A family of chromatically unique 5-bridge graphs^{*}

Xue-Feng Li
Department of Applied Mathematics and Physics
Xi'an Institute of Post and Telecom
Xi' an 710121, China

E-mail: lixfpost@yahoo.com.cn

Abstract Let $P(G; \lambda)$ denote the chromatic polynomial of a graph G, expressed in the variable λ . Then G is said to be chromatically unique if G is isomorphic with H for any graph H such that $P(H; \lambda) = P(G; \lambda)$. The graph consisting of s edge-disjoint paths joining two vertices is called an s-bridge graph. In this paper, we provide a new family of chromatically unique 5-bridge graphs.

Keywords: generalized polygon tree; 5-bridge graphs; chromatically equivalent; chromatically unique.

1 Introduction

The graphs that we consider here are finite, undirected and without loops or multiple edges. Let $P(G; \lambda)$, or simply P(G) denote the chromatic polynomial of a graph G. In this paper, $y = \lambda - 1$. Two graphs G and H are said to be chromatically equivalent if P(G) = P(H). A graph G is said to be chromatically unique if P(G) = P(H) implies that H is isomorphic with G, denoted by $H \cong G$. Since the notion of chromatic uniqueness was first introduced in 1978 by Chao and Whitehead [1], various classes of chromatically unique graphs have been found successively (see [3], [7]).

A path and a cycle of length l will be denoted by P_l and C_l , respectively. The generalized θ -graph, denoted by $\theta(a,b,c)$, is a 2-connected graph with 3

^{*} Supported by the National Natural Science Foundation of China (No.60672026)

edge-disjoint paths P_a , P_b and P_c between a pair of vertices u and v of degree three, where $a \ge 1$, $b \ge 2$ and $c \ge 2$. A graph consisting of s edge-disjoint paths joining two vertices is called an s-bridge graph, which is denoted by $F(k_1, k_2, \dots, k_s)$, where k_1, k_2, \dots, k_s are the lengths of s paths.

It was proved by Chao and Whitehead [1] that the cycle C_n is chromatically unique. Loerinc [2] proved that the generalized θ -graph is chromatically unique. That is to say, 2-bridge graphs and 3-bridge graphs are all chromatically unique. Xu et al. [6] gave the sufficient and necessary conditions for a 4-bridge graph to be chromatically unique. In this paper, we give a new family of chromatically unique 5-bridge graphs. For all other notation and terminology not explained here, we can refer to [4].

2 Preliminaries

In this section, we shall give some known results and definitions that will be used to prove our main theorem in section 3.

Definition1[4]. A 2-connected graph G is called a generalized polygon tree if it can be decomposed into cycle class $C = \{C_{i_1}, \dots, C_{i_r}\}$, and there exist an overlapping process: $H_1 = C_{i_1}$, H_j is obtained from H_{j-1} and C_{i_j} by overlapping in path P_{i_j} where in each step of overlapping, the vertices on P_{i_j} , except end vertices, are with degree 2.

Clearly an s-bridge graph is a generalized polygon tree.

Definition2[4]. Let G be a generalized polygon tree, a pair (u, v) of nonadjacent vertices of G is called an intercourse pair if there are at least three internally disjoint u-v paths in G. The intercourse number of G, $\sigma(G)$ is defined as the number of intercourse pairs of vertices in G.

Theorem1[4] Let G and H be graphs such that P(G) = P(H), then |V(G)| = |V(H)|, |E(G)| = |E(H)|, g(G) = g(H) and the number of cycles of G and H with the length equal to their girth are equal. Moreover if they are both planar, then the interior regions number r(G) = r(H), and if G is a generalized polygon tree, then H is also a generalized polygon tree and $\sigma(H) = \sigma(G)$.

Theorem2[5] Let H_1 , H_2 be two graphs of order n and size m. Suppose H_1 ,

 H_2 have the same girth g and that each has only one cycle of length g, if the lengths of the second shortest cycle of H_1 and H_2 are different, then H_1 is not chromatically equivalent to H_2 .

Theorem3[6] Let G be an s-bridge graph, where j_1, j_2, \dots, j_s are the lengths of s paths, then the chromatic polynomial of G.

$$P(G) = \frac{y}{(y+1)^{s-1}} \left[\prod_{i} (y^{j_i} + (-1)^{j_i+1}) + y^{s-1} \prod_{i} (y^{j_i-1} + (-1)^{j_i}) \right] = \frac{y}{(y+1)^{s-1}} Q(G)$$

Now suppose that H is obtained from a t-bridge graph and s-t cycles by overlapping on edges, where k_1, \dots, k_r is the lengths of t paths of t-bridge graph, and l_1, \dots, l_{s-t} is the lengths of s-t cycles, then the chromatic polynomial of H.

$$P(H) = \frac{y}{(y+1)^{s-1}} [\Pi(y^{k_i} + (-1)^{k_i+1}) + y^{t-1} \Pi(y^{k_i-1} + (-1)^{k_i})] \Pi(y^{l_i-1} + (-1)^{l_i})$$

$$= \frac{y}{(y+1)^{s-1}} Q(H).$$

3 Main Results

Theorem. A 5-bridge graph $F(k_1, k_2, k_3, k_4, k_5)$ is chromatically unique if the positive integers k_1, k_2, k_3, k_4, k_5 assume exactly two distinct values, i.e. $|\{k_1, k_2, k_3, k_4, k_5\}| = 2$, and min $\{k_1, k_2, k_3, k_4, k_5\} \ge 2$.

