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Abstract Let P(G; 1) denote the chromatic polynomial of a graph G, expressed
in the variable A. ThenG is said to be chromatically unique if G is isomorphic
with / for any graph H such that P(H; ) = P(G; 2). The graph consisting of s
edge-disjoint paths joining two vertices is called an s-bridge graph. In this paper,
we provide a new family of chromatically unique 5-bridge graphs. ’
Keywords: generalized polygon tree; 5-bridge graphs; chromatically equivalent;
chromatically unique.

1 Introduction

The graphs that we consider here are finite, undirected and without loops or
multiple edges. Let P(G; 1), or simply P(G) denote the chromatic polynomial of
a graph G. In this paper, y=A-1. Two graphs G and H are said to be
chromatically equivalent if P(G) = P(H). A graph G is said to be chromatically
unique if P(G) = P(H) implies that H is isomorphic with G, denoted by H = G.
Since the notion of chromatic uniqueness was first introduced in 1978 by Chao
and Whitehead [1], various classes of chromatically unique graphs have been
found successively (see [3], [7]).

A path and a cycle of length/ will be denoted by P, and C,, respectively. The
generalized @-graph, denoted by 8(a,b,c), is a 2-connected graph with 3
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edge-disjoint paths P,, F, and P, between a pair of vertices u and v of degree
three, wherea>1, b>2andc >2. A graph consisting of s edge-disjoint paths
joining two vertices is called an s-bridge graph, which is denoted
by F(k,,k,, -, k,), where k,, k,,---, k_are the lengths of s paths.

It was proved by Chao and Whitehead [1] that the cycle C, is chromatically
unique. Loerinc [2] proved that the generalized 8-graph is chromatically unique.
That is to say, 2-bridge graphs and 3-bridge graphs are all chromatically unique.
Xu et al. [6] gave the sufficient and necessary conditions for a 4-bridge graph to
be chromatically unique. In this paper, we give a new family of chromatically
unique S-bridge graphs. For all other notation and terminology not explained
here, we can refer to [4].

2 Preliminaries

In this section, we shall give some known results and definitions that will be
used to prove our main theorem in section 3.
Definition1[4]. A 2-connected graph G is called a generalized polygon tree if it
can be decomposed into cycle class C={C,,---,C, }, and there exist an
overlapping process: /, =C, , H is obtained from H
in path F, where in each step of overlapping, the vertices on F, ,except end

and C, by overlapping

vertices, are with degree 2.

Clearly an s-bridge graph is a generalized polygon tree.
Definition2[4]. Let G be a generalized polygon tree, a pair (x, v) of nonadjacent
vertices of G is called an intercourse pair if there are at least three internally
disjoint# —vpaths inG. The intercourse number of G, o(G)is defined as the
number of intercourse pairs of vertices in G.
Theoreml[4] Let G and H be graphs such that P(G)=P(H), then
|V (G)|=|V(#)|. |EG)|=|E(H)|, g(G) = g(H)and the number of cycles of G
and H with the length equal to their girth are equal. Moreover if they are both
planar, then the interior regions number #(G) = r(H),and ifG is a generalized
polygon tree, then H is also a generalized polygon tree and o(H) = o(G).

Theorem2[5] Let H,, H,be two graphs of order n and size m. Suppose H,,
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H, have the same girth g and that each has only one cycle of length g, if the

lengths of the second shortest cycle of H,and H, are different, then H, is not

chromatically equivalent to 4, .

Theorem3[6] Let G be an s-bridge graph, where j,, j,,---, j, are the lengths of s

paths, then the chromatic polynomial of G.

