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Abstract

In this paper, we introduce an extension of the hyperbolic Fibonacci
and Lucas functions which were studied by Stakhov and Rozin. Namely,
we define hyperbolic functions by second order recurrence sequences and
study their hyperbolic and recurrence properties. We give the corollaries for
Fibonacci, Lucas, Pell and Pell-Lucas numbers. We finalize with the
" introduction some surfaces (the Metallic Shofars) that relate to the
hyperbolic functions with the second order recurrence sequences.
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1. Introduction

Well known Fibonacci formula is simple case of the second order
recurrences. This kind of recurrence relation plays a significant role in many
disciplines, like mathematics, physic, biology, economy and so on. Many
scholars interested in these numbers, their properties, continuous versions
and generalizations [1-19]. Stakhov [4] introduced a new class of
recurrence relations generating the generalized Fibonacci p-—numbers
and a new class of mathematical constants named the generalized golden
p—proportions ( p=0,1,2,3,...). Stakhov and Tkachenko [13] defined a

new class of hyperbolic functions called hyperbolic Fibonacci and
Lucas functions. Stakhov and Rozin [14, 17] introduced symmetrical
representation of the hyperbolic Fibonacci and Lucas functions. The
function of the “Golden Shofar” [15] follows from this approach. Also
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Stakhov and Rozin [16] defined the continuous functions with Fibonacci
and Lucas p-numbers which is generalization of the Fibonacci and

Lucas numbers. Stakhov [18] gave a wide generalization of the
‘symmetrical hyperbolic Fibonacci and Lucas functions and created a
general theory of hyperbolic functions —the Ayperbolic Fibonacci and
Lucas m—functions (m>0 is a given positive real number). It is
interesting to note that Falcon and Plaza [19] defined the & -Fibonacci
hyperbolic functions similar to Stakhov’s hyperbolic Fibonacci and Lucas
m - functions [18]. Stakhov’s article [18] was available online on December
21, 2006 and Falcon and Plaza {19] was available online on January 2, 2007
that testify the fact that Falcon and Plaza [19] came to a new class of hyperbolic
functions independently from Stakhov [18].

The main goal of the present article is to define hyperbolic
functions with all second order recurrence sequences {U,} and {V,}

and study hyperbolic and recurrence properties of these functions. This
article presents the continuous versions of the second order recurrence
sequences.

1.1. Second order recurrence sequences, the generalized
golden proportions and the generalized Binet formulas

The Argentinean mathematician Vera W. Spinadel introduced
[10] a general class of the second order recurrence sequences. Let p

and g be nonzero real numbers, such that p’+4¢9#0. The second
order recurrence sequences {U,} and {V,} for all n are defined by

U,.=pPU,.+qU,, U;=0,U, =1 0))
and
Vi =PVan+qV,, Vo=2,V,=p @
It is known that, the characteristic equation for above recurrences is
x*—px—q=0. 3)

The characteristic equation (3) has two real roots;
_ p+yp* +4q e =4 _P-VP't+4q

x=a 4
! 2 ' 2 @
Let us consider the formula for the positive root of the characteristic
equation (3):
+\/ ?+4
a= P___u. ®)

2
Note that for the case p = g =1, the formula (5) takes the following form:
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a='—+2£, ©)

that is, for the case p=g =1 the formula (5) gives the famous “golden mean”

or the “golden proportion” known from the ancient times.
For the case g=1 and p=m, the formula (5) is reduced to the

formula
m+\m® +4
a= —2— @)

The formula (7) generates an infinite number of new mathematical constants
named in [18)] the generalized golden m— proportions.

It is clear that the formula (5), which is a generalization of the formulas
(6) and (7), generates an infinite number of new mathematical constants — the
generalized golden (p,q)—proportions. Spinadel [10] named these proportions
metallic means. Note that Spinadel [10] for the first time introduced the notions
of the silver mean (p =2, q=1), bronze mean (p=3, g =1) and so on.

