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Abstract

Let n, k be integers and £ < n. Denote by G, x and Q,’,' « the
set of graphs of order n with k independent vertices and the
set of graphs of order n with k independent edges, respectively.
The bounds of the spectral radius of graphs in G, , and g;l'k
are obtained.
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1 Introduction

In this paper, we consider connected simple graphs only. Let A(G)
be the adjacent matrix of graph G. The spectral radius, p(G), of a
graph G is the largest eigenvalue of A(G). For the results on the
spectral radii of general graphs, the reader is referred to [1-3].When
G is connected, A(G) is irreducible and by the Perron-Frobenius
Theorem(see [4]), the spectral radius of A(G) is simple and has a
unique positive eigenvector. We will refer to such an eigenvector as
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the Perron vector of A(G). The following Proposition is a well-known
result.

Proposition 1 Let G = (V,E) be a connected graph, for z,y €
V(G), G* = G +zy is a graph that arises from G by adding an edge
zy ¢ E(G), then

p(G) < p(G™)

A subset S of V is called an independent set of G if no two vertices
of S are adjacent in G. The number of vertices in a maximum in-
dependent set of G is called the verter independence number of G.
The independent edge set is a set of edges no two of which are adja-
cent, i.e. a matching. The number of edges in a maximum matching
is called the edge independence number of G. These definitions can
be found in [5].

In [6], Brualdi and Solheid proposed the following problem: Given
a set of graphs, G, find a bound for the spectral radii of graphs in G
and characterize the graph in which the mazimal spectrel radius is
attained. Some special kinds of graphs have been studied in [8,9].
In this paper, we study this kind of question for G, x(k < n) and
G) (k < n), the set of graphs of order n with k independent ver-
tices and the set of graphs of order n with k independent edges,
respectively.

We denote by K, the complete graph with n vertices, and denote
by I K, the graph of | copies of K. Let H; = (W4, Ey), Hy = (V3, Es),
the direct sum H; U Hj, is the graph H = (V, E) for which V =
ViU V5 and E = F, U Es. The complete product H,V Hs of graphs
H, and H; is the graph obtained from H; U Hy by joining every
vertex of H; with every vertex of Ha.

2 Notations and Lemmas

First, we introduce some notations. Let m =n—%k, G; = K,'; =
Kn,V(kK;). Obviously, G; € G,x. We give a partition of V(G;)
and E(G;). Let V(G1) = V4 UV,, where Vi = {v1,vq,---,vx} is
the independent vertex set of K¥ and Vo = {vg41,+--,vn} is the
vertex set of Kp,. E(G;) = Ey1 U Ep, where E; denotes the set of
edges between Vi and V2, and E, denotes the set of edges whose
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ends both inside V2. We color the edges in E; with color red, the
edges in E; with color blue. Denote by e,, e, the red edges and
blue edges in Gj, respectively. when 2 < k < n — 2, we define
Gy = G; — e,,G3 = G1 — ep. For n = 6, the graphs defined above
are shown in Fig.1(in which the blue edges are represented by thick
lines and the independent vertices are represented by black dots).

G, G2 Gs

Fig.1

Without loss of generality, in the following discussion, we suppose
that the vertices of G;(1 < 7 < 3) are put on a cycle in a counter-
clockwise order. Gy = G1 — vgVk+1, G3 = G1 — Vg41Vk42-

~ Next we give some important results which we use later in this
paper.

Lemma 1 ( [1/P57) The characteristic polynomial of the complete
product of regular graphs Hy and Ha is given by the relation:

_ Py, (z) Py, (x)
Pryom () = (z —r)(x—12)

(x =) (z — r9) — nyng],

where n; is the order of H; and r; is the degree of vertices in V(H;).

Lemma 2 [7] Let G be a connected graph and p(G) the spectral
radius of A(G). Let u,v be two vertices of G and d, be the degree of
vertez v. Suppose v1,vs, - -,vs € NW)\N@)(1<s<d,) andx =
(1,2, ,z,)T is the Perron vector of A(G), where z; corresponds
to the vertex v;(1 < i <n). Let G* be the graph obtained from G by
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deleting the edges (v,v;) and adding the edges (u,v;)(1 <% < s). If
Ty = Ty, then

p(G) < p(G").

Lemma 3 Let p(G) be the spectral radius of A(G), (z1,T2,"-* y2n)T
be the Perron vector of A(G), where z; corresponds to the vertex
‘Ui(l < % < n)

(i) If d(v;) = d(v;) = n — 1, then z; = x;;

(it) If N(v;) = N(v;) , then z; = x;.

n

Proof. (i) Let s = ) z;. By the definition of eigenvalue,
i=1

=

pzi= ), =z (1<i<n) (1)

Hence

(ii) It’s a direct result from (1). O

3 The bound of spectral radius of graphs in
gn,k

Theorem 1 Let G € G, and m =n — k, then

p(G)Sm—1+\/(TZ—1)2+4km, @)

the equality holds if and only if G = G.

