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Abstract
For a finite group G the commutativity degree,

46 = Wzies € Gy =)

is defined and studied by several authors and when d(G) > 3 it is
proved by P. Lescot in 1995 that G is abelian , or z—(Gcﬁ is elementary
abelian with |G’| = 2, or G is isoclinic with S3 and d(G) = 1. The
case when d(G) < } is of interest to study. In this paper we study
certain infinite classes of finite groups and give explicit formulas for
d(G). In some cases the groups satisfy 3 < d(G) < 3. Some of the

groups under study are nilpotent of high nilpotency classes.
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1. Introduction

The notion of commutativity degree of a finite group G,

d(G) = l{(mxy)lz,ylglf, zy = yz}|

or d(G) = k(&) where k(G) is the number of conjugacy classes of G,

GT
defined in 1973 by Gallagher [2] and studied during the years for certain
properties (one may refer to [3,6,7] ). In obtaining the properties of d(G),
Gustafson [3] proved that for a non-abelian finite group G, d(G) < 3,
and P. Lescot (6] studied the groups where d(G) > } and classified these
groups. Moghaddam and etal in [7] studies the isoclinism of groups and the
n-nilpotency degree of finite groups where n-nilpotency degree of a finite

group G is defined by:
1
d’& = Wl{(l‘], v ,$n+1)|$i c G, [311, v ,xn+1] = 1}],
where the notation [z1,...,Zn41] is used for the commutator

[z1,- - Zns1] = ([21,-- - Tn), Tat]-

In fact they prove the equality d®(N x H) = d"(N)xd"*(H) forevery n > 1,
where N and H are finite CN-groups (a CN-group is a finite group where
the centralizer of every element is a normal subgroup).

In this paper we study certain infinite classes of finite groups which
are not CN-groups and we give explicit formulas for d(G). We use the
notation N :, H for the semidirect product of a group N by a group H
with respect to a homorphism ¢ : H — Aut(N) where hp = @4, for every
h € H. Certainly N is a normal subgroup of N :, H and N—,’\)LH =~ H. Our

considered classes of groups are as follows :

Gl m,n) = D2n : Z2m: m,n 2 3:

(
G?(m’ n) = Q2" : Z2m» m,n 2> 3,
G3(n) = Zon 1 Zy, n > 2, (the wreath product of Zs» by Zs,)
G4(n) = Sy, n > 5, (the symmetric group of degree n).
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2. The Computation of d(G)

The main results of this section are:
Proposition 2.1. For every integers m,n > 3,
(i) if G = Gy(m,n) then

d(G)={ 243 if nis odd,

1{;‘;—6 , if n is even,

which is independent of m;

(ii) if G = G2(m,n) then d(G) = >3, which is also independent of
m;

(iii) if G = G3(n) then d(G) = LH;

(iv) if G = S, then d(G) = ﬂn?—), where P(n) is the number of partitions
of the integer n.
Proof. Let d'(G) = |[{(z,y)|z,y € G,zy = yz}|.

To prove (i), let G = G(m,n) and we get the following presentation
for G,

G = {(a,b,cla® = b" =™ = 1,c¢ laca = 1,¢ " 'bchb = 1).

Every element z of G may be represented as z = a*bic*, where i € {0,1},
i €{0,1,...,n—1} and k € {0,1,...,2m — 1}. For every z = a’bic*
and y = a®bc! of G, where i,s € {0,1}, ,t € {0,1,...,n — 1} and k,l €
{0,1,...,2m — 1}, if zy = yz then

(@'t c*)(a®bie!) = (a®btd)(a'bi k),

SO
ai+sb(~1)‘j+(-—1)"’cck+l - as+ib(-1)‘t+(—1)'jct+k_

Hence we obtain
B(=17F+H(=D e — p(-Dit+(=1)'5

or
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(=1)%j + (=1)*t = (1)t + (=1)'j (mod n). (t)

Let Ai,s = {(i,j,k,s,t,l)| ht € {011,--’7'"‘ - 1}, i,8 € {0:1}1 k’l €
{0,1,...,2m —1}}, where (i, 4, k, s, t, 1) satisfies the condition (). Then we
deduce that

1 1 1 1
TU U Aisl =D 14ial = d'(G).

i=0 s=0 i=0 s=0
To compute |Ag o}, [Ao,1|, |A1,0] and |A;,;| we consider two cases for n:
Case 1: n is odd. First we suppose that i = s = 0 and show that |Agg| =
m?%(n? + 3n). The values of |Ao,1|, |A1,0] and |A;,1| may be determined in
a similar way. By the assumption ¢ = s = 0 the relation (t) will be reduced

to:

(-1)¥t -t = (-1)!j - j(mod n), 4
and there are four possible cases to consider the solutions of (}), as follows:

(a). if k and [ are even then (}) holds for every values of ¢t and j,
(b). if k and ! are odd then (1) holds for ¢ = j,

(¢). if k is odd and [ is even then (}) holds for ¢t =0,

(d). iflis odd and k is even then (}) holds for 7 = 0.

