va) = 5, (vs5) = 6,
c'(v4) = 4, then ¢’ is a different L-coloring for K1.s 4. If {5,6} N L(v3) = &,
as {1,2} L(vs) = ® by Proposition 2.2, so L(v3) = {3,4,7}. Consider
L(vy), as {1,2,3} (N L(vs) = ® by Proposition 2.2, so {5,6} ) L(vs) # ®,
say 5 € L(vq). Let c’(vl) =2, C’(’Dz) =3, C’(‘Ua) =4, C’(‘U4) =5, Cl(’l)s) =6,
then ¢’ is a different L-coloring for K.5,4.

Combine all cases above, Theorem 1.1 holds. a

From Theorem 1.1 and the Lemma given in [5], we give two corollaries
in the following, which have been obtained by Wenjie He et al.[7, 8].

Lemma 3.1 ([5]). If G is a complete tripartite USLC graph, then all ver-
tices in each part can not take the same color in any unique 3-list coloring
of G.

Corollary 3.1. Kj.q4,4 has the property M(3).

Proof. By contradiction. It is clear that Ki.q 4 is a induced subgraph of
Ki.5,4. If K144,4 is USLC, then Ki,54 is USLC by Theorem B. This is a
contradiction to the Theorem 1.1. O
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Corollary 3.2. K224 has the property M(3).

Proof. Let the three parts be X; = {v1,v2},X2 = {v3,va} and X3 =
{vs,ve,v7,vs}. By contradiction. Suppose there are assigned color lists,
each of size 3, to the vertices in K22 4 and c is a unique 3-list coloring from
these lists. By Lemma 3.1, c(v1), c(v2), c(v3), c(va) are pairwise different.
Add new edges between any two vertices in parts X; and Xp, the resulting
graph is a Kj.44, and c is a proper L-coloring of K1.4,4. By corollary 3.1,
for the given lists, there exists a different L-coloring c of Ki.4,4 whichis a
legal coloring for K39 4. Hence K32 4 has the property M(3). a
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