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Abstract. The graph’s irregularity is the sum of the absolute values
of the differences of degrees of pairs of adjacent vertices in the graph.
We provide various upper bounds for the irregularity of a graph, espe-
cially for K, -free graphs, where K., is a complete graph on r + 1
vertices, and trees and unicyclic graphs of given number of pendant
vertices.
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1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). The neighbor-
hood of a vertex u is the set of vertices adjacent to u in G, denoted by Ng(u).
The degree of a vertex w in G is dg(u) = |[Ng(u)|. For simplicity, we also use
d, instead of dg(u) if G is understood. The irregularity of the graph G is defined

as [2]
im(G) = Y |du—dyl.
wv€E(G)

Albertson [2] provided upper bounds for the irregularity of general, bipartite and
triangle-free graphs, in particular, for a graph G with n vertices, it was shown that
irr(G) < % and that this bound can be approached arbitrarily closely. Hansen
and Mélot [7] found a tight upper bound for the irregularity in terms of the num-
bers of vertices and edges, and it was shown that the extremal graphs are a partic-
ular class of split graphs (which consist of a clique, an independent set and some
edges joining a vertex in the clique to a vertex in the independent set). Recently,
Henning and Rautenbach [8] determined the structure of bipartite graphs hav-
ing maximum possible irregularity with given cardinalities of the partite sets and
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given number of edges. Gutman et al. [6] characterized the chemical trees (trees
with maximum degree at most four) having maximum possible irregularity. It was
noted in [6] that the irregularity, which was called the Albertson index in [6], is
a usable molecular structure descriptor both for descriptive purposes and quan-
titative structure-activity relationship (QSAR) and quantitative structure-property
relationships (QSPR) studies.

In this paper, we provide various upper bounds for the irregularity of a graph,
especially for K,.1-free graphs, where K, is a complete graph on r + 1 ver-
tices, and trees and unicyclic graphs of given number of pendant vertices.

2 Irregularity of General Graphs

Let K, be the complete bipartite graph with two partite sets having s and ¢
vertices, respectively.
We need an auxiliary graph invariant for a graph G: Z(G) = ) d2. 1t
: ueV(G)
emerges in [3, 4, 5, 10] and is called the first Zagreb index in chemical graph
theory, see, e.g., [13]. First we give a connection between irr(G) and Z(G).

Theorem 1 Let G be a graph with n vertices and m edges. Then

irr(G) < V/m[nZ(G) — 4m?

with equality if and only if the degree of all vertices not adjacent to u is equal to
dy for any u € V(G) and |dy — dy| = |dz — dy| for any uv, zy € E(G).

Proof. By the definition of the irregularity and the Cauchy-Schwarz inequality,

imG) = Y. ldu—do|< fm > (du -d,)?

uwve E(G) quE(G)

with equality if and only if |dy — dy| = |dz — dy| for any uv, zy € E(G). Note
that

Y (du—dy)?

uwve E(G)

D INPINCEL,

u€V(G) veENg(u)

S > (du—d)?

ueV(G) veV(G)

o N @+d)- Y D dudy
ueV(G) veV(G) u€V(G) veV(G)
nZ(G) -

IA

W= N = N
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with equality if and only if the degree of all vertices not adjacent to u is equal to
dy for any u € V(G). Now the theorem follows easily. O

By Theorem 1, we may get upper bounds for irr(G) from upper bounds for
Z(G). As examples, some of them are listed below:
(i) Let G be a graph with n vertices and m > 1 edges. Then [5, 10]

2m
< _ -
Z(G) _m<n—1 +n 2)
with equality if and only if G 2 Ky ,_1, Kp, or K} U K,,_,. Thus

1rr(G')<m\/n 2) [n(n — 1) — 2m)|

n—1
with equality if and only if G & K ,,_; or K.
(ii) Let G be a graph with n vertices, m edges, maximum degree A and mini-
mum degree d. Then [4, 3]