PO = IO DDy T ™ (= 2
Now suppose that / is obtained from a t-bridge graph and s-r cycles by

———50(G)

overlapping on edges, wherek,, -+, k, is the lengths of t paths of t-bridge graph,

and/,---,/,_, is the lengths of s - cycles, then the chromatic polynomial of H.
PH) = ),_, I TI* +EDE™) + y ™ TIOA + (DT + (1))
T+ l)"’ -

3 Main Results

Theorem. A 5-bridge graph F(k,,k,,k;,k,, k) is chromatically unique if the
positive integers k,k,,k,,k,, k, assume exactly two distinct values, i.e.
ks by ks, by k)| = 2, ,and mingk, , &, , &y, &y, s} 2 2.

Proof. Our proof is divided into four cases which are considered in the
following four lemmas:
Lemma 1. 5-bridge graphG = F(a,b,b,b,b) is chromatically unique for all
az2, b>a+l.
Lemma 2. 5-bridge graph G = F(a,a,b,b,b) is chromatically unique for
allaz2, b2a+l.
Lemma 3. 5-bridge graph G = F(a,a,a,b,b) is chromatically unique for
alla22, b2a+l.
Lemma 4. 5-bridge graph G =F(a,a,a,a,b) is chromatically unique for
allaz2, b=a+l.

In the following, we will prove all four of these lemmas.

IfG is 5-bridge graph F(k,, k,, k,, k,, k;), we assume that H is chromatically
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equivalent to G. By Theoreml, we know that H is also a generalized polygon
tree and the interior region number r(H)=r(G)=4, the intercourse
number o(H)=0(G) =1, i.e. H is either a 5-bridge graph or a graph obtained
from a 4-bridge graph and a cycle by overlapping on an edge or a graph
obtained from a generalized &graph and two cycles by overlapping on edges.
By Theorem3, suppose H is obtained from a 4-bridge F(qa,,4a,,4;,a,)and a
cycleC, by overlapping on an edge, then

P(H) = —Z—[TI(y* + (1" )+ y* TIGA™ + (=) )OA +(=1)») (D
(y+])

Let p(H) = —2— o(H), then
(y+1)
O(H) = [y™reor +ya,~a,+a,m,-| + (7 FD((=1)H7% oo g (=) yora
(—I)F yoaes 4 (L1)o rsan . (Z[)0 o g (Z[)S% e ) 4
(yz _1)((_l)n,~a_‘#a, ya, +(_1)n,¢a,+a‘ ya, +(_1)al¢a1*a4 ya, +(_l)a,»az¢a, ya‘)
+(=DAE (Y D) +(=D))

Suppose H is obtained from a generalized @-graph&(a,,a,,4a;) and two cycles
G, »C;, by overlapping on edges, then

P(H) =2 [TI0" +(-D*")+y* TI" + )T +(-1)*) @
(y+D)

We let pHy=—2—_0(#H), then
(r+1)'

Q(H) = (p+ Dy ™™™ 4 ()% (p+ Dy ™57+ () (p+Dy™ ™77 +
(DB (P Dy 8 4 (<) (p+ D)y S h T 4 (<) (p ]y
+(p DY o + (=D)A pT (<D Y ] (p+ 1)y
[(_l)o,mqu. ya, +(_l)a|¢a,+b| ya2 + (_l)aya,ob. yn. ] +(_l)a,m,w, ( yz _])yb,Qb:—z
+(=D)A B (p? —YhT (=) (PP =1yt 4+ (=D (p+1)
[ 750787 4 ( 1) 4 (D) Y% (D)% P 4 (1) (2 1)
Proof of Lemma 1. LetG = F(a,b,b,b,b), wherea =2, b 2 a+1, by Theorem 3

PG)=—2 A0 +EDTHOP +EDM) Y O + (DO + (1)) )
(y+D)
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We let P(G)=—2 -0(G)» then
(»+D

0G) = (y+)y” " +6y™* (y+D)+(-1)'4y"* (3* =)+ y*(y* +1) +

D™ 4" (y+ D+ (=1)6y* (57 =1 +(=1)**4y* (3 + 1) +(=1)° (* -1)
Now suppose H is chromatically equivalent to G, there are the following three
cases about / to be considered.
Casel.l: H is 5-bridge graph F(a,,a,,4;,4,,a,), Wwhereq, 2 a, 2a, 24, 2 4.