Proof. Our proof is divided into four cases which are considered in the following four lemmas:

Lemma 1. 5-bridge graph G = F(a, b, b, b, b) is chromatically unique for all $a \ge 2$, $b \ge a + 1$.

Lemma 2. 5-bridge graph G = F(a, a, b, b, b) is chromatically unique for all $a \ge 2$, $b \ge a + 1$.

Lemma 3. 5-bridge graph G = F(a, a, a, b, b) is chromatically unique for all $a \ge 2$, $b \ge a + 1$.

Lemma 4. 5-bridge graph G = F(a, a, a, a, b) is chromatically unique for all $a \ge 2$, $b \ge a + 1$.

In the following, we will prove all four of these lemmas.

If G is 5-bridge graph $F(k_1, k_2, k_3, k_4, k_5)$, we assume that H is chromatically

equivalent to G. By Theorem 1, we know that H is also a generalized polygon tree and the interior region number r(H) = r(G) = 4, the intercourse number $\sigma(H) = \sigma(G) = 1$, i.e. H is either a 5-bridge graph or a graph obtained from a 4-bridge graph and a cycle by overlapping on an edge or a graph obtained from a generalized θ -graph and two cycles by overlapping on edges.

By Theorem3, suppose H is obtained from a 4-bridge $F(a_1, a_2, a_3, a_4)$ and a cycle C_h by overlapping on an edge, then

$$P(H) = \frac{y}{(y+1)^4} \left[\prod (y^{a_i} + (-1)^{a_i+1}) + y^3 \prod (y^{a_i-1} + (-1)^{a_i}) \right] (y^{b_i-1} + (-1)^{b_i})$$
 (1)

Let
$$P(H) = \frac{y}{(y+1)^4} Q(H)$$
, then

$$Q(H) = [y^{a_1 + a_2 + a_3 + a_4} + y^{a_1 + a_2 + a_3 + a_4 - 1} + (y + 1)((-1)^{a_1 + a_2} y^{a_3 + a_4} + (-1)^{a_1 + a_3} y^{a_2 + a_4} + (-1)^{a_1 + a_3} y^{a_2 + a_4} + (-1)^{a_1 + a_3} y^{a_1 + a_4} + (-1)^{a_2 + a_3} y^{a_1 + a_4} + (-1)^{a_2 + a_4} y^{a_1 + a_3} + (-1)^{a_1 + a_2} y^{a_1 + a_2}) + (y^2 - 1)((-1)^{a_2 + a_3 + a_4} y^{a_1} + (-1)^{a_1 + a_3 + a_4} y^{a_2} + (-1)^{a_1 + a_2 + a_4} y^{a_3} + (-1)^{a_1 + a_2 + a_3} y^{a_4}) + (-1)^{a_1 + a_2 + a_3 + a_4} (y^3 + 1)](y^{b_1 - 1} + (-1)^{b_1})$$

Suppose H is obtained from a generalized θ -graph $\theta(a_1,a_2,a_3)$ and two cycles C_{b_1} , C_{b_2} by overlapping on edges, then

$$P(H) = \frac{y}{(y+1)^4} \left[\prod (y^{a_i} + (-1)^{a_i+1}) + y^2 \prod (y^{a_i-1} + (-1)^{a_i}) \right] \prod (y^{b_i-1} + (-1)^{b_i})$$
 (2)

We let
$$P(H) = \frac{y}{(y+1)^4} Q(H)$$
, then

$$\begin{split} Q(H) &= (y+1)y^{a_1+a_2+a_3+b_1+b_2-3} + (-1)^{a_1+a_2}(y+1)y^{a_3+b_1+b_2-2} + (-1)^{a_1+a_3}(y+1)y^{a_2+b_1+b_2-2} + \\ &\quad (-1)^{a_2+a_3}(y+1)y^{a_1+b_1+b_2-2} + (-1)^{b_1}(y+1)y^{a_1+a_2+a_3+b_1-2} + (-1)^{b_1}(y+1)y^{a_1+a_2+a_3+b_2-2} \\ &\quad + (y+1)y^{b_1-1}[(-1)^{a_1+a_2+b_2}y^{a_3} + (-1)^{a_1+a_3+b_2}y^{a_2} + (-1)^{a_2+a_3+b_2}y^{a_1}] + (y+1)y^{b_2-1} \\ &\quad [(-1)^{a_1+a_2+b_1}y^{a_3} + (-1)^{a_1+a_1+b_1}y^{a_2} + (-1)^{a_2+a_3+b_1}y^{a_1}] + (-1)^{a_1+a_2+a_3}(y^2-1)y^{b_1+b_2-2} \\ &\quad + (-1)^{a_1+a_2+a_3+b_2}(y^2-1)y^{b_1-1} + (-1)^{a_1+a_2+a_3+b_1}(y^2-1)y^{b_2-1} + (-1)^{b_1+b_2}(y+1) \\ &\quad [y^{a_1+a_2+a_3-1} + (-1)^{a_2+a_3}y^{a_1} + (-1)^{a_1+a_3}y^{a_2} + (-1)^{a_1+a_2}y^{a_3}] + (-1)^{a_1+a_2+a_3+b_1+b_2}(y^2-1) \end{split}$$

Proof of Lemma 1. Let G = F(a, b, b, b, b), where $a \ge 2$, $b \ge a + 1$, by Theorem 3

$$P(G) = \frac{y}{(y+1)^4} [(y^a + (-1)^{a+1})(y^b + (-1)^{b+1})^4 + y^4(y^{a-1} + (-1)^a)(y^{b-1} + (-1)^b)^4]$$

We let
$$P(G) = \frac{y}{(y+1)^4} Q(G)$$
, then

$$Q(G) = (y+1)y^{a+4b-1} + 6y^{a+2b}(y+1) + (-1)^b 4y^{a+b}(y^2-1) + y^a(y^3+1) + (-1)^{a+b} 4y^{3b}(y+1) + (-1)^a 6y^{2b}(y^2-1) + (-1)^{a+b} 4y^b(y^3+1) + (-1)^a(y^4-1)$$

Now suppose H is chromatically equivalent to G, there are the following three cases about H to be considered.