2m 2m + (n — 1)(A - §)]

n+A-4§
with equality if and only if G is a regular graph, G = (n — A — 1)K, U Ka 41,
orG = B,,forl1 <t < n-1,where By, is the graph on n vertices with
exactly ¢ vertices of degree » — 1 and the remaining of the n — ¢ vertices forming
an independent set. Thus

ir(G) < \/2n[2m:+nA—1)§A )] —im

~ with equality if and only if G is a regular graph, or G 2 K ,,_.
(iii) Let G be a graph with n vertices, m edges, maximum degree A and
minimum degree J. Then [4]

Z(G) £ 2m(A +8) —nAS
with equality if and only if G has only two types of degrees A and 8. Thus
irr(G) < vVm [2mn(A + 6) — n2Ad — 4m?

with equality if and only if G is a regular graph or G & K ;.
(iv) Let G be a graph with n. vertices, m edges and let p be the largest eigen-
value of the adjacency matrix of G. Then [9, 12]

Z(G) < np?

with equality if and only if every component of G is either a regular graph or a
semlregular bipartite graph for which the product of two adjacent vertices is equal

to p2. Thus
im(G) < Vm [n?p? — 4m?)

with equality if and only if G is a regular graph or a complete bipartite graph.

2(6) <
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3 Irregularity of K, ,-Free Graphs

In this section we consider the irregularity of K.1-free graphs with r > 2. We
need the following lemma, which was reported in [13]. It may be proved by
combining the upper bound for p obtained by Nikiforov [11] and the upper bound
for Z(G) using p in the previous section. However, we reproduce a direct proof
[13] here.

Lemma 1 Let G be a K, ,1-free graph with . vertices and m > 1 edges, where

2<r<n-—1.Then
2r—2

Z(G) < nm (1

with equality if and only if G is a complete bipartite graph forr = 2 and a regular
complete r-partite graph for r > 3.

Proof. For any u € V(G), let ¢, be the number of edges of the subgraph Gy,
induced by Ng(u). Since G, is K -free, we have by Turdn’s theorem (see [n
that ¢, < £=% d2 with equality if and only if Gy is a regular complete (r ~ 1)-
partite graph. It follows that

-2
> dy <m+cy <m+ —zd?
2r —2
vENG(u)

and thus

T—2 r—2
MEE DY (m+ 3 d,f) =nm+ 53— Z(G),
u€V(G)
from which (1) follows. Suppose that equality holds in (1). Then for any u €
V(G), G, is a regular complete (r — 1)-partite graph, and the subgraph induced
by V(G) \ Ng(u) is an empty graph. Let v # u be a vertex that is not adjacent
to u. Thend, < n — 1. If Ng(v) # Ng(u), then one of the subgraph induced by
V(G)\ Ne(u) or V(G) \ Ng(v) would not be empty, a contradiction. Thus G is
a complete multipartite graph K, . for any u € V(G). Now the result
follows easily. O

By this lemma and Theorem 1, we have

Theorem 2 Let G be a K.1-free graph with n vertices and m > 1 edges, where
2<r<n-1 Then

2r —

irr(G) <m 2 n? —4m

with equality if and only if G is a complete bipartite graph for r = 2 and a regular
complete r-partite graph for r > 3.
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Theorem 3 Let G be a K, 41-free graph with n vertices, where2 <r < n — 1.

Then ( W )
. r—1)v/2(r—-1
irr(G) < 3rv3r ns.

Proof. Let m be the number of edges of G. Then [1] m is less than or equal to

Z2n?. Note that for 0 < z < Z-1n? the function

2r—2

n? — 4z

flz)=z

decreases if and only if z > %73 and that the number of edges of a complete
bipartite graph Ky »_, is equal to k(n — k), which is not equal to %2, and for
r 2> 3, the number of edges of a regular complete r-partite graph is equal to

ZLn2, which is not equal to Z-1n2. By Theorem 2,

in(G) < f(m) < f (’3; 1n2)

from which the result follows. a

Remark. Let G be a graph with n vertices. It was shown in [2] that irr(G) < %3
if G is triangle-free, and irr(G) < 6"—\;3 if G is bipartite. By Theorem 3, irr(G) <

% if G is triangle-free. This improves the above results in [2].

