ON THE USUAL FIBONACCI AND GENERALIZED
ORDER-t PELL NUMBERS
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ABSTRACT. In this paper, we give some relations involving the usual
Fibonacci and generalized order-k Pell numbers. These relations
show that the generalized order-k Pell numbers can be expressed as
the summation of the usual Fibonacci numbers. We find families of
Hessenberg matrices such that the permanents of these matrices are
the usual Fibonacci numbers, Fa;_1, and their sums. Also extending
these matrix representations, we find families of super-diagonal ma-
trices such that the permanents of these matrices are the generalized
order-k Pell numbers and their sums.

1. INTRODUCTION

The well-known Fibonacci sequence {F,} is defined by the following
recursive relation, for n > 2,
Fn=Fn—1+Fn—2-
" with initial conditions F; = F» = 1.
The Pell sequence {P,} is defined recursively by the equation, for n > 2
P,=2P,_1+ P, (1.1)

where P, =1, P, = 2.
In [5], Ercolano gave the matrix method for generating the Pell sequence
as follows:

n __ Pn+l Pn
M _[ 5 Pn_]] (1.2)

The permanent of an n-square matrix A = (a;;) is defined by
n
perd= 3 [ ewn
OES, i=1
where the summation extends over all permutations o of the symmetric

group S,.
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In [20}, Minc defined the n x n super-diagonal (0, 1)-matrix F(n,r) and
showed that the permanent of matrix F (n,r) equals to the generalized
order-k Fibonacci number. Also in [18], the author proved the same re-
sult of [20] by a different method, the contraction method for permanent
of a matrix. In [11], the authors gave the generalized Binet formula and
combinatorial representations of the generalized order-k Fibonacci and Lu-
cas numbers. Many studies have been done by several authors about the
relationships between the linear recurrence sequences and the permanent
or determinant of matrices (for example see [5-12]). Furthermore, in [19],
Lehmer gave the relationships between permanent of tridiagonal matrices,
recurrence relations, and continued fractions. In [4] and (3], the family of
tridiagonal matrices H (n) is defined and the authors show that the de-
terminants of H (n) are the Fibonacci numbers Fy. In a similar family of
matrices, the (1,1) element of H (n) is replaced with a 3, then the determi-
nants, [2], now generate the Lucas sequence Ly. Also in [21] and [22], the
authors define a family of tridiagonal matrices M (n) and show that the de-
terminants of M (n) are the Fibonacci numbers Fan 2. In {17], the authors
showed that the relationships between the tridiagonal determinants and the
second order linear recurrences. Then the authors gave the factorizations
of these recurrences by considering the determinant of these matrices by
product of theirs eigenvalues.

Define k sequences of the generalized order-k Pell numbers as shown [16]:

Pi=2P \+P. ,+...+Pi_, (1.3)
for n > 0 and 1 < i < k, with initial conditions
i_ 1 ifi=1- n, _
P"_{ 0 otherwise, for1-k<n<0,

where P; is the nth term of the ith sequence. When k = 2, the generalized
order-k Pell sequence, { P¥}, is reduced to the usual Pell sequence.

When i = k in (1.3), we call P* the generalized k-Pell number.

For example, if i = 4, then P4; = 1, P, = P4, = P§ =0, and then
the generalized order-4 Pell sequence is

1,2,5,13,34,88,228,....

The fundamental recurrence relation (1.3) can be defined by the vector
recurrence relation

Pio 2 1 11 P}
P 10 0 0 Pi_,
P;_, =101 00 FP; (1.4)
Prit—k+2 00 10 P:;—k+l
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for the generalized order-k Pell sequences. Letting

21 ... 11
10 00

R=[rijlex = 9 1 (_)9 a (1.5)
00 ... 10

the matrix R is said to be generalized order-k Pell matrix.
To deal with the k sequences of the generalized order-k Pell sequences
simultaneously, we define an k x k matrix E, as follows:

Pl P2 .. pk
P, P, ... P
En = [eijlini = . . . . (1.6)
Pri—k+1 P‘r%—k-#l tte P‘rll.c—k+l

Generalizing Eq. (1.4), we derive
Eny1=R-En. (1.7)
Since E; = R, the following result is immediate:
E,=R"
Also the following property of the generalized order-k Pell numbers can
be found in [16): Let P} be the generalized order-k Pell number, for 1 <

i < k. Then the following result is deduced immediately from the fact that
m = e'lrEmEne,- for all positive integers n and m

. L
Poim= 21 PLP, i (1.8)
Jj=

For example, if we take £ = ¢ = 2 in the Eq. (1.8), we have
Plym=PnPi+PLP:,
and, since P, = P2, for all n € Z* and k = 2, we obtain
P =Pl \PI+P2P?

where P? is the usual Pell number. Indeed, we generalize the following
relation involving the usual Pell numbers (see [6)):

Pn+m = m+an + P Pnoy.