Case1.1: *H* is 5-bridge graph $F(a_1, a_2, a_3, a_4, a_5)$, where $a_1 \ge a_2 \ge a_3 \ge a_4 \ge a_5$.

$$P(H) = \frac{y}{(y+1)^4} \left[\prod (y^{a_i} + (-1)^{a_i+1}) + y^4 \prod (y^{a_i-1} + (-1)^{a_i}) \right] = \frac{y}{(y+1)^4} Q(H)$$

Since P(H) = P(G), we have Q(H) = Q(G). Now we solve the equation Q(H) = Q(G). By |V(G)| = |V(H)|, we have $a + 4b = a_1 + a_2 + a_3 + a_4 + a_5$. After canceling y^4 and constant terms, it is easy to see that the lowest power term in $Q(G) - (-1)^a (y^4 - 1)$ is y^a , which cannot be canceled with the other terms in $Q(G) - (-1)^a (y^4 - 1)$. The lowest power term in $Q(H) - (-1)^{\sum a_i} y^4 - (-1)^{\sum a_i+1}$ is $(-1)^{i+1} y^{a_i}$, which cannot be canceled by the other terms in $Q(H) - (-1)^{\sum a_i} y^4 - (-1)^{\sum a_i+1}$ either. For polynomials to be equal, the coefficients of corresponding power terms must be equal. Hence $a_5 = a$. We have known that the girths of both G and H are g(H) = g(G) = a + b, the number of cycles whose lengths are equal to the girth is A, i.e. $C_g(H) = C_g(G) = A$. By $a_5 = a$, we know that g(H) = a + b implies that there is at least one among a_1, a_2, a_3, a_4 is b. So we can let $a_4 = b$. $C_g(H) = 4$ implies either $a_1 = a_2 = a_3 = a$ or $a_1 = a_2 = a_3 = b$. If $a_1 = a_2 = a_3 = a$, we get g(H) = 2a < a + b, which contradicts g(H) = a + b. Therefore $a_1 = a_2 = a_3 = b$, i.e. H = F(a, b, b, b, b).

Case 1.2: H is obtained from a 4-bridge graph $F(a_1, a_2, a_3, a_4)$ and a cycle C_{b_1} by overlapping on an edge, where $a_1 \ge a_2 \ge a_3 \ge a_4$. P(H) is given by (1). By |V(G)| = |V(H)|, we have $a+4b=\sum a_i+b_i-1$. g(H)=g(G)=a+b implies $b_1 \ge a+b$. Obviously the lowest power term in $Q(G)-(-1)^{a+1}$ is y^a or $(-1)^a y^4$, and no cancellation is possible between them. It is also easy to see that the lowest power term occurring in $Q(H)-(-1)^{\sum a_i+b_i}$ is one of $(-1)^{\sum a_i+b_i+1}y^{a_i}$, $(-1)^{\sum a_i+b_i}y^3$ and $(-1)^{\sum a_i}y^{b_i-1}$, which cannot be cancelled by the other terms in $Q(H)-(-1)^{\sum a_i+b_i}$ either, so min $\{a_4,3,b_1-1\}=\min\{a,4\}$. Since $\min\{a_4,3,b_1-1\}\le 3$, we have $\min\{a,4\}=a\le 3$.

In the following, we will verify that both $b_1 - 1 = a$ and min $\{a_4, 3, b_1 - 1\} = a_4$ are impossibilities.

If $b_1 - 1 = a$, then $b_1 = a + 1$, which contradicts $b_1 \ge a + b$.

If $\min\{a_4,3,b_1-1\}=a_4$, then $a_4=a<3$. As we know $a\geq 2$, so we reach the conclusion $a_4=a=2$, $a_1\geq a_2\geq a_3\geq 3$. After canceling the lowest power terms occurring in both Q(G) and Q(H), the lowest power terms occurring in Q(H) are the several y^3 terms, and they cannot be cancelled in Q(H) itself. Otherwise, the lowest power term occurring in Q(G) is $(-1)^{a+b}4y^b$ or $(-1)^ay^4$. For polynomials to be equal, the coefficients of corresponding powers of y must be equal. Thus we only have $a_1=a_2=a_3=b=3$. It is noted that we can get $b_1=4< g(G)$ by letting $a=a_4=2$, $a_1=a_2=a_3=b=3$ in $a+4b=\sum a_i+b_i-1$, which is a contradiction.

By the two cases above, we must have a=3. Clearly, the coefficient of y^3 in Q(G) is 1, so $a_4 \ge 4$, $b_1 \ge 3+b \ge 7$. After canceling equal terms in both Q(G) and Q(H), we note that the lowest power term in Q(G) is $(-1)^{a+b}4y^b$ or $(-1)^a y^4$ which cannot be cancelled by each other, and in Q(H) is $(-1)^{a+b}y^{a+b}$ or $(-1)^{\sum a_i}y^{b_i-1}$ which also cannot be cancelled by each other. Since $b_i \ge a+b$, $b_i -1 \ge b+(a-1) \ge b+1$, hence the lowest power term in Q(H) is one term or several terms or all terms belonging to $(-1)^{\sum a_i}y^{a_i}$. On the other hand, we have known a=3, $b\ge a+1$. Therefore $b\ge 4$.