4 Irregularity of Trees and Unicyclic Graphs

Let G be a connected graph. Let V1(G) = {v € V(G) : d, > 3}. A pendant
vertex is a vertex of degree one.

A connected graph with n vertices and n — 1 (resp. n) edges is known as a
tree (resp. unicyclic graph). We now present the maximum possible irregularity of
trees and unicyclic graphs of given number of pendant vertices, and characterize
the extremal graphs.

Let V5(G) be the set consisting of one vertex of maximum degree if G is a
tree and the set of vertices of the unique cycle of G if G is a unicyclic graph.

Lemma 2 Let G be a tree (resp. unicyclic graph) with n vertices and p > 1
pendant vertices. If |[V1(G)\Vo(G)| = 1, then there is a tree (resp. unicyclic
graph) G* with n vertices and p pendant vertices such that dg-(v) < 2 for all
v € V(G\Vo(G) and irr(G*) > irr(G).

Proof. Letz be a vertex in Vo(G) whose degree is maximum. Since |V)(G)\Vy(G)|
= 1, there is a vertex y whose degree is maximum among vertices outside Vp(G).
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Then dy, is at least 3. Let Ng(y) = {wi1, w2, ..., w:}, where t = dy, w, lies on
the shortest path between = and y. Note that |du, — 2| — |dy — dw,| 2 —(dy — 2)
fori=1,2.SetG' = G — {yws, - .., ywe} + {zws,...,zw:}. Then G’ is a tree
(resp. unicyclic graph) with n vertices and p pendant vertices.

First suppose that zy € E(G). Then z = w;. We have

irr(G’) — irr(G)

t
= > (ldo+dy — 2~ du,| = |dy — dul)

i=3

+ Z (ld:c+dy‘2_du|_|dx“du|)
uiNf(t)
ugty

+(ldz +dy — 2 = 2| = |dz = dy|) + (|2 — du,| = |dy — du,|)
= (dz=2)(dy -2+ Y (det+dy—2—dy—l|dz—dul)

uENG(x)
uFy

+(dx+d‘y_4_Idz—dy|)+(|2_dw2|"ldy_dwzl)
(de—2)(dy —=2)+ D (do+dy—2—dy—|dz —du])

uéNg(x)
u#y

+(dz +dy —4-lds - dyl) - (dy -2).
Ifd; > dy, thend; > d, foru € Ng(z) and so
irr(G') — irr(G)
> (de - 2)(dy - 2) + (d — 1)(dy — 2) +2dy — 4~ (dy - 2)
= 2(dz - 1)(dy —2)>0.

Now suppose that zy € E(G) and d; < dy (and then G is a unicyclic graph)
or zy ¢ E(G). For any neighbor u of  when G is a tree, and for any neighbor
u of z in the unique cycle when G is a unicyclic graph, d + dy — 2 — dy —
|dz — dy| = dy, — 2 > 1. For any other neighbor u of z outside Vo(G) when G
is a unicyclic graph, since d; > 3, we have d; +dy — 2 — dy — |dz — du| =
min{dy —2,2d; +dy —2—2d,} > —(dy —4). If zy € E(G) and d; < dy, then
irr(G’) — irr(G)

(dz — 2)(dy — 2) + [2(dy — 2) — (d= — 3)(dy — 4)]
+2(dz —2) — (dy — 2)
2(2d; +dy —7) > 0.

If zy ¢ FE(G), then
irr(G') — irr(G)

v

v
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t

> (Ids +dy =2 = du,| = ldy — du,)

i=3

+ Z (ldz+dy_2_du|_ld:r—'du|)
u€Ng(x)

2
+ Z(ldw; - 2' - |dy - dwsl)
i=1

(de = 2)(dy — 2) + [2(dy — 2) — (dz — 2)(dy — 4)] — 2(dy - 2)
= 2(dy —2)>0.

v

Now have proved that irr(G*) > irr(G). Iterating the transformation from G
to G’ yields the graph G* as required. O

Let T, , be the class of trees with n vertices, p of which are pendant vertices,
where 2 < p < n — 1. Obviously, if G € T, 2 then G = P,, the path with
n vertices, and if G € T, ,—1 then G = K, ,_1, the star with n vertices. Let
T, , be the class of trees on n vertices formed by attaching p disjoint paths to a
common vertex vg.