- Yy a, _1\a+ 4 a,-1 —1\* )] = Yy
P(H)—(yﬂ),,[l'l(y D)+ IO +(=D)™)] oD Oo(H)

Since P(H)=P(G), we have Q(H)=0Q(G). Now we solve the equation
QO(H) =Q(G). By |V(G)|=|V(H)|, we have a+d4b=a +a, +a, +a, +a;. After
canceling y* and constant terms, it is easy to see that the lowest power term in

QAG)-(-1°(»' -1 is y°, which cannot be canceled with the other terms in
Q(GE., (-1)°(»* -1). The lowest power term in Q(H)—(—I)Z"’ y —(—I)Z"‘" is
(-1)* y*, which cannot be canceled by the other terms in
o(H )—(—I)z" y' -(-l)z”"' either. For polynomials to be equal, the coefficients
of corresponding power terms must be equal. Hence a, = a. We have known that
the girths of both G and H are g(H) = g(G) = a +b, the number of cycles whose
lengths are equal to the girth is 4, i.e.C,(H) =C,(G) =4.By a, = a, we know
that g(H) = a+b implies that there is at least one amonga,, a,, 4,, a, is b. So we
can let a, =b. C,(H)=4 implies either @, =a, =a, =a or a =a, =a, =b.
If g =a, =a,=a, we get g(H)=2a<a+b, which contradicts g(H)=a+b.
Thereforea, =a, =a, =b,i.e. H = F(a,b,b,b,b).

Casel.2: H is obtained from a 4-bridge graph F(q,,a,,a,,4,)and a cycle G,
by overlapping on an edge, where q, 2a, 24, 2a,. P(H) is given by (1).
By [V(G)|=|V(H)|, we have a+4b=3a, +b —1. g(H)=g(G)=a+b implies
b, 2 a+b.Obviously the lowest power term in (G)—(~1)*"'is y° or (-1)°»*, and
no cancellation is possible between them. It is also easy to see that the lowest
power term occurring in Q(H )-(—l)z"' ** is one of (-—l)-z;m’b'+l y™,
(—l)z"""" y’and (=% y*™, which cannot be cancelled by the other terms in
O(H)~(-)Z*"™ either, 50 min{a,,3,5, ~1} =min{a,4}. Since min {a.3,4 1} <3,
we havemin {a,4} =a<3.
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In the following, we will verify that both —1=aandmin{q,,3, -1} =4,
are impossibilities.

Ifb, —1=a, then b = a+1, which contradicts b, 2 a+b.

lfmin{a.,,3,bh -1} =a,,thena, =a<3.As we knowa2>2,so we reach the
conclusiona, =a=2, q, 2 a, 2 a; 23. After canceling the lowest power terms
occurring in both O(G)and Q(H), the lowest power terms occurring in Q(H)
are the several ) terms, and they cannot be cancelled in Q(H) itself. Otherwise,
the lowest power term occurring in Q(G) is (=1)"*4y® or (~1)* »*. For
polynomials to be equal, the coefficients of corresponding powers of y must be
equal. Thus we only have g =a, =g, =b=3.1t is noted that we can get
b =4<g(G) by letting a=a,=2, g =a,=a,=b=3 in a+4b=3Ya, +b -1,
which is a contradiction.

By the two cases above, we must have a=3.Clearly, the coefficient of y* in
Q(G)is 1, soa, 24, b 23+b27. After canceling equal terms in both Q(G)
and Q(H), we note that the lowest power term in Q(G) is (—1;__“':""1{;:’ or
(=1)"y* which cannot be cancelled by each other, and inQ(H)is(-1)*  »*
or(—l)z"‘ ¥ which also cannot be cancelled by each other. Sinced, > a+b,
b -12b+(a~-1)2b+1, hence the lowest power term in Q(H)is one term or
several terms or all terms belonging to (—l)?-:*"M“I ¥*.On the other hand, we have
knowna =3, b2 a+1.Thereforeb > 4.