If b=4, then the lowest power term in Q(G) is $-5y^4$, however for Q(H), even if every a_i is equal to 4, the coefficient of y^4 cannot be more than 4, hence $b \ge 5$. The lowest power term in Q(G) is $(-1)^{a+4b}y^4$, so there is only one in a_1 , a_2 , a_3 and a_4 equaling to 4, the three others are all more than 4. Without loss of generality we may assume that $a_4=4$, $a_2\ge a_2\ge a_3\ge 5$. By $a+4b=\sum a_i+b_1-1$, a=3 and $a_4=4$, we can get $4b=a_1+a_2+a_3+b_1$ easily. After letting a=3, $a_4=4$ both in Q(G) and Q(H), and canceling all equal terms, we can find that the lowest power term in Q(G) is $(-1)^{a+b}4y^b$ or y^6 , and in Q(H) is $(-1)^{a+b}y^a$ (k=1,2,3) or $(-1)^{\sum a_1}y^{a_1-1}$ or $(-1)^{\sum a_1}x^{a_1+b_1}$. Note that $b_1-1\ge b+1$, $a_4+2=6$, so if b=5, the lowest power term in Q(G) is $4y^5$, however the plus of $(-1)^{a+b}y^a$ (k=1,2,3) in Q(H) is no more than $3y^5$, therefore, we have $b\ge 6$. Since $4b=a_1+a_2+a_3+b_1$, thus we have $y^6=(-1)^{a+b}y^{a_1+2}$. The lowest power term

in Q(G) is $(-1)^{a+b} 4y^b$, and in Q(H) is $(-1)^{\sum_{i=1}^{a_i+b_i+1}}y^{a_i}$ (k=1,2,3) or the plus of them. But we can find no matter what b is equal to, the lowest power terms in Q(G) and Q(H) are not equal. Hence $Q(G) \neq Q(H)$, i.e. H is not chromatically equivalent to G.

H is obtained from a generalized θ -graph $\theta(a_1,a_2,a_3)$ and two Case1.3 cycles C_{b_1} , C_{b_2} by overlapping on edges, where $a_1 \ge a_2 \ge a_3 \ge 2$. By g(H) = g(G) = a + b, we can assume $b_1 \ge b_2 \ge a + b$. It is noted that P(H) has been presented by (2). By |V(G)| = |V(H)|, we have $a + 4b = \sum a_i + \sum b_i - 2$. At the same time, we can easily find that the lowest power term in $Q(G) - (-1)^{a+1}$ is y^a or $(-1)^a y^4$, which can not be cancelled by each other, and the lowest power term in $Q(H) - (-1)^{\sum a_i + \sum b_i + 1}$ is $(-1)^{a_1 + a_2 + b_1 + b_2} v^{a_3}$ or $(-1)^{\sum a_i + \sum b_i} v^2$, which also can not be cancelled by each other. But if $a_1 = 2$, the coefficient of y^2 occurring in Q(H) is no more than 2, and occurring in Q(G) is no more than 1. So $a_1 \ge 3$, and there must be $y^a = (-1)^{\sum a_i + \sum b_i} y^2$, i.e. a = 2. After canceling equal terms of y^2 occurring in Q(G) and Q(H), the lowest power term in Q(G)is $(-1)^b 4y^b$ or y^4 , and in Q(H) is one term or the plus of at least two terms of $(-1)^{\sum a_i + \sum b_i} y^{a_i}$. Clearly, b > 4. Because if $b \le 4$, the coefficients of y^b occurring in Q(G) and Q(H) are not equal. So $a_3 = 4$, $a_1 \ge a_2 \ge 5$. Now we let $a_3 = 4$ in Q(H), and cancel all equal terms in Q(G) and Q(H). We find that the lowest power term in Q(G) is $(-1)^b 4y^b$, which can not be cancelled by the other terms in Q(G). Since $b_i \ge a+b=2+b$, i.e. $b_i-1 \ge b+1$, it is easily seen that the absolute value of the coefficient of the lowest power term in Q(H) is no more than 3. Therefore, $Q(G) \neq Q(H)$, i.e. H is not chromatically equivalent with G.

By considering the three cases about H above, we obtain that 5-bridge graph G = F(a, b, b, b, b) is chromatically unique.

Proof of Lemma 2. Let G = F(a, a, b, b, b), where $a \ge 2, b \ge a + 1$, similar with the Proof of Lemma 1, by the Theorem3

$$P(G) = \frac{y}{(y+1)^4} [(y^a + (-1)^{a+1})^2 (y^b + (-1)^{b+1})^3 + y^4 (y^{a-1} + (-1)^a)^2 (y^{b-1} + (-1)^b)^3]$$

we let
$$P(G) = \frac{y}{(y+1)^4}Q(G)$$
, then

$$Q(G) = y^{2a+3b-1}(y+1) + 3y^{2a+b}(y+1) + (-1)^{a+b} 6y^{a+2b}(y+1) + (-1)^{b} y^{2a}(y^{2}-1)$$

$$+ (-1)^{a} 6y^{a+b}(y^{2}-1) + (-1)^{a+b} 2y^{a}(y^{3}+1) + y^{3b}(y+1) + 3y^{b}(y^{3}+1)$$

$$+ (-1)^{b} 3y^{2b}(y^{2}-1) + (-1)^{b}(y^{4}-1)$$

Now suppose H is chromatically equivalent to G, there are the following three cases about H to be considered.