Theorem 4 Let G € Ty, ,. Then
irr(G) <p(p—1)
with equality if and only if G € 1.7 .

Proof. The cases p = 2 and p = n — 1 are trivial. Suppose that 3 < p < n — 2.
If [V1(G)| = 2, then by Lemma 2, we have irr(G) < irr(G*) where T* is a tree
in77,. If [Vi(G)| = 1, then G € T} , and so

P P
im(G) = (dw—1) =) (p—1)=p(p—1).
i=1 :

i=1
This proves the theorem. (]

Finally, we consider unicyclic graphs. Let U, , be the class of unicyclic
graphs with n vertices, p of which are pendant vertices, where 0 < p < n — 3.
Obviously, if G € Uy, g then G = C,, the cycle with n vertices. Let L(,‘,’p be the
class of graphs on n vertices formed by attaching p disjoint paths to a common
vertex on a cycle.

Lemma 3 Let G € Uy, with C being the unique cycle of G. If |V}(G)| =
ViI(G)NV(C)| 2 2, then there is a graph G* € U}, , such that irr(G*) > irr(G).
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Proof. Since |V1(G)| = |[Vi(G) N V(C)| > 2, there are vertices z,y € V1(C)
such that d; > d, > d, forany v € V(G). Let Ng(y) = {w1,w2,...,we},
where t = dy, and w; and w, lie on the cycle C and the distance between z and
w is less than or equal to the distance between z and w,. Note that dy, — 2 —
[dy = duwy| = —(dy—2). Set G’ = G- {yws, ..., yw} + {zws,...,zw;}. Then
G' elU,.

Suppose that zy € E(G). Then z = w;. By similar arguments as in the proof
of Lemma 2,

ir(G') - ir(G)

t
= Z(|dz+dy—2“dwsl_|dy“dwi|)

i=3

+ Y (lde+dy —2—du| - 1ds — dul)
uENf(z)

+(lds +dy — 2 = 2| = ldz — dy) + (Iduws — 2| = |dy — dua)

(dz — 2)(dy = 2) + (dz — 1)(dy — 2) + 2dy — 4+ du, — 2 = |dy — |
(ds — 2)(dy — 2) + (dz — 1)(dy — 2) +2dy — 4 — (dy — 2)

2(de — 1)(dy — 2) > 0.

v

Now suppose that zy ¢ E(G). We have
irr(G’) — irr(G)

= > (ldo +dy — 2 — du;| = |dy — du)

1=3

£ Y (dotdy =2 - dal - lde = dul)
u€Ng(z)
2

+ ) (Idw; — 2| = 1dy — du,])
i=1

(dz — 2)(dy — 2) + de(dy — 2) — 2(dy — 2)
2(dy — 2)(dy — 2) > 0.

v

Hence, we have proved that irr(G’) > irr(G). Iterating the transformation
from G to G’ yields the graph G* as required. ]

Theorem 5 Let G € Uy, p. Then
irr(G) < p(p +3)

with equality holds if and only if G € Uy, .
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Proof. The case p = 0 is trivial. Suppose that p > 1. Let C be the unique cycle
inG.

If [Vi(G)\V(C)| > 1, then by Lemma 2, there is a graph G* € Uy, , with
dg-(v) < 2forall v € V(G)\V(C) such that irr(G*) > ir(G).

If Vi(G)| = [Vi(G) N V(C)| > 2, then by Lemma 3, there is a graph G* €
Uy, , such that irr(G*) > irr(G).

IfIVi(G)] = [Vi(G)NV(C)| = 1, then G € U;; , and s0

im(G) = i“(dv,, — 1) + 2(dy, — 2)

=1

14 .
Y (p+2-1)+2(p+2~-2) =p(p+3).

i=1

This proves the theorem. ]
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