We can use by the roots x;, and x, (4) for the representation of
U, and V, sequences in analytical form:
_ an _(_q)ll a—n

a+ga”

where n=0,+1,%2,.... We name the formulas (8) the generalized Binet
Jormulas, the generalized Binet formulas (8) may be written as follows

U

n

s Vo=a"+(-9)'a”, ®

'3+ N ,—n
2 qa_rl , n odd
a+q
U, = ®
" _ na-n
i | = h even
a+qo

(10)

a"-q'a™", n odd
a"+q"a™", n even

where a is a positive root (5) of the characteristic equation (3),

n=0,£1,%2,... and a+qa” =/p* +4q. Taking p=g=1 in (1) and (2),
we obtain the Fibonacci and Lucas sequences. For this case, the
mathematical constant (5) is reduced to the golden mean (6) and the
generalized Binet formulas (8)-(10) are reduced to the classical Binet
formulas for Fibonacci ( F, =U,) and Lucas ( L, =V, ) numbers:

_ a" —(_l)”a-"

"T’

L=a"+(-1Ya™, (11)
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a"+a"

———, nodd
N
F, = (12)
o’ -a” n even
Jg t]
a"-a™", n odd
L= (13)
a"+a™, n even

For the case g =1 and p =m, the formula (5) is reduced to the formula (7) and
the generalized Binet formulas (8) are reduced to Gazale formulas for the
generalized Fibonacci and Lucas m—numbers F,(n) and L,(n) [11, 18]:

& —(-1)ya™
“Tarm
If we choose p=2,g=1 in (1) and (2), we get the Pell and Pell-Lucas
sequences. Finally, taking p=1,¢g=2 in (1) and (2), we obtain the
Jacobsthal and Jacobsthal-Lucas sequences [6].

F,(n)= L (n)=a"+(-1)"a™ (14)

2. Hyperbolic Functions with Second Order Recurrence Sequences

2.1. Definition of hyperbolic functions with second order recurrence

sequences
The classical hyperbolic functions are defined by
sh(x)= '2" , ch(x)=2 ;e . (15)

By using similarity between hyperbolic functions (15) and the Binet
formulas (12) and (13), Stakhov and Tkachenko [13] defined hyperbolic
Fibonacci and Lucas functions. By developing Stakhov and Tkachenko’s
approach, Stakhov and Rozin [14] defined the so-called symmetrical
hyperbolic Fibonacci and Lucas functions:

Symmetrical hyperbolic Fibonacci sine

ax - a—x

sFs(x) = 16
(x) NG (16)
Symmetrical hyperbolic Fibonacci cosine
a"+a”
cFs(x) = a”n
NG

Symmetrical hyperbolic Lucas sine
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sLs(x)=a* -a™ (18)

Symmetrical hyperbolic Lucas cosine
cls(x)=a* +a™ (19)

Also Stakhov [18], Falcon and Plaza [19] defined the Fibonacci
and Lucas hyperbolic m—functions (m >0 is a given real number) by using
the generalized golden m—proportions (7) as a base of hyperbolic functions.
Now we define the hyperbolic functions with second order recurrence
sequences (1), (2) based on Stakhov and Tkachenko’s definitions [13] as
follows.

Definition 1 Ler p and q be nonzero real numbers, such that p* +4q 20,
and a positive root of characteristic equation (3). The hyperbolic U, sine
and cosine functions defined by

2x _ o 2x  -2x
sUm =222 20)
VP +aq
2x+l 2x+l . =2x-1
cUr=2—24 2 @1)
VP +4q
the hyperbolic V, sine and cosine functions defined by
SV(x) = a2x+l _q2x+|a-2x-l, (22)
cV(x)=a* +¢g”a™>. 23)

Note that there are the following correlations between U, and V,

numbers and hyperbolic U, and V, functions given by (20)-(23):
sU(k)=U,,; cUKk)=U,,,
sVky=Vys cV(k) =V,

where k=0, £1, £2,....