If5 = 4,then the lowest power term inQ(G) is-5y*, however for O(H),even
if everya,is equal to 4, the coefficient of y*cannot be more than 4, hence
b>5. The lowest power term in Q(G) is (—1)**** y*, so there is only one ing,, a,,
a, and g, equaling to 4, the three others are all more than 4. Without loss of
generality we may assume that q =4q2q 2425 By a+4b=3%a, +5 -1,
a=3and q, =4, we can get4b=gq, +a, +a, +b, easily. After letting a =3,
a, =4 both inQ(G)and O(H),and canceling all equal terms, we can find that
the _lowest power term in Q(G) is (-1)2°4)y* or »*, and in Q(H) is
(-l)"z"NM Y (k=123) or (—l)z“' ¥ or (—l)"‘M % Note that b —125b+1,
a, +2=6,s0 ifb=35,the lowest power term inQ(G)is4y’, however the plus
of (—l)'?“""l Y (k=123)in Q(H)is no more than3y’, therefore, we have 526.
Sincedb=q +a, +a, +4,thus we have y* =(-l)"‘a' * y***. The lowest power term
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+

in O(G)is (-1)"* 4y’ , and inQ(H) is (-l)"z'a " ¥* (k =1,2,3)or the plus of them.
But we can find no matter whatb is equal to, the lowest power terms in O(G)
and Q(H) are not equal. Hence O(G)# Q(H), i.e. H is not chromatically
equivalent to G.
Casel.3 H is obtained from a generalized &graph 8(a,,q,,qa,) and two
cycles C,,C, by overlapping on edges, where g >a,2q, 22. By
g(H)=g(G)=a+b, we can assume b, 2b, 2a+b.1t is noted that P(H) has
been presented by (2). By|[V(G)|=|V(H)|, we havea+4b=3a + 35 —2.At
the same time, we can easily find that the lowest power term in Q(G)—(~1)**!
is y* or (=1)” »*, which can not be cancelled by each other, and the lowest power
term in Q(H)—(~1)Z"" 24 js (=1)@*2*h*h 8 op (ZaZh 2 Lhich
also can not be cancelled by each other. But ifa, =2, the coefficient of y*
occurring in Q(H) is no more than 2, and occurring in Q(G) is no more than 1.
Soa, 23, and there must be y* =(—1)2""2% }? je a=2. After canceling
equal terms of y* occurring in Q(G)and Q(H ), the lowest power term in o(G)
is (-gi‘tghor ¥*,and in Q(H)is one term or the plus of at least two terms of
(<)% "%, Clearly, b > 4. Because ifb<4,the coefficients of »* occurring
in O(G) and Q(H) are not equal. So a; =4,4 2a,25. Now we let
a; =4inQ(H),and cancel all equal terms in Q(G)and Q(H). We find that the
lowest power term in O(G) is (—1)° 4y°, which can not be cancelled by the other
terms in Q(G).Sinced, 2a+b=2+b,i.e.b, =12 b+1,it is easily seen that the
absolute value of the coefficient of the lowest power term in Q(H) is no more
than 3. Therefore, O(G) # Q(H), i.e. H is not chromatically equivalent with G.
By considering the three cases about // above, we obtain that 5-bridge graph
G = F(a,b,b,b,b) is chromatically unique.
Proof of Lemma 2. LetG = F(a,a,b,b,b),wherea>2,b> a+1,similar with
the Proof of Lemma I, by the Theorem3