Case2.1
$$H = F(a_1, a_2, a_3, a_4, a_5), \ a_1 \ge a_2 \ge a_3 \ge a_4 \ge a_5,$$

$$P(H) = \frac{y}{(y+1)^4} \Big[\prod (y^{a_1} + (-1)^{a_1+1}) + y^4 \prod (y^{a_1-1} + (-1)^{a_1}) \Big] = \frac{y}{(y+1)^4} Q(H)$$

That H is chromatically equivalent with G implies |V(G)| = |V(H)|, i.e. $2a+3b=\sum a_i$. In the following, we analyze Q(G) and Q(H). The lowest power term in $Q(G)-(-1)^b\left(y^4-1\right)$ is $(-1)^{a+b}\,2y^a$, which cannot be cancelled by the other terms in Q(G). The lowest power term in $Q(H)-(-1)^{\sum a_i}y^4-(-1)^{\sum a_i+1}$ is one term or the plus of at least two terms of $(-1)^{i+1}$ y^{a_i} (k=1,2,3,4,5). For polynomials to be equal, the coefficients of corresponding power terms must be equal. Hence $a_4=a_5=a$. After canceling all equal terms in both Q(G) and Q(H), We note that the lowest power term in Q(G) is $3y^b$ which cannot be cancelled in Q(G), and in Q(H) is one term or the plus of at least two terms of $(-1)^{i+1}$ y^{a_i} (k=1,2,3) which also cannot be cancelled in Q(H), thus we have $a_1=a_2=a_3=b$, i.e. H=F(a,a,b,b,b).

Case2.2 H is obtained from $F(a_1, a_2, a_3, a_4)$ and a cycle C_{b_1} by overlapping on an edge, where $a_1 \ge a_2 \ge a_3 \ge a_4$.

Because g(H) = g(G) = 2a, so $b_1 \ge 2a$. P(H) is presented by (1). That H is chromatically equivalent with G implies |V(H)| = |V(G)|, i.e. $2a + 3b + 1 = \sum a_i + b_1$.

Obviously the lowest power term in $Q(G)-(-1)^{b+1}$ is $(-1)^{a+b}$ $2y^a$ or $(-1)^b$ y^4 , and no cancellation is possible between them. It is also easy to see that the lowest power term occurring in $Q(H)-(-1)^{\sum a_i+b_i}$ is one term or the plus of at least two terms of $(-1)^{\sum a_i+b_i+1}y^{a_i}$ (k=1,2,3,4), $(-1)^{\sum a_i+b_i}y^3$ and $(-1)^{\sum a_i}y^{b_i-1}$, which cannot be cancelled by the other terms in $Q(H)-(-1)^{\sum a_i+b_i}$ either, so min $\{a_k,3,b_i-1\}=\min\{a,4\}$. Since $b_i\geq 2a$, $b_i-1\geq 2a-1\geq a+1$, hence $\min\{a_k,3,\}=\min\{a,4\}=a\leq 3$. Since in Q(G) the coefficient of y^a is 2. For polynomials to be equal, the coefficients of corresponding powers of y must be

equal. Thus $a = a_4 = 3$ or $a = a_3 = a_4 = 2$.

If $a = a_4 = 3$, $a_i \ge 4$ (i = 1, 2, 3). As we know g(H) = g(G) = 2a, so we have $b_1 = 2a$. After canceling the terms of y^3 both in Q(G) and Q(H), we can easily find that the lowest power term in Q(G) are the several y^4 terms, and they cannot be cancelled in Q(G) itself. Otherwise, the lowest power term occurring in Q(H) is one term or the plus of at least two terms of $(-1)^{mi} = y^{a_1}$ (k = 1, 2, 3). If b = 4, then the lowest power term in Q(G) is $4y^4$, but the coefficient of y^4 in Q(H) is no more than 3, therefore $b \ne 4$, i.e. $b \ge 5$, and the lowest power term occurring in Q(G) is $(-1)^b y^4$, thus $a_3 = 4$. Because $b \ge 5$, the length of the second shortest cycle of G is $a + b \ge 8$, otherwise, the length of the second shortest cycle of G is $a + b \ge 8$, otherwise, the length of the shortest length; by the Theorem2, G is not chromatically equivalent with G. This means G is impossible.

If $a = a_3 = a_4 = 2$, because both G and H has only one cycle of the shortest length, so $b_1 \ge 5$. Now letting $a = a_3 = a_4 = 2$ in both Q(G) and Q(H), after canceling all equal terms, i.e. the terms of y^2 and constant terms, the lowest power term in Q(H) is the terms of y^3 , but the lowest power term occurring in Q(G) is $3y^b$. Thus $a_1 = a_2 = b = 3$. By $2a + 3b + 1 = \sum a_i + b_1$, we have $b_1 = 4$, which contradicts $b_1 \ge 5$.

Therefore H is not chromatically equivalent with G.