The hyperbolic U, and V¥, functions (20)-(23) are not
symmetrical with respect to the origin. For this reason, we use Stakhov
and Rozin’s approach [14] and introduce the symmetrical representation of
the hyperbolic U, and V, functions.

Based on the classical hyperbolic functions (15) and the generalized
Binet formulas (8) for U, and V¥, sequences, we can give the definitions of
the symmetrical hyperbolic U, and ¥, functions that are different from the
definitions (20)-(23):

Symmetrical U, sine function
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sUs(x) =2 =92 4)
P’ +4q
Symmetrical U, cosine function
cUs(x) =2 292 @5)

VP +4q

Symmetrical ¥, sine function

sVs(x)=a* —-q*a™ (26)
Symmetrical ¥, cosine function

cVs(x)=a*+q"a™ 27N
The symmetrical hyperbolic U, and ¥, functions (24)-(27) are connected
between themselves as follows:
sVs(x) = p* +4q sUs(x),  cVs(x) = p* +4q cUs(x). (28)
The U, and V¥, numbers are determined with symmetrical hyperbolic U,
and V, functions as follows

cUs(n), n odd cVs(n), n odd
U = V =

sUs(n), n even

(29)
sVs(n), n even

Note that for the case g =1 and p=m (m >0 is a given positive real number),
the symmetrical U, and ¥, functions are reduced to the hyperbolic Fibonacci
and Lucas m - functions [18]:

Hyperbolic Fibonacci m-sine

SF (x)_a‘—a“ _ 1 m+m* +4 x_ memi+a) (30)
" Jm*+4  m*+4 2 2
Hyperbolic Fibonacci m-cosine
a*+a* 1 (m+m* +4 ] m+\m? +4 N
cFm (x) = = + (31)
m +4 m’+4 L 2 2
Hyperbolic Lucas m-sine
o (meNwrraY (medmea)”
sL(x)=a"-a* = - (32)
\ 2 VAN 2 J
Hyperbolic Lucas m-cosine
( 2 Y 2 *
ol (x)=a +a =| 2F ;" 4| | m ;” +4 (33)
\ ),
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The Fibonacci m—numbers F, (n) and the Lucas m—numbers L, (n)

are determined identically by the hyperbolic Fibonacci and Lucas m — functions
(30)-(33) as follows:

{SF,, (n), for n=2k
F (n=

cE,(n), for n=2k+1
(34)
{SL,,, (n), for n=2k
L (n)=

cl,(n), forn=2%+1

As is proved in [18], for the case m, = e—l ~ 2.35040238,, the classical
e

hyperbolic functions (15) are connected with the hyperbolic Lucas
m — functions (32) and (33) as follows:

sLm (x)
2

sh(x)=—""—= and ch(x)=

cl (x)
> (35)

2.2. Recursive properties of the symmetrical hyperbolicU, and V,
Junctions
Now, we can give some properties of the symmetrical hyperbolic
U, and ¥V, functions.
Proposition 1 (Recursive relation).
sUs(x+2)= pcUs(x+1)+qsUs(x),
cUs(x+2) = psUs(x+1)+qcUs(x).
Proof. We prove the first identity. From the definitions of symmetrical
hyperbolic U, functions, we have

x+] _-x-l

a + q a al - qla-x
pcUs(x+1)+qsUs(x) = p[—} + q(—]
Vp*+4q VP’ +4q
_a(pat+q)-g"'a(1-2)
VP +4q
qxoza-x-z
J P +4q
=sUs(x+2)
Propesition 2 (Recursive relation).
sVs(x+2)= pcVs(x+1)+qsVs(x),
cVs(x+2)= psVs(x+1)+qgcVs(x).
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Proposition 3 (Cassini's identity).
(sUs(x)) —cUs(x+1)ycUs(x 1) =—¢™
(cUs(x))’ - sUs(x +1)sUs(x 1) = g
Proof. Noting by (LHS) the left hand side of the first identity, we have
X _ X XN2 x+] x+l o =x=] x=1 x=1  —x+l
(LHS)=(0 ga’y -(@" +g" ™ Na" +g" a™")

(o]
_qx-l(az +q2a'2+2q)
P’ +4q

x=-1

=-q
The other some properties of symmetrical hyperbolic U, and ¥, functions
listed in the following table.