Proof. Choose G € G, such that the spectral radius of G is as
large as possible. Let Vi = {v1,v2,-- -, v} be the set of independent
vertices of G. We claim that the induced subgraph G — V; must be
a complete graph K,,, Otherwise, there exists a pair of nonadjacent
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vertices, say v;,vj(k +1 < i,j < n). Then we add an edge v;v;
in G. By Proposition 1, p(G) < p(G + v;v;), a contradiction to
the choice of G. By similar argument, each vertex in V; must be
adjacent to each vertex in V(K,,). Thus, we have shown that for
any G € G, p(G) < p(G1), the equality holds uniquely at G;.

Next, we will calculate p(G,).

Let Hy = K, Hy = kK. Since Py, (z) = (x—m+1)(z+1)™"1,
Py,(z) = z*, from Lemma 1,

Pyiomy(z) = 2 Yz + 1) Y(z — m + 1)z — mk).

Therefore, the spectral radius p of the graph H,VH; satisfies the
equation
(z—m+1)z—mk=0.

The result follows immediately by solving the above equation. O
If k=n—1, G is a star of order n. So Theorem 1 implies the
following corollary.

Corollary 1 Let K; ,—; be a star of order n. then
p(Klan_l) =V n-— 1'
Theorem 2 Let2 <k <n-2,m=n—k. For anyG € G,+\{G1},

p(G) < p(G2),
the equality holds if and only if G = Gs.

Proof. First, we will show the following facts:

Fact 1. In view of isomorphism, by deleting an edge in Gy, we
only get two graph: G2 and G3. This is an obvious result.

Fact 2. p(G3) < p(G2).

Proof of Fact 2. Let V(Gz) = V(G3) = V(G1) = {v1,v2, -+, vn }.
G2 = G1—vkVk+1, G3 = G1—Vk+1Vk+2. Supposex = (21,2, "+, Tn)T
is the Perron vector of A(G3), where z; corresponds to the vertex
vi(l1 <i<n).
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From Lemma 3, if N(v;) = N(v;) or d(v;) = d(v;) = n — 1, then
z; = zj. Therefore,

1= == =4a

Tk+1 = T2 = b

Tpt3 =Tk+q " =ITp=¢C
Using (1), we get
pa = (m—2)c+2b, 3)
pb = (m—2)c+ka. (4)

By (3),(4),we have
pa — 2b = pb — ka,
Hence,
Tesz _ b _ptk

Ty a p+2
Since z; > 0(0 < i < n), we see that zx4o > zx. By deleting vi4qvk

and adding vg41Vk+2, we obtain Ga, then from Lemma 2

p(G3) < p(Ga).

For any G € G, i \ {G1}, G is either a subgraph of G or a subgraph
of G3. In both cases, p(G) < p(G?) is still valid, and if G # Gz, by
Proposition 1, p(G) < p(G2). O

Theorem 3 The spectral radius of the graph G2 satisfies the equa-
tion

pt = (m—-2)p* — [m(k+1) - 2]p* —m(k—1)p+(k—-1)(m—-1)=0

Proof. Let G2 = G1—vivg41 and x = (21,22, -, z,)7 is the Perron
vector of A(G2), where z; corresponds to the vertex v;(1 < i < n).
n

Let s = ) z;, then From Lemma 3 we have
=1

Ty == Tpod

S
x ==L, = —
k+2 n p+1

px1 = (M — 1)ZTgi + Tht1
pzk = (m — 1)Ti42
PTrtr = (M — DZiy2 + (kK — 1)z
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Simplify the array of these equations, we get

T1=T2= = Zp-1 (m —1)s
pP?—k+1
_(m-1)s
T oo +1)

Tk4+2 = Tk43 = """ = Tn

n
Recall in mind that s = )_ z; , the result follows after a simple
i=1

calculating. 0
Corollary 2 Let p be the spectral radius of the graph G, then

m—2++/(m—2)2+4(m+1)(k+1)+4m — 18
5 .
Proof. By Theorem 3, p satisfies the following equation

pt—(m—-2)p° —[m(k+1) - 2]  —m(k-1)p+(k—1)(m—1) =0.
Since p > 0,

p<

(k—1)p—(k—-1)(m—
02

It’s easy to see that G2 contains a complete bipartite graph Ky, x—1

as a subgraph, which implies p > /m(k — 1). G is not a complete

graph, so p < m + k — 1. Recall these facts in mind, and combine

the equation (5) , we have

P (m-2p—[mk+1)—2) = 2 D )

mk —)(m+k—-1)—(k—1)(m—-1)

pP—(m—-2)p—[mk+1)-2 < m(k — 1)
= m+l<:—2+l
m
3
< - =
m+k 5
Hence,

P2 —(m—2)p—(mk+2m+k— g) <0.
Solving this inequality , we obtain the result. O
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4 The bound of spectral radius of graphs in
!
n,k

The graph X!, is a graph obtained by joining ! independent vertices
to one vertex of K,,_;.

