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Abstract

Let n € N and let A C Z,, be such that A does not contain 0 and it is non—
empty. E4(n) is defined to be the least ¢ € N such that for all sequences
(z1,...,2¢) € Z*, there exist indices j1,...,jn €N, 1 < j1 < --- < jn < ¢
and (9;,---,9,) € A™ with 3°7_, ¥9:z;, = 0 (mod n). Similarly, for any
such set A, we define the Davenport Constant of Z,, with weight A denoted
by D4(n) to be the least natural number k such that for any sequence
(z1,- -+ ,zk) € Z*, there exist a non-empty subsequence (z;,,- -+, ;) and
(@1,--- ,a;) € A’ such that Z;l a;zj; = 0 (mod n). Das Adhikari and
Rath conjectured that for any set A C Z, \ {0}, the equality Es(n) =
D4(n)+n—1 holds. In this note, we determine some Davenport constants
with weights and also prove that the conjecture holds in some special cases.

1. Introduction

Let G be an additive finite abelian group, a finite sequence

S=1(91,92,""",9) = Q192 @
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of elements of S, where the repetition of elements is allowed and their order
is disregarded, is simply called a zero-sum sequence if g1 + g2 +---+g = 0.
For any integer n such that 1 < n <[, we denote

DS ={gn+gi+ - +gill<i<iz<--<in <}
n

We are interested here in certain generalizations of two important com-
binatorial invariants related to zero-sum problems (for detailed accounts
one may see [9, 3, 15, 8]) in finite abelian groups.

For G a finite abelian group of cardinality n, the Davenport constant
D(G) is the smallest natural number ¢ such that any sequence of ¢ elements
in G has a non-empty zero-sum subsequence; another interesting constant
E(G) is the smallest natural number & such that any sequence of k elements
in G has a zero-sum subsequence of length n.

The following result due to Gao [7] (see also [9], Proposition 5.7.9)
connects these two invariants.

Theorem 1. IfG is a finite abelian group of order n, then E(G) = D(G)+
n—1.

For the particular group Z,, the following generalization of E(G) has
been considered in (2] and [1] recently. Let n € N and assume A C Z,,. Then
E4(n) is the least ¢ € N such that for all sequences (zy,...,z;) € Z¢, there
‘exist indices j1,...,5n € N, 1 < j; < -+ < jn < tand (¥, --,9,) € A™
with n

Zﬂi:z:j‘. =0 (mod n).

i=1
To avoid trivial cases, one assumes that the weight set A does not contain
0 and it is non-empty.

Similarly, for any such set A C Z, \ {0} of weights, we define the Dav-
enport Constant of Z, with weight A denoted by D4(n) to be the least
natural number k such that for any sequence (z1,- - - ,zx) € Z¥, there exist
a non-empty subsequence (z;,,- - ,j) and (a1,--- ,a;) € A’ such that

!
Zaia:ji =0 (mod n).
i=1
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In this case we say that the sequence (zi,--- ,xx) has a zero-sum subse-
quence (zj,,- - ,x;) with weight A.

Thus, for the group G = Z,, if we take A = {1}, then E4(n) and D4(n)
are respectively E(G) and D(G) as defined earlier.

E4(n) and D4(n) were studied in (2], [1] and [12]. They got the follow-
ing results.

Theorem 2.
(i) If A={1,-1}, then Da(n) = [logyn] + 1 and Es(n) = n + [log, n,

where for a real number z, [z] denotes the largest integer which is less

than or equals to x.
(it) IfA={1,2---n—1}, then Da(n) =2 and Ea(n) =n+1.

(iii) A = (Za)* = { a | (a,n) = 1}, then Da(n) = 1+ Q(n), Ea(n) =
n+ Q(n), where (n) denotes the number of prime factors of n, mul-
tiplicity included.

iv) Let p be a prime an = ,,~~,r,wererzsanzﬁegersuc
iv) Let p b 3 d A 1,2 h ] int h
that 1 < r < p, we have Da(p) = [E], where for a real number z,
[2] denotes the smallest integer which is greater than or equals to z,

Ea(p) =p—14 Dalp).

(v) Let p be a prime and A the set of quadratic residues modulo p. Then
we have D4(p) =3, Ea(p) =p+2.

(vi) Da(n)+n—-1< Ea(n) <2n—1 for any A C Z, \ {0}.

In all these above cases, one has E4(n) = D4(n) +n— 1. It is natural that
Adhikari and Rath [2] suggested the following conjecture.

Conjecture. For any set A C Z, \ {0} of weights, the equality Es(n) =
Da(n) +n — 1 holds.

In this paper, we obtain the following main results.

Theorem 3.