The purpose of this paper is to derive relationships between the gener-
alized order-k Pell numbers, the usual Fibonacci numbers, and their sums,
and, the permanents of (0,1,2)-Hessenberg and super-diagonal matrices.
The paper also presents unexpected relations involving the generalized
order—k Pell and usual Fibonacci numbers.
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2. ON THE RELATIONS OF THE GENERALIZED ORDER—k PELL AND
UsUAL FIBONACCI NUMBERS

In this section, we show that the generalized order-k Pell numbers can
be written in terms of the usual Fibonacci numbers. From the definition of
order-k Pell numbers, we write that

Pf = 2P+ PF 4. +PF,=1,
P¥ = 2PF+PE+...+PF =2(1)=2,
P¥ = 2PF4PF+...+Pf . =2(2+1=5,
PF = 2PF4+PF+...+PfF,=2()+2+1=13,
PF = 2PF4+PF+.. . +PF,=2(13)+5+2+1=34,....
By the definition of the usual Fibonacci numbers, we know that
Fi=1 F=2 Fy=5 F=13, F=34,

Thus it is seen that

PF = 1=F, Pf=2=F;,

P¥ = 5=F; Pf=13=F,
PF = 34=F
and
Pf=F_, for1<j<k+1. (2.1)

This process continuous the same as the above with small changes as reg-
ularly for & + 2 < j < 2k + 1. By the formula (2.1), we can write that

PF, = 2Pf +Pf+...+P§
= 2Fpu1+Fo-1+...+ F3. (2.2)

From [23], the famous summation formula
n
Z Fyi—y = Fy (2.3)
i=1
is well-known. Thus we can write the formula (2.2) by using the formula

(2.3)

Pt, = Fup+Fapn+Faa+...+FB+FA-F
k+1
= Fuqr+ Y Faic1 = Fi = Fary1 + Farez — Fi = Farys —(B14)

i=1
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By the Egs. (2.1), (2.3) and (2.4),
Pks = 2Pha+Pha+.. .+ B
= APy — F1)+ Fogpr + Fop—1+... + F5
or equivalently

Pty = Faus+FPasa+ P+ P+ + B+ P+ b - (Fs+ Fy +2F1)

K+2
= Fays+ »_ Foi1 — (Fs +3F1) = Facys + Faera — (F3 +3F)

i=1

= Forys — (F3+3F1). (2.5)
Combining the Eqs. (2.1), (2.4}, (2.5) and (2.3), we write that
Pf, = 2P +Pfo+...+Pf

= 2(Forys — (F3+3F1)) + (Forts — F1) + Fop1 + ... + F7
and by some arrangements

Péy = 2Puys+ Fays+ Pk +...+ Fr = (2F3+6F1 + F)
k+3
= Forys+ ZFm‘-l —(Fs+ F3+ F)-(2FR+6F + F)
i=1
Forys + Forys — (F5 +3F3 +8F)
Fory7 — (F5 + 3F3 + 8F1).

" We can shortly write the term

PE s = Faryo — (Fr + 3F5 +8F3 + 21F)).

Since Fo =1, Fy =3, Fs = 8, Fg = 21, we can rewrite the above terms as
follows:

Péo = Fays— FF,

Pés = Fopys — (RFs+ FaFy),

Péry = Fogyr — (BFs+ FyF3 + FsF),

Pés = Foxro— (FoFr+ FyF5 + FgF3 + FyFy)
and in general, for k+2 < j <2k +1

szk+1 = Fuyr — (F2For—1 + FsFas—3 + FsFaxs + ... + Fox—aF3 + Fau F1)

k
= Fayi1— Y Foj1Fagsr-i
i=1
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or more conveniently, we may write that, for 1 <t <k

t
Pt i1 = Fogerrry-1 — 3 Faica Fagre1—i)-
i=1

So we show that the generalized order-k Pell numbers, P;‘, can be repre-
sented by the usual Fibonacci numbers, Fj, for 1 < j < 2k + 1. Also we
note that these representations can be extended for more j, j > 2k + 2.
However the computings are very large and not easy. Moreover, just now
we can say that the above rule can be continued by some changes.

A matrix is said to be a (0, 1, 2)-matrix if each of its entries is either 0,1
or 2.

3. THE FiBoNAcCi NUMBERS BY HESSENBERG MATRICES PERMANENTS

In this section we define a class of Hessenberg matrices. Then we show
that the permanent of Hessenberg matrices equal to the usual Fibonacci
numbers, Fon41.