The identities for The identities for the symmetrical
U, and V, numbers Hyperbolic U, and ¥, functions

sUs(x) =—q" sUs(-x)

U =—-q9)"U
n _( ‘I) -n CUS(X) = qx CUS(-X)
v, =(-q)'V., ¥s(x) =" sV5(=)
cVs(x) = q" cVs(-x)
cVs(x) =cUs(x +1)+qcUs(x-1)
Vn = Um-l +qU

-l sVs(x) = sUs(x+ 1) +gsUs(x-1)

2sUs(x+1) = pcUs(x) + sVs(x)
2¢Us(x +1) = psUs(x) +cVs(x)

2Un¢l = pUn +Vn

cVs(2x) =[sVs(x)] +2q9"
cVs(2x) =[cVs(x)) -2¢"
sUs(2x) = sUs(x) cVs(x)
cUs(2x) = cUs(x) sVs(x)

Vou =V =2(-q)"

UZn = Un Vn

2.3. Hyperbolic properties of the symmetrical hyperbolicU, and V,
Sunctions

The symmetrical hyperbolic U, and ¥, functions have properties that are
similar to the classical hyperbolic functions. Now, we give some hyperbolic
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properties of the symmetrical hyperbolic U, and ¥, functions.

Proposition 4 (Pythagorean Theorem). The main property of the symmetrical
hyperbolic U, and V, functions is

[cUs(x)P’ ~[sUs(x)) =4q"(p* +4q)™
[cVs(x)T —[sVs(x)) = 4q".
Proposition S (Sum and Difference).

2(\/ P’ +4q )‘I cUs(x+y) = cUs cUs(y) + sUs(x)sUs(y)
2(\/ p’+4q )-I cUs(x - y) = cUs cUs(y) —sUs(x)sUs(y)
2 (,/ Pt +4g )'l sUs(x + y) = sUs cUs(y) + cUs(x) sUs(»)

-1
2(\/ P+ 4q) sUs(x — y) = sUs cUs(y) — cUs(x) sUs(y)
Proof. We prove the first identity.

Ly adoF Yot
cUs cUs(y) +sUs(x) sUs(y) = (a'_-l-q_a_] [u‘ﬂ—]

VP +4g |\ Vp'+4q
N ax _qxa-x a’ _q}'a‘y
VP +4g )\ p*+4q

20" 429" ™Y
p'+4q

= 2(\/p2 +4q)-l cUs(x+y)

Taking x = y in the first and third identity of the previous formulas, we can

give following corollary.
Corollary 1 (Double argument)

2(,/ = +4q)'l cUs(2x) = [cUs(O)]? +[sUs(x)
(,/ »? +4q)-l sUs(2x) = sUs(x) cUs(x)

Proposition 6 (nth derivatives)

l n n
(nay sUs(x)+ ey 2D o o 1 odd
VP +4q

[cUs(x)]" =
(nd)" —(nay’

(Ina)” cUs(x)+ m

g'a™, for n odd
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(nd)" +(na)

(na)" cUs(x)—- q'a™, for n odd
, 2
[sUs(x)]™ = P
ay _ n
(ha)" sUs(x)—w—q’a”, for n odd

p’+4q

Proposition 7 (Moivre's equation)

1 y-!
[cUs(x) +sUs(x)]" = (2 (\/ p*+4q ) ) [cUs(nx) £ sUs(nx)],
[eVs(x) £ sVs(x)™ =2""[cVs(nx) £ sVs(nx)).