(i) Letne N and A= {1,2,---,r}, then Dy(n) = [2].
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(ii) Let p be a prime. Then we have E4(p) = Da(p) + p— 1 for any
ACZy\ {0}

(iii) If A= {1,2} C Z,\ {0} and n is even, then Da(n) = § and Ea(n) =
n+ 5 -1

(iv) 1) IfA={1,2,---,[31} € Z. \ {0}, then Da(n) =2 and Es(n) =
n+1.

(2) Let p be a prime. For any A C Z, \ {0} with |A| = [§], we have
Da(p) =2 and Ea(p) =p+ 1.

(3) (a) If n is even, 2¥ || n and A; ={ a| a is 0dd,1 < a <n}, Az =
{a] aiseven,1 < a<n}, then Dy, (n) = k+1 and E4,(n) = n+k;
Dy, (n) =2 and Egy(n) =n+1.

(b) If n is odd, Ay = {a | aisodd,1 < a < n}, A2 = { a |
a is even,1 < a < n}, then Da,(n) = 3 and Es(n) = n+ 2;
Dy,(n) =3 and Egy(n) =n+2.

2. Proof of Theorem 3.

The proof of (i) or (ii) is almost identical to that of Theorem 2 [2].
We need the following theorems.

In 1961, P. Erdés, A. Ginzburg and A. Ziv [6] proved the following
classical theorem.

The EGZ Theorem. If S is a sequence of elements from Z, of length
2n—1,then 0 € ) (5).

The following famous theorem was originally proved by Cauchy {4], and
later independently re-derived by Davenport [5].

The Cauchy-Davenport Theorem. If A;, Aj, ---, A, are a collec-
tion of nonempty subsets of Z, with p prime, then

|ZA,<| > min{p,ZIA.-l -n+1}.
i=1

i=1
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For any subset A of an abelian group G and let H(A) denote the max-
imal subgroup of G such that A+ H(A) = A. The following theorem is a

classical theorem of Kneser [11].

Kneser’s Theorem. Let G be a finite abelian group. Suppose that
A1, Ay, -+, A, are a collection of nonempty subsets of G. Then

13> A =D A+ H| - (n - 1)|H|,
i=1 i=1

where H = H(>"I_, Ai).

Grynkiewicz [10] gave several statements which are equivalent to Kneser’s

Theorem. What we state below is one of them and we will use it afterwards.

Grynkiewicz’s Theorem. Let G be a finite abelian group. Let A,
Az, Az be a collection of nonempty subsets of G and

3 3
ST1Al 2 (Gl + H Al + L.
i=1 i=1

Then Y°0_, A; = G.

Proof of Theorem 3.

(i) Consider any sequence S = (s1,+--,sr27) of elements of Z,, of length

[2]. Considering the sequence

r times r times T times
A

P A

’ - ~ 7 ~ - ~
S =(slasl,"' 151,82, 82, 382,71, 827,00, S[2) )r

obtained from S by repeating each element r times, and observing that the
length of this sequence is > n, it follows that

Dam) < [2]. (1)

On the other hand, considering the sequence

([21-1) times
e N—
( 1111"' sl ):
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for any non-empty subsequence (s;,, - , s;,) of this sequence and (a1,---a;) €

Al, we have
i

0<zais_,-,. Srl:r([;] -1)<n-1.

i=1
Therefore,
n
Da(m) 2 [2]. (2)

From equations (1) and (2), the result follows.

(ii) Now, consider any sequence S = (s1,--- , sny) of elements of Z, of length
N=p—1+4+Du(p). A= {ar,a2, -+ ,a,} CZ,\ {0} for r > 2.

Case 1. (The sequence S has at least p non-zero elements in it).

Let (si,, Sip, - -+, 5i,) be a subsequence of S of p non-zero elements and
let

Ak = {a184,,0284,,++ ,GrSi, }

for k=1,---,r. Since |Ag| > 2 for all k, by the Cauchy-Davenport Theo-
rem it follows that

P
|A1+ Az + -+ + Ap| > min{p, Y _|Ax|-p+1} =p,
k=1
and hence

P
Zaﬁcsik = 0, where a}, € {a1,a2, " ,ar} C A.
k=1

Case 2. (The sequence S has less than p non-zero elements in it).

In this case, at least D4(p) elements of the sequence are equal to zero.
We reorder the sequence in such a way that s; = s; = --- = s; = 0 and the
remaining elements are non-zero. We have N —¢ < p. Let

B={r,...,n}C{t+1,t+2,--- ,N}

be maximal with respect to the property that there exist a;,--- ,a1 € A =
{01,02, e 1ar} with

l .
Z a;sr; = 0.

=1
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Now we claim that [ + ¢ > p. Indeed, if this were not the case then
theset C={t+1,--- ,N}\ {r1, -~ ,m} would contain N —t — 1 > D4(p)
elements. Hence by the definition of D 4(p), there would exist a non-empty
B' C C and a; € A = {a1,a2,--- ,a,} for each j € B’ such that

Z ajs; =0.
jEB’

Now, B U B’ would contradict the maximality of B. Hence [ +¢ > p.
Therefore, appending the sequence B to (s1,s2, -+ ,8,—;) = (0,0,---,0),
we get a sequence of length p with desired property.