PG) = —Z—[(y* +(=1)"') (0" +(-D"') +y* (3" +(=D")* (3 +(-1)*)’]
o+D

we let P(G) =—2—Q(G), then
O+

D
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Q(G) y2a+3b-l (y + l)+ 3y2a¢b (y + l) + (_l)a’b 6yn+2b (y + 1) + (_ l)b yZa (yz _ l)
+1F 6y (p2 = 1)+ (10 2)° (0F + 1)+ y*2 (r+ D) +35° (0 +1)
+ (1392 (P =)+ (- 1)

Now suppose H is chromatically equivalent to G, there are the following three
cases about H to be considered.
Case2.1 H=F(a,a,,a,,4a,,a), a,2a,2a, 24, 24,

P(H) = 1%+ y* Ty +(=1)™)]=

L]

H
( (+1)Q()

That H is chromancally equivalent with G implies |[V(G)|=|[V(H)|, i..
2a+3b =Y a,.In the following, we analyze O(G)and Q(H). The lowest power
term in Q(G)-(-1)° (y4 —l)is (-1)"*2y”, which cannot be cancelled by the
other terms in Q(G). The lowest power term in Q(H Y= (=1)Z% —(—l)z""I is one
term or the plus of at least two terms of (—l)"'q y* (k=1,2,3,4,5). For
polynomials to be equal, the coefficients of corresponding power terms must be
equal. Hence a, =a, = a. After canceling all equal terms in both O(G) and
Q(H), We note that the lowest power term in O(G)is3 »® which cannot be
cancelled in O(G), and in Q(H) is one term or the plus of at least two terms of
(-I)En' y* (k=1,2,3) which also cannot be cancelled in O(H), thus we have
a, =a, =a, =b,i.e. H = F(a,a,b,b,b).
Case2.2 H is obtained from F(a,,a,,4;,4,)and a cycleC, by overlapping on
an edge, whereag, 2 4q, 24, 2q,.

Because g(H) = g(G) =2a,s0b, 22a. P(H) is presented by (1). That H is
chromatically equivalent withG implies |V (H)|=|V'(G)|, i.e.2a+3b+1=2a, +5,.

Obviously the lowest power term in Q(G)—(-1)*"'is (-l)‘"b 2y°or(-1)° y*,
and no cancellation is possible between them. It is also easy to see that the
lowest power term occurring in Q(H)—(—l)z"""l is one term or the plus of at
least two terms of (—l)?”w v (k=123,4), (—l)z"""I * and (-l)za ht)
which cannot be cancelled by the other terms in Q(H )-(—I)Z"’ *h elther,
so min{a,,3,b -1} =min{a,4}. Since b 22a, b -122a-12a+l, hence
min {a, ,3,} =min{a,4} =a <3. Since in O(G) the coefficient of y*is 2. For
polynomials to be equal, the coefficients of corresponding powers of y must be
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equal. Thusa=gq, =30ra=g, =q, =2.

Ifa=a, =3, a 24 (i=1,2,3). As we know g(H) = g(G) =2a,s0 we have
b =2a. After canceling the terms of y° both in Q(G)and Q(H), we can easily
find that the lowest power term in Q(G) are the several y* terms, and they cannot
be cancelled in Q(G)itself. Otherwise, the lowest power term occurring in
e (k=1,23). If
b=4,then the lowest power term in Q(G)is4y*,but the coefficient of y*in

Q(H) is one term or the plus of at least two terms of| (-I)g; *

QO(H)is no more than 3, thereforeb #4,i.e.525, and the lowest power term
occurring in Q(G) is (—1)" y*,thus a, =4.Because > 5, the length of the second
shortest cycle of Gisa+b 28, otherwise, the length of the second shortest
cycle of H isa;, +a, =7, for bothG and H have only one cycle of the shortest
length; by the Theorem2, H is not chromatically equivalent with G. This
means a = g, =3 is impossible.

Ifa=a, =a, =2,because both G and H has only one cycle of the shortest
length, so b 25. Now letting a=aq, =q, =2 in both O(G) and Q(H), after
canceling all equal terms, i.e. the terms of y*and constant terms, the lowest
power term in Q(H) is the terms of y°, but the lowest power term occurring in
Q(G)is3y*. Thusa =a, =b=3.By2a+3b+1=3 g, +b,, we haveb, =4, which
contradicts b, > 5.

