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Abstract

In this article, we study the generalized Bernoulli and Euler polyno-
mials, and obtain relationships between them, based upon the technique
of matrix representation.
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1. Introduction

In many contexts, matrix representation of a particular counting se-
quence is considered, and such a representation provides a powerful com-
putational tool for deriving identities and explicit formulas related to the
sequence, see, for example (3, 7}.

Recently, Cheon [2] rederived several known properties and relationships
involving the classical Bernoulli polynomials B,,(z) and the classical Euler
polynomials E,(z), by making use of some fairly standard techniques based
upon series rearrangement as well as matrix representation. The main
consequence obtained in [2] is the following equation:
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Srivastava and Pintér (8] followed Cheon’s work [2] and showed that
the main relationship (1) proven in [2] is essentially the same as some
results known before (see [8], p.376, for details). Moreover, they studied the
generalized Bernoulli polynomials B("’)(:z:) as well as the generalized Euler
polynomials E® (z), and established some relationships between them.

The object of the present sequel to their work is to show some relation-
ships between the generalized Bernoulli and Euler polynomials with matrix
representation.

This paper will be organized as follows: the Bernoulli and Euler poly-
nomials will be introduced briefly, and the corresponding matrix equations
will be constructed in Section 2. And, in Section 3, we will establish two re-
lationships between the generalized Bernoulli and Euler polynomials, which
have probably not been realized before. These two relationships are
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We will also show that some results presented before are just the special
cases of the above equations.

2. Matrix equations of the generalized Bernoulli and Euler poly-
nomials

Let Ng = {0,1,2,---} and N = {1,2,3,---}. The classical Bernoulli
polynomials B,(z) and the classical Euler polynomials Ey(z) are defined
by the following exponential generating functions:
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And we know that there are explicit formulas for B,(2) and E,(z), respec-
tively,
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where By, := By (0) is the Bernoulli number for each ¥ € Ny . Besides,
Bi(z) and E,(z) satisfy the following equations:

> ("B =m0 me), @
k=0
> (Z) Ei(z) + En(z) = 22", (neN). (5)
k=0

For a real or complex parameter «, the generalized Bernoulli polynomi-

als B () and the generalized Euler polynomials E,(,“)(z), each of degree
n in z as well as in o, are defined by the following generating functions:

n
=Y BO@L, [ <omio =1, (6)
n=0 n:
[s ]
a, ol _ {a) a._
Gapre = LB @G, < 12=1. 7
n=0
It is obvious that
B (z) = Bu(z), EM(2)=En(z), (neNy), (8)
B®(z) = E®(z) =2", (neN). (9)

Besides, B(a)(a,) and E(a)(a,) have the following properties (cf., [8], p.378):

B{*~ ”()-MZ("“)B‘“’(z), (neMo),  (10)

Br-Ve) = 1B+ 30 ()l et

k=0

We now construct the corresponding matrix representations of (10) and
(11).

Consider the case of «, 8 € Ny and let B(®)(z), E®)(z) and X (z) be
the (n + 1) x 1 matrices defined by

= 1
B* EP(g z

B(a)(.'l)) - 1 (2}) , E(B)(x) = 1 ( ) , .X(:C) — i ,
B (z) EP)(z) z"
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and let Pp41, Qny1 be the (n+1) x (n+1) lower triangular matrices defined
by

1) ifi> g, 1(.8), ifix>jg,
Prilis ={ (’61,) e{se, [@rralis ={ ‘(:'0,1) else.

Then (10) and (11) can be expressed as
1 -~
QuinB@(2) = B V(a), = (Puy1 +Int)) B(2) = E@V(2), (12)
where I,,4 is the identity matrix of order n + 1.
Since o € Ny, then

B (z) = Qui1 B N(2) = (Qny1 !B (2) = - -
= (Qns171)*BO(2) = (Qn11%) ' X (2), (13)
Qn1®B@(z) = X(z). (14)

Analogously, for the matrix E®)(z), we have
EB)(2) = 28[(Poyr + Int1)P) 1 X (2), (15)
1
25 (Pat1 + Inta YE® (z) = X(z). (16)

By setting & = 1,8 = 1 in (13) and (15), we obtain the matrix equations
of the classical Bernoulli and Euler polynomials, respectively:

B(z) = Qn+17'X(2), E@®)=2(Poy1+ Iny1) ' X(2). (17)

In view of (2) and (17), we have

i1 o
[@n+17Mi5 = (;_I)Bi-ja i>7.

Moreover, since ([1], p.805, Entry(23.1.20); [6], p.29)

2(1 - 2n+1)

En(0) = n+1

Bn+l: ne N:

then from (3), we have

Ei1(z)= Z (; : i) E,'_j(()).’l:j_l .

Jj=1
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With(17), we immediately deduce that
- 1/i-1 c o
[(Pasr + Ing1)')ij = 5@ _ I)Ei—j(O) , 127.