(iii) From (i), we know that D4(n) = 2. So we will prove that E4(n) =
n+ 5 -1

Let S = (51, ,sn) be a sequence of elements in Z, of length N =n+
5 —1L. It suffices to prove that S has a zero-sum subsequence of length n with
weight A. Considering S in Zg, by the EGZ Theorem we know that S has
a zero-sum subsequence of length . Without loss of generality(w.l.o.g.),
assume that 7) = Hi%:l si is a zero-sum subsequence of length Z. Similarly,
ST~ has a zero-sum subsequence of length 5. W.lo.g., assume that T =
H;;% +15i is a zero-sum subsequence of length . Clearly, >°7_, 2s; = 0
- (mod n). It follows that (iii) of Theorem 3 holds.

(iv) (1) From (i), we know that D4(n) = 2. Let S = (s1, -+, $n4+1) be
a sequence of elements in Z,. To prove E4(n) = n + 1, it suffices to prove
that S has a zero-sum subsequence of length n with weight A. Set

F={si|asi=0,a€ A, s; €S}

If I’ # 0, then we have |T'| zero-sum subsequences of S of length 1 with
weight A. Since D 4(n) = 2, arguing as in the proof of case 2 in (ii) we can
produce a zero-sum subsequence of S of length n with weight A.

If ' = @, which means ged(s;,n) = 1, then [s;A] = [A|] = [2] for
i=1,2,-- ,n+1.

If n is even, then s; isodd fori =1,2,--- ,n+ 1 and 5 € A. So

n
Zsig =0 (mod n).

i=1
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If n is odd, then we have |s;A| = |[A| = [§] = a4l fori=1,2,---,n+1.
So

E:hAl 3("'+1)>n+%1+1

By Grynkiewicz’s Theorem, we get 21’:1 $;A; = Z,. Hence
Z S; A,' = Zn.
i=1

n
It follows that 0 € ZsiA,

i=1
(2) One has only to consider the case where p is an odd prime. Let
A={ay,---,ar}, where0<a; <p-1,fori=1,---,r,r=[§] = ptl

Let S = (s1, s2) be a sequence of elements in Z,. We will show that S
has a zero-sum subsequence with weight A. If s; = 0 or s3 = 0, the result
is trivial. Assume that s; # 0 for every i = 1,2. Set

A; = siA = {s;jay,si02, -, 8iar}
for i = 1,2. By the Cauchy-Davenport Theorem, we have
|1 + Ao 2 min{p, | 41| + 142 - 1} = 2[ 5] 1=,

so 0 € A; + A;. Hence, we have D4(p) < 2. Obviously, Da(p) > 1. Thus
D,(p) = 2. And from (ii), we obtain Ea(p) =p+1.

(3) (a) If n is even and 2* || n, then 3 € A;, where

Al={1135"'v -

en—1h

First, we prove that D4, (n) > k. Note that

Al ={193’°" )%7"' 1n_1}1

n n

4 ={3}

n n 3n

?Al {22?22}

n n 3n 2k - 1)n
wh =g g T b
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We assert that 0 ¢ ) .., s+A; with I C {1,2,---,k}. We proceed by
induction on the cardinality of I. Note that for |/ | = 1, the result follows
trivially. Inductively, assume that the result holds true for 1 < |I| < k.
Now consider |I| = k. If0 € Z,_l 3¢ A1, then there must exist a; € A, for
t=1,2,---,k such that

—ay+ -+ =0 (mod n).

al + 2k

22
Multiplying both sides of the above equation by 2, we get

n
2a2+ 22

Hence, 0 € ZA; + A +- + s#=r A1, a contradiction to the induction
hypothesis.

n .
a3+ +2,c 7ak =0 (mod n).

Next, we prove that D4, (n) < k+1. Let S = (s1,--- ,sn) be a sequence
of elements in Z,, of length N = k+ 1. We will prove that S has a zero-sum
subsequence with weight A;. Consider the sequence of 25! — 1 integers

(2=)
iel PAIC{1,2, - k+1}

that cannot contain distinct integers modulo 2. Therefore, there exist
L, C{1,2,--- ,k+ 1} with I; # I3 such that

Z 8 = Z s; (mod 2%).
i€l i€l
We distinguish three cases.
Case 1. If ) NI, = @, then we have
Zs,-(n ok +Zs,2,c =0 (mod n),
i€l i€l .
where n — & € Ar.
Case 2. If I] g Iz or 12 ;Ct Il, set | = 12\11 or ] = 11\12, then Ziel ;=0
(mod 2%). It follows that

Zs, + =0 (mod n),

iel
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where 7 € A;.