Therefore H is not chromatically equivalent with G.

Case2.3 H is obtained from a generalized @graphé(a,,a,,a,)and two cycles
C, G, by overlapping on edges, whereq, > a, > a, 22.By g(H) = g(G) =2a,

we can assume b, 2 b, > 2a. It is noted that P(H) has been presented by (2). By
[V(G)|=|V(H)|, we have2a+3b=3a +3b -2. At the same time, we can
easily find that the lowest power term in Q(G)—(-1)" is (-1)"" 2y°

or (-1)* *, which can not be cancelled by each other, and the lowest power term
in Q(H) - (-2 2 s (=1)@**4+82 3% o 1yZ T )2 which also can
not be cancelled by each other. For polynomials to be equal, the coefficients of
corresponding powers of y must be equal. So the lowest power term
in Q(G)—(-1)*"is(-1)""" 2y°,and we must havea=a, =2, g, 2 a, 3. With
this we have g (H) = g(G) = 4. Because bothG and H have only one cycle of
the shortest length, therefore we only have 8, =4, b, > 4. Now the lowest power
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term in Q(H)is(-1)*""%"' y’,but there are not the terms of y’ in Q(G).
Thus (-1)**%*%*! y” must be cancelled inQ(#)itself. Becausea, 2 a, 23, then it
is only possible that(~1)****%* 3’ can be cancelled by (=1)"**"*% % je.
) y"' But if g, =3, then (=1)*"%* y* =(=1)""* »*, which is equal
to (-1)** y%. That is to say, (- 1)""”2*"1’I * cannot be cancelled
by (—l)“""”’WZ y*. Similarly (=1)2*%*%*"3’ cannot be cancelled
by (—1)®*%*4*%  either. Therefore O(G) # Q(H),i.e. H is not chromatically
equivalent with G.

By the three cases of H above, we know that 5-bridge graph F(a, a,b,b,b)
is chromatically unique, i.e. the lemma 2 is proven.
Proof of Lemma 3. AssumeG = F(a,a,a,b,b),a>2,b>a+1l, similar with the
Proofs of Lemma 1 and 2, by the Theorem3:

P(G) = y 5 [07 + D= 0P + 1P+ 3 5 + D + (1Y

(y+

(y+l) T (@)

QG) =y (y+ D)+ (1P 6y (p+ ) +3y" P [+ D)+ (=1)"3y (¥ - D+ 124 (0 +1)
PN +HED 6y =)+ 1y =14 3p° (7 + D+ =D D)
Now assume that H is chromatically equivalent toG.In the following,
we will consider all possible cases about H.
Case3.1 H=F(a,a,,a,,4,,a), a 2a,2a, 2a, 2a;,

o [n(y +=D5 )+ TIY™ +(-D)" )]— )
That H is chromatlcally equivalent with G implies |V O)|=vH), ie
3a+2b=3%a.In the following, we analyze O(G) and O(H). By observing
Q(G) and Q(H), we can find that the lowest power term in
oG)- (-1 ( ! -l) is3y“, which cannot be cancelled in O(G), the lowest power
term _in Q(H)-(-l)z"' (y" -l)is one term or the plus of at least two terms of
(-l)"'a‘ y* (k=12,---,5). By Q(G)=Q(H), we know that the corresponding
power terms are equal in both hands. Soa; =a, =a; =a.By3a+2b=3 a,,we

P(H)=

geta, +a, =2b, after canceling all equal terms, the lowest power term in O(G)
is(=1)"" 2y* and cannot be cancelled in Q(G), the lowest power term in Q(H)
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is one term or the plus of (-—1)'-2' : y* (k=12)and cannot be cancelled in
Q(H) either. So we have a, =a, =2b.i.e. H = F(a, a, a, b,b).