Now we introduce some graphical concepts involving matching.
Let M be a matching in G = (E,V). A matching M saturats a
vertex v, and v is said to be M — saturated , if some edge of M is
incident with v; otherwise, v is M —unsaturated. An M-alternating
path in G is a path whose edges are alternately in £\ M and M.
An M-augmenting path is an M-alternating path whose origin and
terminus are M-unsaturated.

Lemma 4 ( [5/P70) A matching M in G is a marimum matching
if and only if G contains no M-augmenting path.

Lemma 5 ( [8]) Let p be the spectral radius of the graph K',, then

n-1-1 1<i<n-1-vn-1;

n-1-vn-1<i<n-3.
(6)

+(n—l)2—n’
a vn—1+ n-t-2
T A Vasi-(n-1-2)

Theorem 4 Let G€ G, ;,l =n—2k(l < n—2), then

p(Kyp), 1=0,1;
p=<
p(KL), 1> 1.

Proof. Ifl = 0,1, then p(G) < p(K,) is a clear result. So we assume
that I > 2 next.
Let G = (V,E) € G, ; be a graph with as large spectral radius

as possible. E; = {e1 = viv2,e2 = V3V4,-:-,€x = Uok—1V2k} be
a maximum matching of G, V] = {v1,vs,---,v2},Vo = V\Vj =
{v2k+la ot s'Un}°

First, we will show the following facts:

Fact 1. For any G € g;,,k, Vo = {vok+1,**,Vn} is an indepen-
dent set in G.
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Proof of Fact 1. Otherwise, Let ex11 = vv;, 2k+1<i<j<n
is an edge of G, then E3 = Ey U{ex+1} is a matching of G satisfying
|E2| > |E1|, a contradiction.

Fact 2. G[V4] = Kax.

Proof of Fact 2. Otherwise, there exists a pair of nonadjacent
vertices, say v;,v;(1 <% < j < 2k). Then we add an edge v;v; in G.
By Proposition 1, p(G) < p(G + v;v;), a contradiction to the choice
of G.

Fact 3. We denote by [V, V5] the set of edges with one end in V;
and the other in V5. Then there is no independent edges in [V, V3.

Proof of Fact 3. Otherwise, suppose uv;, wv; are such edges
with v;,v; € Vi, u,w € V3, then uv;v;_1v;_1v;w is an Ey-augmenting
path in G, from Lemma 4 , E; is not a maximum matching. This is
contrary to the hypothesis.

Fact 4. For each vertex u € V3, d(u) = 1.

Proof of Fact 4. Otherwise, suppose there’s a vertex u € V,
and d(u) > 2. From Fact 1, N(u) C Vi, so we can find two neighbors
of u, say, v;,v; € V. Since |Va| =1 > 2, there exist another vertex
- w € Vo \{u}. Let v; € V} be adjacent to w, then wv; and uv;(or uv;)
are two independent edges in [V}, V2], which is contrary to Fact 3.

Fact 5. Distinct vertices in V2 must be joined to an identical
vertex v; in V7.

Proof of Fact 5. If this is not true, without loss of generality,
we suppose that there exist u,w € Va2, and u is joined to v; , w is
joined to v;(j # %). Then uv; and wv; are two independent edges in
[V1, V2], which is contrary to Fact 3.

Combining the facts above, we have p(G) < p(K)(I > 1), with
the equality holding if and only if G = K},. O

The following theorem was obtained in [8]. Here we give another
proof.

Theorem 5 ( [8]) Let p be the spectral radius of KL(1 <1 <n—2),
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then p satisfies the following equation
P-n-1-2)p°—(n—-1)p+(n-1-2)l=0 )

Proof. Without loss of generality, Let V; = {v1,v2,--,v;} be the
set of vertices of degree one, their common neighbor is v;4;. The
left vertices are vj42, - ,Vn. Let X = (Z1, T2, -, Zn)T be the Perron
vector of K.

Zm,- =s. (8)

i=1
Then from Lemma, 3,
_ _ s
S PRSI
s
41 = PRy
. _lplp+1)-1s
Ti42 =43 = " = Tn = op+12

Substituting these equations to (8), we have

l 1 plp+1) -1
+ +(n-l-1)-=——e = 9
e T S A PES: ©)
The result follows after Simplifying the equation above . O

Using the Cardano’s formula (see [10],PP120-121), we obtain the
following estimation.

Corollary 3 Let1 <l <n—2, then

2/(n—-1-2)2+3(n-1)
3 .

Remark. For K2, p(K2) = 2.3429, from (10), p < 2.4037. The
use of (6) lead to p < 2.5.

p(Ky) < (10)
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