Let A = [a;;] be an m X n real matrix row vectors ay, 0z, ...,am. We
say A is contractible on column (resp. row.) k if column (resp. row.) k
contains exactly two nonzero entries. Suppose A is contractible on column
k with a;x # 0 # ajx and ¢ # j. Then the (m — 1) X (n — 1) matrix Ajj.
obtained from A by replacing row i with a;x0; + a;x@; and deleting row j
and column k is called the contraction of A on column k relative to rows
i and j. If A is contractible on row k with a; # 0 # ay; and i # j, then the

matrix Ag:i; = [Ag;:k]T is called the contraction of A on row k relative

to columns i and j. Every contraction used in this paper will be on the first

column using the first and second rows. We say that A can be contracted

to a matrix B if either B = A or exist matrices Ag, 4;,... A; (£ 2> 1) such

that Ag = A, A; = B, and A, is a contraction of A,_; forr=1,2,...,t.
Now we consider the following Lemma (see [1}).

Lemma 1. Let A be a nonnegative integral matriz of order n > 1 and let
B be a contraction of A. Then

per A = perB. (3.1)

We define an n x n upper Hessenberg matrix H, = (h;;) with hy; = 2 for
1<i<n, hiy;=1for1<i<n-—-1andh;;=1forj>i Clearly

'211--~111
121 -~ 11
01 2 11

Ho=10 01 11 (3.2)
[0 0 0 1 2|
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Theorem 1. Let the Hessenberg matriz H, be as in (8.2). Then forn > 1
perHy, = Fon 4
where F,, is the nth Fibonacci number.

Proof. Let HY = Hy,, and note that the top row of H? can be written
as [F3 Fp ... Fp]. Foreachl <i < n—2, form Hi from Hi™l
by contracting on its first column. A straightforward proof by induction
shows that for each such ¢, the top row of the (n — i) X (n — {) matrix H. is
[ Fop3 Foipo ... Foiyo ] , while the remaining rows of H agree with
those of H,,_;. It now follows that

per (Hy) = per (H:_2) =2F;m-1+ Fon—2 = Fonyq1.
O

Now we extend the Hessenberg matrix H, to a super-diagonal matrix.
Then we show that permanent of super-diagonal matrix equals to the gen-
eralized order-k Pell numbers in the next section.

4. THE GENERALIZED ORDER-k PELL NUMBERS

Now we show the relationships between the generalized order-k Pell num-
bers and (0, 1, 2) super-diagonal matrices.

We define an n x n (k 4+ 1)** super-diagonal (0,1, 2)-matrix S (k,n) =
(sij), k<n,with ;41 =1for1<i<n-1, s;; =2for 1 <7 <nand
sij=1fori+1<j<i+k—1. Clearly

2 1 1 1 ... 1 0 0 O 0
1 2 1 1 ... 1 1 0 o 0
o 1 2 1 ... 1 1 1 0 0
Sk,n)=1} 0 o 1 2 1 --- 1 1 1 0O
0 o 1 2 1 --- 1 1 1
0O ... ... ... ... ... ... 0 1 2 1
L N
(4.1)
where $ii=2, S12=5813=...=81, =1 and $15,41 = ... = s1p = 0, then

S (k,n) is contractible on column 1 relative to the rows 1 and 2.

Theorem 2. Let the super-diagonal matriz S (k,n) be as in (4.1). Then,
forn>1

perS (k,n) = Py,
where P¥ is the nth generalized order-k Pell number.
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Proof. We will prove that perS (k,n) = Pk _; by induction method on ¢.
We consider two cases. Firstly, if 1 <t < k and k¥ = n, then the matrix
S (k,n) is reduced to the matrix S (t,t) which equals to the Hessenberg
matrix H; given by (3.2). From Theorem 1, we know that perH; = F5;q,
and from (2.1), we know that Fpq1 = P, for 1 <t < k + 1. Thus we
obtain that

perS (t,t) = perH, = Pf,,. (4.2)

We now consider the second case; let k < nand k+1 <t <n If
t = k+ 1 and we compute the perS (k,k + 1) by the Laplace expansion of
the permanent with respect to the first row, then we have

perS (k,k + 1) = 2perS (k, k) + perS (k,k — 1) +... 4+ perS(k,1)
and by (4.2), we can write that
perS (k,k+1)=2P¢  + PE+Pf_ +...+ Pf
and by (1.3), we obtain
perS(k,k+1) = Pf,.
We suppose that the equation holds for ¢ and k + 1 < ¢ < n, then we have
perS (k,t) = Pf,,. (4.3)