Case3.2 H is obtained from F(a,,a,,a;,a,)and a cycle C,, by overlapping on
an edge, whereq, 2 a, 2q, 2 q,.

P(H) is presented by (1). That H is chromatically equivalent with G
implies |V(H)|=|V(G)|, i.e. 3a+2b+1=%a +b. Because g(H)=g(G)=2a,
sob 22a.

By observing O (G ) and Q(H), we can find that the lowest power term in
Q(G)~(-1"""is 3y or(-1)" »*, and no cancellation is possible between them;
the lowest power term in Q(H )—(—I)Z“”b’ is (—1)?' - y* or
(—I)Z“’“" y or (—I)Z"' »*~', which also cannot be cancelled by each other.
Hence min{a,4} = min{a,,3,5 ~1}. Since 4, > 2a, s0 b, —1>2a—12 a+1. Therefore
a=min{a,4} =min{a,,3}. .The coefficient of y* in Q (G ) is 3. For two
polynomials to be equal, the coefficients of corresponding power terms must be
equal. So there are only two possible cases: one isa=a, =a, =3, a, 2 q, 24,
and the otherisa=a, =a, =a, =2.

Ifa=a, =a,=3and q, 2 a, 24, then no matter what the value of 4, is
C, (H) <2.This is a contradiction with C, (H) = C.(G)=3.

If a=a,=a,=a,=2, as C,(H)=C,(G)=3, so b 5. After letting
a=a, =a; =a, =2both inQ(G)and Q(H),and canceling the terms of y* and
constant terms, the lowest power term in Q(H) is (—I)Z"‘ *% 37, which cannot be
cancelled by the others inQ(H),and at meantime, the lowest power term in
O@G) is (-1)"" 2y* or (<1)"'2y*. But by 3a+2b+1 =Ya +b, we get
2b=a, +b, —127,this meansb > 3. Therefore the lowest power terms both in
O(G)and Q(H ) are not equal, i.e. the case a = a, = a, = a, =2 is impossible.

From the two cases above, we could get that H is not chromatically
equivalent with G.

Case3.3 H is obtained from a generalized &graphé(a,,a,,a,) and two cycles
C, »C,, by overlapping on edges, wherea, 24a, 24, >2.

P(H) is presented by (2). That H is chromatically equivalent with G
implies |V(H)|=|V(G), i.e. 3a+2b+2=F a +3b,. Because g(H)=g(G)=2a,
S0 we can assume b, 2 b, > 2a.
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Similarly the lowest power term in Q(G) —(-1)""'is3y” or(-1)" y*, and no
cancellation is possible between them; the lowest power term in
o(H —(—l)z"'*zb‘*’ is one term or the plus of at least two terms of
(-1)"""”"%2 ¥y (k=1,2,3) ancl(-l)z‘“z"‘ y*, which also cannot be cancelled by
each other. Sincea 22, thusa=a, =a, =22andq > 2. BecauseC,(H)=C,(G)=3,
therefore we must have b =b, =4. By 3a+2b+2=3%a +X b, we get
2b=a, +4. After canceling the terms of y*and constant terms both in Q(G)
and Q(H). The lowest power term in Q(G) is (-1)‘"" 2y or (-1)"y°, ie.
(-1)" 2y’ or y*, and no cancellation is possible between them. The lowest
power term in Q(H) is (~1)%*%"4*% y o (<) 2% "5 " YA~ op (—1) 244" -t g,
y* or —2y*. Thus (1)’ 2y* =-2)°, this means b=3. Now letting b=3
in2b=aq, +4,we getq, =2, which contradictsq, >2.S0 / is not chromatically
equivalent withG.

By the three cases of H above, we know that 5-bridge graph F(a, a, a, b,b)
is chromatically unique, i.e. the lemma 3 is proven. .

