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Abstract

Let F™ (resp. AG(n, F,)) be the n-dimensional vector (resp.
affine) space over the finite field Fy. For 1 <i<i4s<n—1 (resp.
0<i<i+s<n—1),let L{i,i+ 3;n) (resp. L'(4,¢ 4+ s;n)) denote
the set of all subspaces (resp. flats) in F$® (resp. AG(n, Fy)) with
dimensions between i and i + s including Fy™ and {0} (resp. 0). By
ordering L(%,7 + s;n) (resp. £'(3,i+ s;n)) by ordinary inclusion or
reverse inclusion, two classes of lattices are obtained. This article
discusses their geometricity.
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1 Introduction

In this section We recall some terminology and definitions about finite
posets and lattices ([1, 2]).

Let P be a poset. For a,b € P, we say a covers b, denoted by b <-a, if
b < @ and there exists no ¢ € P such that b < ¢ < a. If P has the minimum
(resp. maximum) element, then we denote it by 0 (resp. 1) and say that
P is a poset with 0 (resp. 1). Let P be a finite poset with 0. By a rank
function on P, we mean a function r from P to the set of all the integers
such that 7(0) = 0 and r(a) = r(b) + 1 whenever b <- a.

*E-mail address: guojun_1f@163.com

ARS COMBINATORIA 88(2008), pp. 47-53



A poset P is said to be a lattice if both a V b :=sup{a,b} and a A b :=
inf{a, b} exist for any two elements a,b € P. Let P be a finite lattice with
0. By an atom in P, we mean an element in P covering 0. We say P is
atomic if any element in P\ {0} is a union of atoms. A finite atomic lattice

P is said to be a geometric lattice if P admits a rank function r satisfying
r(a Ab)+r(aVb) < r(a)+r(b),Ya, be P.

The results on the lattices generated by orbits of subspaces under finite
classical groups can be found in Huo, Liu and Wan ([5, 6, 7]), Huo and
Wan ([8]), Gao and You ([3]), Orlik and Solomon ([10]), Wang and Feng
([11]).

Let Fy be a finite field with g elements, where g is a prime power. Let
F ((,") denote the n-dimensional row vector space over F,. For any integer
7 with 0 < r < n, the cosets of ]FS") relative to any r-dimensional vector
subspace are called r-flats. Define the empty set  to be the —1-flat. The
dimension of an r-flat U + u is defined to be r, denoted by dim(U +u) =r.
An r-flat is said to be incident with an s- flat, if the r-flat contains or is
contained in the s-flat. The point set Ff,") with r-flats (0 < » < n) and the
incidence relation among them defined above is said to be the n-dimensional
affine space and denoted by AG(n, Fy).

The set of points belonging to both flats U + u and V + v is called the
intersection of U + u and V + v, which is denoted by (U + u) N (V +v).
It follows that the intersection of all flats containing two given flats U + u
and V + v is a flat, which is called the join of U + u and V + v, denoted
by (U +u)uU(V +v).

Proposition 1.1. ([4]) For any two flats ) = V1 +z; and Fy = V2 + 2,
where Vi and V, are vector subspaces, and z,, T2 € ]Ff,"), RUFR =W+
Vo + (xz - .‘131)) + .

For1<i<i+s<n-—1(resp. 0<i<i+s<n-—1),let L(i,i+s;n)
(resp. L'(i,i + s;n)) denote the set of all subspaces (resp. flats) in IF((,")
(resp. AG(n, F,)) with dimensions between i and i + s including ]Ff,")
and {0} (resp. ©). If we define the partial order on L(i,i + s;n) (resp.
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L'(i,i+ s;n)) by ordinary inclusion or reverse inclusion, then £(1,i + s;n)
(resp. L'(i,i+4 s;n)) is a poset, denoted by Lo (3,1 + s;n) or Lr(3,i+ s;n)
(resp. Ly (i,i+ s;n) or L(i,1+ s;n)), respectively. When i = 1 (resp. i =
0), both Lo(1,1+s;n)and Lp(1,14s;n) (resp. L5(0, s;n) and L;(0, s;n))
are atomic lattices, and the geometricity of these lattices is classified in [8]
(resp. [11]). In the present paper we show that both Lo(i,i + s;n) and
Lr(3,i+ s;n) (resp. L(3,i+ s;n) and Ly(1,7 + s;n)) are atomic lattices,
and classify their geometricity. Our main results are the following.

Theorem 1.2. For1 <i<i+s<n-—1, Lo(i,i + s;n) is a geometric
lattice if and only ifi = 1.

Theorem 1.3. For1 <i<i+s<n—1, Lp(i,i+ s;n) is a geometric
lattice if and only if i + s=n — 1.

Theorem 1.4. For0 <i<i+s <n-—1, Ly(i,i+ s;n) is a geometric

lattice if and only if i = 0.

Theorem 1.5. For0<i<i+s<n—1, Lh(i,i+s;n) is not a geometric

lattice.
2 Proofs of main results

Proof of Theorem 1.2. Let M(i;n) be the set of all i-dimensional sub-
spaces in F$™. Then M (i;n) is the set of all atoms in Lo(i,i + s;n). In
order to prove Lo (3,4 s;n) is atomic, it suffices to show that every element
of M(j;n) (i < j <i+s) is a union of some atoms. The result is trivial for
J = i. Suppose that the result is true for j = i+1. For P € M (i+({+1);n),
by [9, Corollary 1.8, the number of i + {-dimensional subspaces contained
in P is gt~ 1

—_—>2

g-1
It follows that there exist two different i+ I-dimensional subspaces P, P, C
P such that P = P; vV P5. Therefore, by induction P is a union of some

elements in M (i;n). Therefore, Lo(i,i + s;n) a finite atomic lattice.
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For any X € Lo(i,1 + s;n), we define

0, if X = {0},
ro(X)=14 s+2, if X =F",

dim(X) —i+1, otherwise.