Now we show that the equation holds for ¢ + 1. Computing perS (k,t + 1)
by the Laplace expansion of the permanent with respect to the first row,
weobtainfork+1<t<n

perS (k,t + 1) = 2perS (k,t) + perS(k,t —1)+...+perS(k,t —k +1)
and by (4.3) and (1.3), we have
perS (k,t+2) =2Pf, + P + Py +...+ Pliyn = Plis.
So the proof is complete. O

5. SUMS OF THE GENERALIZED PELL NUMBERS BY MATRIX METHODS

n—1
In this section, we give the sums of Fibonacci numbers, Y Fb;;1, and
i=0
. n—1
sums of generalized order-k Pell numbers, > P}, by the permanents of
=0
two square matrices.
Firstly, we define an n x n upper (0, 1, 2)-Hessenberg matrix W, = (w;)
with wy; = 1for1 < j < n, w; = 2 for 2 <i < n, wiy1,; = 1 for
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1<i<n-1and w;=1for j >i> 1. Clearly,

11 1 -~ 11
1 2 1 -~ 11
o 1 2 - 11
o --- 0 1 21
000 - 0 1 2]
By the definition of W,,, it is easily seen that
1 1 1 ... 1
1 Hn
Wn+1 = 0
0

where H, is given by (3.2).
Then we have the following Theorem.

Theorem 3. Let W,, has the form (5.1) and F, is nth Fibonacci number.
Then forn > 1
perW, = Fy,.

Proof. From Theorem 2, we have per (H,) = F5,,;. Expanding the per-
manent of W, 4, along the first column, we have

per (Wei1) = per (W) + per (Hy) = per (Wy) + Fanta-
The conclusion now follows by a simple induction proof. g

We note that by (2.1) and Theorem 4, we have that

k-1 k—1
perWi =3 Fain=) Piy
=0 =0

Second, we define the n x n matrix V (k,n) as follow

1 1 1 1 ... 1 1 1 1 1
1 2 1 1 ... 1 1 0 0 0
0o 1 2 1 .. 1 1 1 0 0
Vemy=| o ... o 1 2 1 --- 1 1 1 0],
0 ... ... 0 1 2 1 - 1 1 1
0 0 1 2 1
| 0 0 1 2 |
5.2)
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or by the definition of S (k,n), we write that

1 1 1 ... 1
1 S(k,n-1)
Vikn)=|0
0

where S (k,n) is given by (4.1).

Theorem 4. Let V (k,n) has the form (5.2) and Pk is the nth generalized
Pell number. Then forn > 1

n
perV (k,n) = Z P;‘.

=1

Proof. (Induction on n.) If n = 2, then we have
11
perV(k,2)—per[1 2] =3.

From the definition of the generalized Pell numbers, we know that Pf =1
and P¥ = 2. Thus perV (k,2) = Pf + P§ =3.
If n = 3, then we have

111
perV(k,n)=per| 1 2 1 | =8
01 2

Since Pk =1, P¥ = 2 and P§ =5, perV (k,3) = Pf + P§ + P§.
We suppose that the equation holds for n. Now we show that the equation
holds for n + 1. Computing perV (k,n + 1) by the element of first column,

42



gives us

1 1 1 1 1 1 1 1
1 2 1 1 1 0 0
perV (k,n+1) = per 0 0 (1] ? ; 1 1 (1)
0 0 1 2 1
| 0 . 0 1 2 |
[ 2 1 1 1 0 0 0 ]
1 2 1 1 1 0 0
N 0 ... 01 2 1 ... 1 0
PETl o .. ... 0 1 2 1 ... 1
0 ... oo vco ... 0 1 2 1
[ 0 ... .. . . .. 0 1 2|

which, by the definitions of S (k,n) and V (k,n), satisfy
perV (k,n+ 1) = perV (k,n) + perS (k,n).
By our assumption and Theorem 3, we obtain that

n n+1
perV (k,n+1)=Y PF+Pk, =" Pk
J=1 i=1

So the proof is complete. a

A matrix A is called convertible if there is an n x n (1, —1) —matrix H
such that perA = det (A o H), where Ao H denotes the Hadamard product
of A and H. Such a matrix H is called a converter of A.

Let T be a (1, —1) —matrix of order =, defined by

1 1 1 ... 11
-1 1 1 ... 11
1 -1 1 ... 11
T= 1 1 -1 11

1 1 1 ... -1 1

Then we have the following results.
Let F,, be the nth Fibonacci number. Then, for n > 1

Fony1 =det(HyoT)
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and
n-—1

Z Fojp1 =det (W, oT).
j=0
Let P¥ be the nth generalized order-k Pell number. Then, for n > 2

Pk =det(SkoT)

and n

ZP;‘ =det (VFoT).

j=1
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