Case2.3 H is obtained from a generalized θ -graph $\theta(a_1,a_2,a_3)$ and two cycles C_{b_1}, C_{b_2} by overlapping on edges, where $a_1 \geq a_2 \geq a_3 \geq 2$. By g(H) = g(G) = 2a, we can assume $b_1 \geq b_2 \geq 2a$. It is noted that P(H) has been presented by (2). By |V(G)| = |V(H)|, we have $2a + 3b = \sum a_i + \sum b_i - 2$. At the same time, we can easily find that the lowest power term in $Q(G) - (-1)^{b+1}$ is $(-1)^{a+b} 2y^a$ or $(-1)^b y^4$, which can not be cancelled by each other, and the lowest power term in $Q(H) - (-1)^{\sum a_i + \sum b_i + 1}$ is $(-1)^{a_1 + a_2 + b_1 + b_2} y^{a_3}$ or $(-1)^{\sum a_i + \sum b_i} y^2$, which also can not be cancelled by each other. For polynomials to be equal, the coefficients of corresponding powers of y must be equal. So the lowest power term in $Q(G) - (-1)^{b+1}$ is $(-1)^{a+b} 2y^a$, and we must have $a = a_3 = 2$, $a_1 \geq a_2 \geq 3$. With this we have g(H) = g(G) = 4. Because both G and H have only one cycle of the shortest length, therefore we only have $b_1 = 4$, $b_2 > 4$. Now the lowest power

term in Q(H) is $(-1)^{a_1+a_2+b_2+1}y^3$, but there are not the terms of y^3 in Q(G). Thus $(-1)^{a_1+a_2+b_2+1}y^3$ must be cancelled in Q(H) itself. Because $a_1 \ge a_2 \ge 3$, then it is only possible that $(-1)^{a_1+a_2+b_2+1}y^3$ can be cancelled by $(-1)^{a_1+a_3+b_1+b_2}y^{a_2}$, i.e. $(-1)^{a_1+b_2}y^{a_2}$. But if $a_2=3$, then $(-1)^{a_1+a_2+b_2+1}y^3=(-1)^{a_1+b_2}y^3$, which is equal to $(-1)^{a_1+b_2}y^{a_2}$. That is to say, $(-1)^{a_1+a_2+b_2+1}y^3$ cannot be cancelled by $(-1)^{a_1+a_3+b_1+b_2}y^{a_2}$. Similarly $(-1)^{a_1+a_2+b_2+1}y^3$ cannot be cancelled by $(-1)^{a_2+a_3+b_1+b_2}y^{a_1}$ either. Therefore $Q(G) \ne Q(H)$, i.e. H is not chromatically equivalent with G.

By the three cases of H above, we know that 5-bridge graph F(a, a, b, b, b) is chromatically unique, i.e. the lemma 2 is proven.

Proof of Lemma 3. Assume $G = F(a, a, a, b, b), a \ge 2, b \ge a + 1$, similar with the Proofs of Lemma 1 and 2, by the Theorem3:

$$P(G) = \frac{y}{(y+1)^4} \Big[(y^a + (-1)^{a+1})^3 (y^b + (-1)^{b+1})^2 + y^4 (y^{a-1} + (-1)^a)^3 (y^{b-1} + (-1)^b)^2 \Big]$$
$$= \frac{y}{(y+1)^4} Q(G)$$

$$Q(G) = y^{3a \cdot 2b - 1}(y + 1) + (-1)^{a \cdot b} 6y^{2a \cdot b}(y + 1) + 3y^{a \cdot 2b}(y + 1) + (-1)^{a} 3y^{2a}(y^{2} - 1) + (-1)^{a \cdot b} 2y^{b}(y^{3} + 1) + y^{3a}(y + 1) + (-1)^{b} 6y^{a \cdot b}(y^{2} - 1) + (-1)^{a} y^{2b}(y^{2} - 1) + 3y^{a}(y^{3} + 1) + (-1)^{a}(y^{4} - 1)$$

Now assume that H is chromatically equivalent to G. In the following, we will consider all possible cases about H.

Case3.1
$$H = F(a_1, a_2, a_3, a_4, a_5), \ a_1 \ge a_2 \ge a_3 \ge a_4 \ge a_5,$$

 $P(H) = \frac{y}{(y+1)^4} \Big[\prod (y^{a_1} + (-1)^{a_1+1}) + y^4 \prod (y^{a_1-1} + (-1)^{a_1}) \Big] = \frac{y}{(y+1)^4} Q(H)$

That H is chromatically equivalent with G implies |V(G)| = |V(H)|, i.e. $3a+2b=\sum a_i$. In the following, we analyze Q(G) and Q(H). By observing Q(G) and Q(H), we can find that the lowest power term in $Q(G)-(-1)^a(y^4-1)$ is $3y^a$, which cannot be cancelled in Q(G), the lowest power term in $Q(H)-(-1)^{\sum a_i}(y^4-1)$ is one term or the plus of at least two terms of $(-1)^{\sum a_i}y^{a_i}$ ($k=1,2,\cdots,5$). By Q(G)=Q(H), we know that the corresponding power terms are equal in both hands. So $a_3=a_4=a_5=a$. By $3a+2b=\sum a_i$, we get $a_1+a_2=2b$, after canceling all equal terms, the lowest power term in Q(G) is $(-1)^{a+b}2y^b$ and cannot be cancelled in Q(G), the lowest power term in Q(H)

is one term or the plus of $(-1)^{\sum a_i} y^{a_i}$ (k=1,2) and cannot be cancelled in Q(H) either. So we have $a_1=a_2=2b$. i.e. H=F(a,a,a,b,b).

Case3.2 H is obtained from $F(a_1, a_2, a_3, a_4)$ and a cycle C_{b_1} by overlapping on an edge, where $a_1 \ge a_2 \ge a_3 \ge a_4$.

P(H) is presented by (1). That H is chromatically equivalent with G implies |V(H)| = |V(G)|, i.e. $3a + 2b + 1 = \sum a_i + b_1$. Because g(H) = g(G) = 2a, so $b_1 \ge 2a$.