It should be noted that in the case p=g=1, U, and V, numbers

would be Fibonacci and Lucas numbers. Therefore these symmetrical
hyperbolic U, and V, functions generalize the hyperbolic Fibonacci and
Lucas functions.

3. The Quasi-sine U, and V, Functions

It's possible to insert some continuous functions that takes the
values —1 and 1 in the discrete points (x = 0, +1, £2,..) that

correspondence to the alternating sequence (—1)" in Binet's formula. The
trigonometric function cos(zx) is the simplest. For this reason, we introduce

new continuous functions that are associated with the second order
recurrence sequences.

Definition 2 The following continuous functions are called the quasi-sine
U, and V, functions, respectively.

¥ —cos(mx)q a™
VP +4q
Note that, taking x =# in (36), we have

UU(n) = a" —cos(zn)q"a -U,

VP +4q ’

UU(x) =2 WV (x) =a +cos(Tx) g’ a™. (36)

and
VV(n)=a" +cos(zn)qg"a™ =V,
where n =0, £1, £2,....
For p=g=1 in (36), this definition is transformed to the quasi-sine

Fibonacci and Lucas functions. The graphs and more information of the
quasi-sine Fibonacci and Lucas functions are given in [15]. Taking
p=2,q9=1 in (36), this definition is transformed into quasi-sine Pell and
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Pell-Lucas functions. The graphs of the quasi-sine Pell and Pell-Lucas
functions are given in Figure 1 and 2.

Y 20T

¥

Fig.l. Hyperbolic Pell sine, cosine and quasi-sine Pell functions

Y »%¥F

—
[ 8]
w
£
w4+

= ¥

-l0T

Fig.2. Hyperbolic Pell-Lucas sine, cosine and quasi-sine Pell-Lucas
functions
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3.1. Recursive properties of the quasi-sine U, and V, functions

Proposition 8 (Recursive relation)
UU(x+2)= pUU(x+1)+qUU(x),
VV(x+2)=pVV(x+1)+qVV(x).
Proposition 9 (Cassini's identity)
[VUx)F -UU(x+1)UU(x-1) = —¢* cos(zx).
We can easily obtain some properties of the quasi-sine U, and V,
functions as following;

The identities for The identities for the
U, and V, numbers | quasi-sine U, and V, functions

Vi =V, —2(—q)" VV(2x) =[PV (x)F -24" cos(7x)
U,, =UYV, UU@2x) =UU(x)VV (x)
U,a+qU,, =V, UU(x+1)+qUU(x=1)=VV(x)

Also, the quasi-sine U, and V, functions have properties that are similar to
the classical hyperbolic functions.

It is known that, the three-dimensional Fibonacci spiral is defined
in [15] as follows,
a” —cos(rx)a™* +i sin(zx)a™

V5 N
Our purpose is generalized of the three-dimensional Fibonacci spiral for
the second order recurrence sequences. CFF(x) function has properties of
Fibonacci numbers. Therefore, we can define the three-dimensional spiral
for U, sequence.

Definition 3 The following complex valued function is called the three-
dimensional U, spiral

CFF(x)=

a* —cos(xx)q a™* +i sin(zx)q*a™

J p’+4q \/ p*+4q
where a is the positive root of the equation (3).
For example, the three-dimensional Pell spiral is
_a'—cos(mx)a™  sin(wx)a””
CPP(x)= i +i WA
Proposition 10 (Recursive relation).
CUU(x+2)= pCUUx+1)+qCUU(x)
Proof. Let us note by (RHS) the right hand side of the identity to prove.