It is routine to check that ro is the rank function on Lo(i,% + s;n).

By [8, Theorem 4], Lo(1,1 + s;n) is a geometric lattice.

Conversely, suppose i > 2. Then 2 < i <n—2. Let U = (v, v2,...,v,
Vit1,Vis2) be the i+2-dimensional subspace, and let V; = (v1,...,v:), Vo =
(v3,...,vit2). Then dim(V; N V) =i — 2. Thus V) AV, = {0}, and

U ifs>2
VivVa = ’ ="
LeE {]F'.(,"), ifs=1

Therefore, ro(Vi V V2) + ro(Vi A Vo) = 3 > 2 = ro(V1) + ro(V2) and
Lo(i,i + s;n) is not a geometric lattice. O

Proof of Theorem 1.3. Let M (i+s;n) be the set of all (i+s)-dimensional
subspaces in IFE,"). Then M (i + s;n) is the set of all atoms in Lg(%,i+s;n).
By (8, Theorem 5], Lr(i,i + s;n) is a finite atomic lattice.

For any X € Lg(%,i + s;n), we define

0, if X =F™,
TR(X) =4 s+2, if X = {0},
i+s+1-dim(X), otherwise.

It is routine to check that rg is the rank function on Lg(i,% + s; n).

For U, W € Lg(i,n — 1;n), f dim(UNW) >4, then UVW =UNW.
Thus rrR(U VW) +rp(U AW) = rg(U) + rp(W). f dim(UNW) <i -1,
then U v W = {0}. We distinguish the following two cases:

Case 1: U = {0} or W = {0}. Clearly, rrR(UV W) +r(UAW) =
TR(U) + TR(W).

Case 2: U # {0} and W # {0}. Let dimU = m; > i, dimW =m; >4,
and dim(U + W) = d, then dim(U N W) = m, + ma — d. Thus

rr(UVW)+rp(UAW) = n+l—i+n—d < n—-mi+n—-ms = Tr(U)+rr(W).
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Therefore, Lp(i,n — 1;n) is a geometric lattice.

Conversely, suppose i +s <n—2. By1<i<i+s 2<i+1<
i+s<n—2 Let U= (v1,v,...,Vits, Vipst1,Vitst2) D€ the i + 5+ 2-
dimensional subspace, and let Vi = (v1,...,vi4s), Vo = (v3,...,Vigsy2).
Then dim(Vi N Vo) =i + s — 2. Thus

inv, ifs>2,

ivipo=
P { {0}, ifs=L1

Therefore, rp(Vi V V2) + rr(V1 A V2) = 3 > 2 = rp(V1) + rr(V2) and
Lp(i,i+ s;n) is not a geometric lattice. O

Proof of Theorem 1./4. Let M'(i;n) be the set of all i-flats in AG(n, Fy).
Then M'(i;n) is the set of all atoms in Ly (¢,7 + s;n). In order to prove
Ly(i,i + s;n) is atomic, it suffices to show that cvery element of M'(j;n)
(i € j < i+ s) is a union of some atoms. The result is trivial for j = <.
Suppose that the result is true for j =i+ 1. For F € M'(i + ({ +1);n), by
[9, Theorem 1.18], the number of i + [-flats contained in F is

i+i+1 _
q(q AN 9

g—1
It follows that there exist two different i 4 I-flats Fy, F5 C F such that
F = Fy v F5. Therefore, by induction F is a union of some elements in
M'(i;n). Therefore, L5 (2,7 + s;n) a finite atomic lattice.

For any X € L, (i,i + s;n), we define

0, ifX =0,
ro(X) =14 s+2, if X =F,
dim(X) —¢+4+1, otherwise.

It is routine to check that 7}, is the rank function on Ly (i,% + s;n).

By (11, Theorem 1.1], £, (0, s; n) is a geometric lattice.

Conversely, suppose i > 1, then i +1 < n — 1. Fix a ¢ + 1 dimensional
subspace U = (u,us,...,ui4+1), then exists a z € IF,(,") such that =z ¢ U.
Let U, = (uy,ug,...,u;) and Us = (ug,us,...,uj41), then Uy, Us + = €
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LYy (i,i+ s;n) and Uy A (Uz + z) = 0. By Proposition 1.1, U, U Uz +2) =
U + (z). Thus,

U+ (z), ifs=>2,

Upv(Uz+1z)=
1V (U2 + ) {an), P

Therefore 7}, (U V(Uz+1))+76 (Ui A(Ua+2)) = 3 > 2 = 15 (U1) +76 (U2 +x)
and Lp(i,i+ s;n) is not a geometric lattice. O

Proof of Theorem 1.5. Let M'(i + s;n) be the set of all ¢ + s-flats in
AG(n, F,). Then M'(i + s;n) is the set of all atoms in L3(i,i + s;n). By
(11, Theorem 1.2], Ly (4,% + s;7n) is a finite atomic lattice.

For any X € Lz(i,i + s;n), we define

0, if X =F™,
rr(X) =4 s+2, if X =0,
i+s+1-dim(X), otherwise.

It is routine to check that r}; is the rank function on Lx(i,i + s; n).

Fix a i + s dimensional subspace U, then exists a z € IF.(,") such that
z¢U. ThisUVU+z)=0and UA{U +1z) = F{™. Therefore
UV (U +12) +TR(UAU +2)) =542 > 2=rp(U) + rp(U + z) and
L'p(%, + s;n) is not a geometric lattice. O
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