By observing Q (G) and Q(H), we can find that the lowest power term in $Q(G)-(-1)^{a+1}$ is $3y^a$ or $(-1)^ay^4$, and no cancellation is possible between them; the lowest power term in $Q(H)-(-1)^{\sum a_i+b_i}$ is $(-1)^{\sum a_i+b_i+1}y^{a_i}$ or $(-1)^{\sum a_i+b_i}y^3$ or $(-1)^{\sum a_i}y^{b_i-1}$, which also cannot be cancelled by each other. Hence $\min\{a,4\}=\min\{a_k,3,b_i-1\}$. Since $b_i\geq 2a$, so $b_i-1\geq 2a-1\geq a+1$. Therefore $a=\min\{a,4\}=\min\{a_k,3\}$. The coefficient of y^a in Q (G) is 3. For two polynomials to be equal, the coefficients of corresponding power terms must be equal. So there are only two possible cases: one is $a=a_3=a_4=3$, $a_1\geq a_2\geq 4$, and the other is $a=a_2=a_3=a_4=2$.

If $a = a_3 = a_4 = 3$ and $a_1 \ge a_2 \ge 4$, then no matter what the value of b_1 is $C_g(H) \le 2$. This is a contradiction with $C_g(H) = C_g(G) = 3$.

If $a = a_2 = a_3 = a_4 = 2$, as $C_g(H) = C_g(G) = 3$, so $b_1 \ge 5$. After letting $a = a_2 = a_3 = a_4 = 2$ both in Q(G) and Q(H), and canceling the terms of y^2 and constant terms, the lowest power term in Q(H) is $(-1)^{\sum a_i + b_i} y^3$, which cannot be cancelled by the others in Q(H), and at meantime, the lowest power term in Q(G) is $(-1)^{a+b} 2y^b$ or $(-1)^{a+1} 2y^4$. But by $3a + 2b + 1 = \sum a_i + b_1$, we get $2b = a_1 + b_1 - 1 \ge 7$, this means $b \ge 3$. Therefore the lowest power terms both in Q(G) and Q(H) are not equal, i.e. the case $a = a_2 = a_3 = a_4 = 2$ is impossible.

From the two cases above, we could get that H is not chromatically equivalent with G.

Case3.3 H is obtained from a generalized θ -graph $\theta(a_1, a_2, a_3)$ and two cycles C_{b_1}, C_{b_2} by overlapping on edges, where $a_1 \ge a_2 \ge a_3 \ge 2$.

P(H) is presented by (2). That H is chromatically equivalent with G implies |V(H)| = |V(G)|, i.e. $3a + 2b + 2 = \sum a_i + \sum b_i$. Because g(H) = g(G) = 2a, so we can assume $b_1 \ge b_2 \ge 2a$.

Similarly the lowest power term in $Q(G)-(-1)^{a+1}$ is $3y^a$ or $(-1)^ay^4$, and no cancellation is possible between them; the lowest power term in $Q(H)-(-1)^{\sum a_i+\sum b_i+1}$ is one term or the plus of at least two terms of $(-1)^{\sum a_i+b_i+b_2}y^{a_i}$ (k=1,2,3) and $(-1)^{\sum a_i+\sum b_i}y^2$, which also cannot be cancelled by each other. Since $a \ge 2$, thus $a=a_2=a_3=2$ and $a_1>2$. Because $C_g(H)=C_g(G)=3$, therefore we must have $b_1=b_2=4$. By $3a+2b+2=\sum a_i+\sum b_i$, we get $2b=a_1+4$. After canceling the terms of y^2 and constant terms both in Q(G) and Q(H). The lowest power term in Q(G) is $(-1)^{a+b}2y^b$ or $(-1)^ay^4$, i.e. $(-1)^b2y^b$ or y^4 , and no cancellation is possible between them. The lowest power term in Q(H) is $(-1)^{a_2+a_3+b_1+b_2}y^{a_1}$ or $(-1)^{\sum a_i+b_2+1}y^{b_1-1}$ or $(-1)^{\sum a_i+b_1+1}y^{b_2-1}$, i.e. y^{a_1} or $-2y^3$. Thus $(-1)^b2y^b=-2y^3$, this means b=3. Now letting b=3 in $2b=a_1+4$, we get $a_1=2$, which contradicts $a_1>2$. So H is not chromatically equivalent with G.

By the three cases of H above, we know that 5-bridge graph F(a, a, a, b, b) is chromatically unique, i.e. the lemma 3 is proven.

Proof of Lemma 4. Assume $G = F(a, a, a, a, b), a \ge 2, b \ge a + 1$, similar with the Proof of the three lemmas above, by the Theorem3:

$$P(G) = \frac{y}{(y+1)^4} \Big[(y^a + (-1)^{a+1})^4 (y^b + (-1)^{b+1}) + y^4 (y^{a-1} + (-1)^a)^4 (y^{b-1} + (-1)^b) \Big]$$
$$= \frac{y}{(y+1)^4} Q(G)$$

$$Q(G) = y^{4a+b-1}(y+1) + 6y^{2a+b}(y+1) + (-1)^a 4y^{a+b}(y^2-1) + y^b(y^3+1)$$

$$+ (-1)^{a+b} 4y^{3a}(y+1) + (-1)^b 6y^{2a}(y^2-1) + (-1)^{a+b} 4y^a(y^3+1) + (-1)^b(y^4-1)$$

Now assume that H is chromatically equivalent to G. In the following, we will consider all possible cases about H.