The matrix equations above will lead us to the relationships between
the generalized Bernoulli and Euler polynomials.

3. Relationships between the generalized Bernoulli and Euler
polynomials

Theorem 1. The following relationship

B Z( )[ZZ() (" '“)B,‘f"k (OIES ()

k=0 =0 m=0

(0€C,peENy, n€EN) (18)

holds between the generalized Bernoulli and Euler polynomials .
Proof. We now determine the (i, j)-entry of
ay—1 1 B8
Snt1:= (Qnt1%) (§(Pn+l + In1))

1 “1ya
= 2—,3(Qn+1 N (Poga + Ing1)?, (19)

for integers i, 7 with i > j, where @, 8 € Ny.
With induction, we can show that

(@)l = ((21) B0, iz, (20)

Jj-1 m

m=1

[(p,,+1+zn+1)ﬂ}.~j=(".“1) > (")m‘-wun“)u, i>j. (21)

Then (19), (20) and (21) will deduce that

[Sn.+l]ij = 2%(; : i) g ( ) .(:';_1(0) Z—l ( ) (;' ) (0)(0)

Since (19) implies that

1
(5(-Pn+l + In+1))ﬁ = Qn-}-lasﬂ+1 3
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then we have B®(z) = Sp+1E¥) (z) from (14) and (16), and we finally
gain our ends with some computation:

n+1 n
B (2) =Y Sns1, ;B2 (@) = Y Sur1, k1 B (2)
i=1 k=0
-EEH(( 0L (e

k=0 =0

=1 (@ (8
+ 25 (3) B 0Ed @

AL E Qe

k=0 {=0 m=0

m=1

We have just proved that for a,3 € Ny, (18) holds. Since for given
B € Ny, both sides of (18) are polynomials in «, it follows that for arbitrary
a € C, (18) still holds.

Remark 1. By setting 8 = 1 in Theorem 1, we obtain the following special
case:

B{(2) =Z( )IB“" r BT B2,
k=0

which yields an equation obtained in [8] (see (8], p.379, equation (35)),
where B,(f') is the generalized Bernoulli number which satisfies B,(f) =
B{:") (0). Further special cases of (18) whena =0,=1anda=1,=1
give us (5) and (1), respectively. Besides, by setting # = 0 in (18), we
obtain the equation

n
BP)() =), (k) Byt
k=0

Alternatively, the assertion (18) of Theorem 1 leads us to the following
(presumably new) relationships when @ =0 and a = 1:

< 33 (S (0

X
m=0
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402



Finally, we will show that the generalized Euler polynomials can be
expressed by the generalized Bernoulli polynomials too.

Theorem 2. The following relationship

-m{B\,. I+
By n =~ k) Zp=e(-1)° () B9 08P )
LX_:O( )[Z( e R )
(aEC,ﬂGNo,HGNo) (22)

holds between the generalized Euler and Bernoulli polynomials .

Proof. It is analogous to Theorem 1. Let

Tov1 2 = 2%((Pot1 + In41)%] 7' Quia?
= 2%[(Pat1 + Lnt1) ") Qusr® . (23)
The (3, j)-entry of [(Puy1 + Ingyt) 1) is %; z,:i)E,gf;.(O) for integers i
and j with i > 7. And, if we notice that ([5], p.2, equation(1.13)):

Z( 1) () =0, 0<j<n,
k=0

it will be not complex to prove with induction that

a___zm_,( DA ()mi e -1y
(Qnn’ly = Snstim—w— (C71), izj0eN. o)

By using the convention ['[?"=1(z' —J+m) =1, (24) could be modified as

Y o(—1)B=™(B)mi-i+8 (Jz- 1
M2 .G —j+m) -1

[Qn+lB]m )a i>2j,0eN.

Then, we have

o i—1 i Zﬂ_o( l)ﬂ m(m)m -i+8 (a) o
[T"“]"'(f-l)z(k ,) Moo Gmg+m e 127

k=j

Since we can deduce E(®)(2) = Tp,41 B8} (z) from (14), (16) and (23),
then the final consequence can be easily obtained.
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Remark 2. By setting 8 =1 in (22) and using the equation EPz+1)+
EN(2) = 9E{ (), we finally have

@ =Y o (1) B0 - B OBnste). (25)
k=0

Further special cases of (22) when a = 0,8 = 1 and @ = 1,8 = 1 will
return to (4) and the following equation:

Ea(z) = ZHI()EHI(O)Bn_ @, (e,

Besidés, by setting 8 = 0 in (22), we obtain the equation
n
B =Y (1) B0t
k=0

Alternatively, the special cases of (22) when a = 0 and a =1 give us
the following relationships, respectively:

n _1\8-m B n—-k+8
2" = Z( ) m—o( 1) (m)m ]Bl(cm(w)!

= e (n — k+m)

—k B-m 1+8
Ea(2)= Z( ) Z(" k)z ) i A LN P T

k=0 =0 Hm:l (t+m)
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