Proof of Lemma 4. AssumeG = F(a,a,a,a,b),a 22,b 2 a+1,similar with the
Proof of the three lemmas above, by the Theorem3:

PG)=—2— [67 + D) 0F + D)+ O+ (D) O + ) )
y+1)

Yy
= G

O(G) = y**  (y+ 1) +6y** (y + )+ (=1)* 4y ()’ =D+ y* (¥’ +1)
+HED T Ay (1) (-1 6y7 (B =D+ (=D 4y° (¥ +D+(=1)’(»* -1)

Now assume that A is chromatically equivalent to G.In the following, we
will consider all possible cases about H.
Cased.1 H=F(a,a,,aq,0a,,a), a 2a,2a,2a, 2a,,
PUH) == [0~ + 0+ y* O™ +(-1™)]= G2
That H is chromatically equivalent with G implies [V(G)|=|V(H)|, ie.
4a+b=3a.In the following, we analyze Q(G) and Q(H). The lowest power
term in Q(G)—(-1)" y* is(=1)"** 4y, which cannot be cancelled in Q(G). The
lowest power term in Q(H)-(-I)Z“' y* is one term or the plus of at least two
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terms of (—I)Ea' y*.By O(G) =Q(H), we know that the corresponding power
terms are equal in both hands. Soa, =4, =a, =4, =a.Byda+b=3 a,we get
a =b, ie. H=F(a,a,a,a,b).

Cased.2 H is obtained from F(a,,a,,qa,,a,)and a cycle G, by overlapping on
an edge, whereq, 2a, 2 a, 2 a,.

Because g(H) = g(G) =2a,s0b >2a. P(H)is presented by (1). That 4 is
chromatically equivalent with G implies |V (H)|=|V(G)|, i.e. 4a+b+1=3 g, +8,.

By observing Q (G ) and Q(H), we can find that the lowest power term in
Q(G)-(-1)"""is (=1)"*4y" or(~1)’ y*,and no cancellation is possible between
them, the lowest power term in Q(H )—(—l)z"‘ B is (=l - y* or
(—l)z"' Ay or (—I)Z”’ »*™', which also cannot be cancelled by each other.
Hence min {4,4} = min{a,,3,5 -1}.

AS b 224, 50 b ~122a~12a+1. Therefore a=min {a,4} = min {q,,3}. The
coefficient of y* in Q (G ) is4, for two polynomials to be equal, the
coefficients of corresponding power terms must be equal. So there are only two
possible cases: One is a=a,=a,=a,=3, 424, and the other is
a=a =a,=a, =aq, =2.

Ifa=a, =a, =a, =3and g 24, then no matter what the value ofj is,
C, (H) <4.This is a contradiction with C, (H) = C.(G)=6.

Ifa=a =a,=a,=a,=2,as C,(H)=C,(G)=6, so b, 25. After letting

a=a =a,=a; =a, =2both inQ(G)and Q(H), and canceling the terms of
y'and constant terms, the lowest power term in Q(H) is (—])2“’ *% 33 which
cannot be cancelled by the others in Q(H), and at meantime, the lowest power
term in Q(G) is y* or (-1)**' 5y*. This means that only ifb = 3, we can guarantee
QO(H) = Q(G). However, by lettingb=3 in4a+b+1=Ya +b, we geth =4,
which contradicts the above b, 2 5.Hence H is not chromatically equivalent
withG.
Cased.3 H is obtained from a generalized égraph 6(q,,a,,a,) and two
cyclesC, ,C, by overlapping on edges, whereq, 2 g, > q, > 2. Since the number
of cycles in 5-bridge graph F(a,a,a,a,b)with length g is C,(G) = 6. Whereas
for H, no matter what a,,a,,a,,b and b, are equal to, we always have
C,(H) <5.S0 H is not chromatically equivalent with G.
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By the three cases of H above, we know that 5-bridge graph F(a, a,4,a,b)
is chromatically unique, i.e. the lemma 4 is proven.
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