Case 3. U ILnI, #0, I g Iy and I, ,@_ I, then

Z 5 = Z s; (mod 2F).

iel;\l;nlg iel\I,NI2
It reduces to Case 1. Thus, we prove that D4, (n) =k + 1.

Last, we will prove that E4, (n) = n+k. Assume that S = (s1,---,snv)
is a sequence of elements in Z,, of length N’ = n + k. To prove E4,(n) =
n + k, it suffices to prove that S has a zero-sum subsequence of length n
with weight A; because of Theorem 2(vi). We partition S into the following
multisets (sets with repetitions allowed):

M; = {s;] 2" || s, s; € S}, for i =0,1,2,--- ,k.

Note that every pair of elements s,(‘), s§2’ in M; constitutes a zero-sum

subsequence of S with weight A; since

@ (1)
RONEHI sﬁ”(n— s,_) =0 (mod n),

' 2t 2i
3@ 8V .
where -, n — <% € Ay, fori=0,1,--- , k-1

While every element s; in M. produces a zero-sum subsequence of S
of length 1 with weight A; since 3;5",‘- = 0 (mod n), gt € A;1. So we can
choose n elements from M; for i = 0,1,--- ,k, say, 81,82, ,8, and n
elements a; € A, such that

Zsiai =0 (mod n).
=1
This completes the proof of E4, (n) =n + k.
Now we consider the case of As.

If n = 0 (mod 4), then § € Az. Note that s- =0 (mod n) when s is
even and (s; + s2) - 2 =0 (mod n) when s, and s; are both odd. So from
the definition of D 4(n), E4(n) and Theorem 2(vi), it is easy to deduce that
Dg,(n)=2and E4,(n) =n+1.
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If n = 2 (mod 4), then 3 ¢ Aa. For arbitrary sequence S = s1s2 of
elements in Z,, assume that ged(s;,n) = 2'd; and ged(sz,n) = 2id; where
OS% .7 <1 2{(111 2fd2‘

Ifdy > 1 or ds > 1, then it is easy to see that 0 € sy A3 or 0 € soAs.

If di = do = 1, then 5145 = s0A2 = As. Thus 0 € s1As + s245 =
Az + As.

So arguing as above, it is easy to deduce that D4,(n) = 2 and Fa,(n) =
n+1.

(b) If nis odd .

First, we consider the cases of A;. For the sequence (1,1), note that
0¢ A; + A, it follows that D4, (n) > 2.

For arbitrary sequence S = s;s2s3 of elements in Z,, if there exists one
of elements, say s;, such that ged(s;,n) # 1, then we have 0 € s; A; because
of WEI?J € A;. In this case S has a zero-sum subsequence of length 1
with weight A;.

If ged(si,n) =1, for ¢ = 1,2, 3, then

-1

3
|s1A1] + |s2A1| + |s3A1]| = 5 2n+ g +1

when n > 15. Hence, by Grynkiewicz’s Theorem, we have
5141 + 50A4; +53A1 =Z,

when n > 15. So S has a zero-sum subsequence of length 3 with weight
A;. Clearly, D4, (n) =3 when n > 15.

When n < 13 and n = p is prime, by the Cauchy-Davenport Theorem

we have
|s1A; + s2A1| 2 min{p, |s141]| + |s24:| -1} =p - 2.

Thus
s1A1 + 82A; + 834, =Z,,.

Hence, Da, (n) = 3 when n < 13 and n is prime.
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When n = 9, we have A; = {1,3,5,7} and s; € {1,2,4,5,7,8} for
i=1,2,3. Then, it is not difficult to check case by case that s; A; + s2A4; +
s3A; = Zg. Thus, we have D4, (9) = 3. In sum, we get D4, (n) = 3 when
n> 1

We will prove that E4,(n) =n + 2. Assume that S = (sy,--- ,sn) is a
sequence of elements in Z, of length N = n + 2. It suffices to prove S has
a zero-sum subsequence of length n with weight A;.

If(w.l.o.g.) ged(si,n) # 1 for i =1,2,---,t (¢t > 2) and ged(sj,n) =1
fori=t+1,t+2,---,N. Arguing as in the proof of case 2 in (ii), it is
easy to see that we can choose I C {1,2,--- ,N} with |I| = n such that

zsiai =0 (mod n),
i€l
where a; € A; fori e I.

If (wlo.g.) ged(si,n) =1 fori=1,2,.-.-,N — 1, arguing as above,
we can prove that 0 € s1A4; + s2A; + -+ + spA1 = Z,. It follows that
Ep(n)=n+2.

Next, we consider the cases of As. Arguing as in the proof of case A,,
we can prove that D4,(n) = 3 and E4,(n) = n + 2. This completes the
proof. _ O
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