Case4.1
$$H = F(a_1, a_2, a_3, a_4, a_5), \ a_1 \ge a_2 \ge a_3 \ge a_4 \ge a_5,$$

$$P(H) = \frac{y}{(y+1)^4} \Big[\prod (y^{a_1} + (-1)^{a_1+1}) + y^4 \prod (y^{a_1-1} + (-1)^{a_1}) \Big] = \frac{y}{(y+1)^4} Q(H)$$

That H is chromatically equivalent with G implies |V(G)| = |V(H)|, i.e. $4a+b=\sum a_i$. In the following, we analyze Q(G) and Q(H). The lowest power term in $Q(G)-(-1)^b y^4$ is $(-1)^{a+b} 4y^a$, which cannot be cancelled in Q(G). The lowest power term in $Q(H)-(-1)^{\sum a_i} y^4$ is one term or the plus of at least two

terms of $(-1)^{\sum_{i=1}^{a_i}} y^{a_i}$. By Q(G) = Q(H), we know that the corresponding power terms are equal in both hands. So $a_2 = a_3 = a_4 = a_5 = a$. By $4a + b = \sum a_i$, we get $a_1 = b$, i.e. H = F(a, a, a, a, b).

Case4.2 H is obtained from $F(a_1, a_2, a_3, a_4)$ and a cycle C_{b_1} by overlapping on an edge, where $a_1 \ge a_2 \ge a_3 \ge a_4$.

Because g(H) = g(G) = 2a, so $b_1 \ge 2a$. P(H) is presented by (1). That H is chromatically equivalent with G implies |V(H)| = |V(G)|, i.e. $4a + b + 1 = \sum a_1 + b_2$.

By observing Q(G) and Q(H), we can find that the lowest power term in $Q(G)-(-1)^{b+1}$ is $(-1)^{a+b}4y^a$ or $(-1)^by^4$, and no cancellation is possible between them, the lowest power term in $Q(H)-(-1)^{\sum a_i+b_i}$ is $(-1)^{\sum a_i+b_i+1}y^{a_i}$ or $(-1)^{\sum a_i+b_i}y^3$ or $(-1)^{\sum a_i}y^{b_i-1}$, which also cannot be cancelled by each other. Hence $\min\{a,4\}=\min\{a_k,3,b_i-1\}$.

As $b_1 \ge 2a$, so $b_1 - 1 \ge 2a - 1 \ge a + 1$. Therefore $a = \min\{a, 4\} = \min\{a_k, 3\}$. The coefficient of y^a in Q(G) is 4, for two polynomials to be equal, the coefficients of corresponding power terms must be equal. So there are only two possible cases: One is $a = a_2 = a_3 = a_4 = 3$, $a_1 \ge 4$, and the other is $a = a_1 = a_2 = a_3 = a_4 = 2$.

If $a = a_2 = a_3 = a_4 = 3$ and $a_1 \ge 4$, then no matter what the value of b_1 is, $C_g(H) \le 4$. This is a contradiction with $C_g(H) = C_g(G) = 6$.

If $a = a_1 = a_2 = a_3 = a_4 = 2$, as $C_g(H) = C_g(G) = 6$, so $b_1 \ge 5$. After letting $a = a_1 = a_2 = a_3 = a_4 = 2$ both in Q(G) and Q(H), and canceling the terms of y^2 and constant terms, the lowest power term in Q(H) is $(-1)^{\sum a_i + b_i} y^3$, which cannot be cancelled by the others in Q(H), and at meantime, the lowest power term in Q(G) is y^b or $(-1)^{b+1} 5y^4$. This means that only if b = 3, we can guarantee Q(H) = Q(G). However, by letting b = 3 in $4a + b + 1 = \sum a_i + b_1$, we get $b_1 = 4$, which contradicts the above $b_1 \ge 5$. Hence H is not chromatically equivalent with G.

Case4.3 H is obtained from a generalized θ -graph $\theta(a_1, a_2, a_3)$ and two cycles C_{b_1} , C_{b_2} by overlapping on edges, where $a_1 \ge a_2 \ge a_3 \ge 2$. Since the number of cycles in 5-bridge graph F(a, a, a, a, b) with length g is $C_g(G) = 6$. Whereas for H, no matter what a_1, a_2, a_3, b_1 and b_2 are equal to, we always have $C_g(H) \le 5$. So H is not chromatically equivalent with G.

By the three cases of H above, we know that 5-bridge graph F(a, a, a, a, b) is chromatically unique, i.e. the lemma 4 is proven.

REFERENCES

- [1] C.Y.Chao and E.G.Whitehead Jr., On chromatic equivalence of graphs, Theory and Applications of Graphs, Lecture Notes in Math.Vol.642, (Springer-Verlag, 1978), 121-131.
- [2] B.Loerinc, Chromatic Uniqueness of the generalized θ -graph, Discrete Math. Vol.23(1978), 313-316.
- [3] K.M.Koh and K.L.Teo, The search for chromatically unique graphs, Graphs Combin. Vol.6(1990), 259-285.
- [4] Shaoji Xu, Classes of chromatically equivalent graphs and polygon trees, Discrete Math, Vol.133(1994), 267-278.
- [5] X.E.Chen and K.Z.Ouyang, Chromatic classes of certain 2-connected (n, n+2)-graphs II, Discrete Math, Vol.172(1997), 31-38.
- [6] Shaoji Xu, Jinjie Liu and Yeehock Peng, The chromaticity of *s*-bridge graphs and related graphs, Discrete Math. Vol.135(1994), 349-358.
- [7] K.M.Koh and K.L.Teo, The search for chromatically unique graphs-II, Discrete Math. Vol.172(1997), 59-78.