CUU(x) =

37
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x+1 -x-l

—cos(mx+m)q

(RHS) = p[“

+isin(zx+1)g* o™
VPt +4g
o’ —cos(nx)g‘a™ +isin(rx) g a”™
+q =
VP +4q
a‘a’ +cos(rx) g™ (G +isin(rx)g™'a a (%)

VP +4q

x+2 —x-2

x+2

_ o COS(ﬂx+27[)q i SIn(ﬂx+27[)q‘"2 -x=2

VP +4g Jr* +4q
=CUU(x+2)
It's clear that, we can easily show that the other recurrence
properties of three-dimensional U, spiral

Selecting the real and imaginary parts in the three-dimensional
U, spiral in (37), we have

a’ —cos(rx)qg*a™
VP +4q

Re(CUU(x)) = , (38)

and

X =X

sm(zrx)q
. From (38) and (39), we obtain the following equation systems.
x —cos(wx)g "

P+4g  p'+4q
_sin(rx)q"a”

z(x) = W

Let us square both expression of the equation systems and add them. We obtain

2 2

—x PRI A2 . 40
This formula can be represented in the following form

z* =[cUs(x) = ylly - sUs(x)] ,
where cUs(x) and sUs(x) are the symmetric hyperbolic U, cosine and sine,
respectively.

Equation (40) corresponds to a surface, which have been called Metallic

Shofar (see [10]). In the case p=m,qg=1 the Metallic Shofar is expressed as

follows:

Im(CUU(x)) = (39
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x 2 -x 2
m’ +4 m* +4

where a is the golden (m,1)- proportion.

Particular cases are:
«If m =1, we obtain the classical Golden Shofar with equations

b-3)- ()

where 7 is the golden mean (see [15]).
* If m =2, we obtain the Silver Shofar with equation

(5]

where a is the silver mean (see [10]).
* If m =3, we have Bronze Shofar with equation

( : )2 2 ( - )2
Vi3 Jiz)’
where a is the bronze mean (see [10]).

4, Conclusion

The discovery of Lobachevski’s geometry became an epoch-making
event in the development not only mathematics, but also of science in general.
The Great Russian mathematician and academician Kolmogorov appreciated the
role of this discovery in the development of mathematics in following words
[20]): “.. It is difficult to overrate the importance of the reorganization of the
entire warehouse of mathematical thinking, which happened in the 19th century.
In this connection, Lobachevsky’s geometry was the most significant
mathematical discovery at the start of the 19th century. Based upon this
geometric insight the belief in the absolute stability of mathematical axioms was
overthrown. This allowed creating essentially new and original abstract
mathematical theories and, at last, to demonstrate that similar abstract theories
can result in wide and more concrete applications.” After Lobachevski’s
discovery, the “hyperbolic ideas” started to penetrate. widely into various
spheres of science. After the promulgation of the special theory of relativity by
Einstein in 1905 and its “hyperbolic interpretation,” given by Minkowski in
1908, the “hyperbolic ideas” became universally recognized. Thus, a
comprehension of the "hyperbolic character” of the processes in the physical
world surrounding us became the main result in the development of science
during the 19th and 20th centuries.

The mathematical correlations of Lobachevski’s geometry are, of course,
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based upon the classical hyperbolic functions (15). Why did Lobachevski use
these functions, introduced by Vincenzo Riccati in the late 18th century, in his
geometry? Apparently, Lobachevski understood that these functions provide the
best way to model the “hyperbolic character” of his geometry; on the other
hand, he was forced to use these functions because the other hyperbolic
functions at that moment simply did not exist. It is necessary to note that
Lobachevski's geometry, based on classical hyperbolic functions (15), is
historically the first “hyperbolic model” of physical space. Lobachevski’s
geometry and Minkowski’s geometry put forward the hyperbolic functions as
the basic plan for modern science.

At the end of the 20th century, the Ukrainian mathematicians Alexey
Stakhov and Ivan Tkachenko [13] broke the monopoly of classical hyperbolic
functions in modern science. They introduced a new class of hyperbolic
functions based on the golden mean. Later, Alexey Stakhov and Boris Rozin
introduced the symmetrical hyperbolic Fibonacci and Lucas functions [14]. The
approach of Alexey Stakhov, Ivan Tkachenko and Boris Rozin was based on a
similarity between the Binet formulas and hyperbolic functions. This approach
resulted in the discovery of a new class of hyperbolic functions, hyperbolic
Fibonacci and Lucas functions.

The hyperbolic Fibonacci and Lucas functions [13, 14] are an expansion
of the Fibonacci and Lucas numbers to the continuous domain. There is a direct
analogy between the Fibonacci and Lucas number theory and the theory of
hyperbolic Fibonacci and Lucas functions because Fibonacci and Lucas
numbers coincide with the hyperbolic Fibonacci and Lucas functions at discrete
values of the variable x (x=0,+1,+2,13,...). Besides, every identity for the
Fibonacci and Lucas numbers has its continuous analogy in the form of the
cotresponding identity for the hyperbolic Fibonacci and Lucas functions, and
conversely. This outcome is of great significance for the Fibonacci number
theory [1, 3, 7, 9] because this theory as if is transformed into the theory of
hyperbolic Fibonacci and Lucas functions [13, 14]. Thanks to this approach, the
Fibonacci and Lucas numbers became one of the most important numerical
sequences of new hyperbolic geometry.

However, perhaps one of the most important steps in the development of
the new “hyperbolic models” of nature was made by Alexey Stakhov [18] and
Falcon & Plaza [19]. The hyperbolic Fibonacci and Lucas m — functions are a
wide generalization of the symmetric hyperbolic Fibonacci and Lucas functions
introduced by Stakhov and Rozin [14). They are based on Gazale formulas [11]
and extend ad infinitum a number of new hyperbolic models of nature given by
(30)~(33). It is difficult to imagine that the set of new hyperbolic functions given
by (30)-(33) is infinite! The hyperbolic Fibonacci and Lucas m - functions
complete a general theory of hyperbolic functions, started by Johann Heinrich
Lambert and Vincenzo Riccati, and open new perspectives for the development
of new "hyperbolic ideas" in modern science.

The main importance of the present article for modern science consists of
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the fact that it generalizes a general theory of hyperbolic functions, which
include the classical hyperbolic functions (15), Stakhov and Tkachenko’s
hyperbolic Fibonacci and Lucas functions [13], Stakhov and Rozin’s
symmetrical hyperbolic Fibonacci and Lucas functions [14], Stakhov and
Falcon & Plaza’s hyperbolic Fibonacci and Lucas m—functions [18, 19] as
partial cases. Thus, this article extends infinitely a number of new hyperbolic
models of nature. The development of a general theory of hyperbolic functions,
stated in the present article, gives us the opportunity to put forward the
following unusual hypothesis. Apparently, we can assume that theoretically
there are an infinite number of “hyperbolic models of Nature,” which
correspond to a general class of the hyperbolic functions given by (20)-(23) and
(24)-(27). By studying the models of physical phenomenon, researcher may
select from the hyperbolic functions (20)-(23) and (24)-(27) some concrete kind
of hyperbolic functions, which are adequate to this physical phenomenon.

A new geometric theory of phyllotaxis developed by the Ukrainian
researcher Oleg Bodnar [8] demonstrates that the “golden™ hyperbolic world
exists objectively and independently of our consciousness. This “golden”
hyperbolic world is based on the hyperbolic Fibonacci and Lucas functions and
persistently appears in nature, in particular, in pine cones, pineapples, cacti, and
heads of sunflowers and baskets of various flowers in the form of Fibonacci and
Lucas spirals on the surface of these botanical objects. However, the
promulgation of the new geometrical theory of phyllotaxis, made by Oleg
Bodnar [8], demonstrated that in addition to “Lobachevski's geometry,” nature
also uses other variants of the so-called “hyperbolic medels of nature.” The use
of hyperbolic Fibonacci and Lucas functions in Bodnar’s geometry [8] allowed
to solve the “riddle of phyllotaxis,” and to explain, how Fibonacci and Lucas
spirals appear on the surface of phyllotaxis objects. Bodnar's geometry [8] gives
a hope that one can be created other variants of hyperbolic geometries based on
the hyperbolic functions developed in the present article.
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