Since each of the integers k and ! take m possible values, there are m?(n2 +
n + n + n) solutions (i, j, k,s,¢t,l) for (}) when i = s = 0; i.e., |Ago| =
m?(n? + 3n).

In a similar way we obtain |A; 0| = |Ao,1| = |A1,1] = m%(n? + 3n), and
hence d'(G) = 4m?%(n? + 3n). Since |G| = 4mn one obtains d(G) = &3, as

desired.

Case 2: n is even. In this case we show that
|4o,0l = |A1,0] = |Ao,1| = |A1,1] = m*(n® + 6n).

A similar proof to that of case 1 may be used for this calculations. For

simplicity we give the possible cases for the solutions of (1) when i = s = 0:
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(e). if k and ! are even, then (}) holds for every values of t and j;

(f). if k and [ are odd, then (}) holds for ¢ = j(mod %);

(g). if k is odd and [ is even, then (}) holds for ¢ = O(mod %)
and j is arbitrary;

(h). if L is odd and k is even, then (}) holds for j = 0(mod 3)
and t is arbitrary.

We note that in the case (f), for every value of ¢ there are two different
values for j. Consequently, there are m?(n? + 2n + 2n + 2n) solutions for
(1), when ¢ = s = 0 and the result follows immediately.

To prove (ii) we may consider the following presentation for G = Ga(m, n):
G = {(a,b, clazﬂ_1 = =1, = azn_z,b'laba =c laca = ¢~ tbch = 1).

Then every z € G may be presented as £ = a’b7c¥, where i € {0,1,...,2"" 1~
1},7€{0,1} and k € {0,1,...,2m—1}. Now two elements z = a*b’c* and

y = a*btd of G commute if and only if

== 4s((1)*H =1) _ pt(1=(=1)F)+i(-14(-1)")

Equivalently, the equations

" (1= (~1)*) +s((=1)** = 1) =0 (mod 2"1),
1= (-D¥) +5((-)'=1)=0  (mod 4),

hold. Now, computing d(G) is reduced to determining the number of ele-

ments of the set
A= {(i,5,k,s,¢,0)i,s € {0,1,...,2" =1}, 4,t € {0,1}, k,l € {0,1,...,2m—1}},

where (4,7, k, s,t,1) satisfies the above system of equations. We observe
that |A] = d’'(G), then we try to calculate |A| by considering four cases for
k and [.

If k and [ are even then we must only consider the possible cases for
t and j. For the values ¢ = j = 0, each of the integers i and s admit m

values and there are m x m x 2 x 2"~! = 2™m?2 solutions of the system ()
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in A. Using a similar manner as above for each case, when (t =1, j =0)
and (t =0, j = 1) we get 2™m? elements of A satisfying (). In the final
case, t = j = 1, the system (*) holds for every values of i and s, and
there are m? x 22"~2 solutions. So, for the even velues of k and [ there are
m?2"(2"~2 + 3) solutions of () in A.

If at least one of k or ! is odd, we consider three cases and in each
case as the above we get m22"(2"~2 + 3) solutions. Consequently, |A| =
4m?2™(2"~2 4 3) and then d(G) = £ 43,

The proof of (iii) is similar to those of (i) and (ii). Indeed, the group
G = G3(n) may be presented as

G = (a,b, c|a2" =" =c?=1,clac=b,c lbc= a),

and hence we immediately obtain d(G) = %"Tﬁ’-

The assertion (iv) may be proved by considering the permutations § and
¥ of S,. We now that @ and v are conjugate if and only if § and % have
the same cycle structures. Let n = n; + no + ... + ni be a partition of n
where n; < ng < ... < ng, we denote this partition by n = (ny,ns,...,n).

Define the cycles

01 = (1,2,...,"«1),
6, = (n1+1,n1 +2,...,n + ng),

Or=(mi+na+...4ng1+41,...,n + 0+ ... +ng_1 + ng),
and let Y5, n,....ne) = 6102...0%. Now, if P(n) is the set of all partitions
of n and C(n) is the set of all disjoint conjugacy classes of S,, then we may
define
f:P(n) — C(n)
given by
f(ni,n2, ... nk) = [¥(ny,ng,.imi)]s

where [¥(n, n,,...n)] is the conjugacy class of Y(n, n,,..,n,)- Since f is a
bijection, it follows that |P(n)| = |C(n)|. This implies that P(n) = k(S,)
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and by the definition of d(G) we get the required result as d(S,) = ﬂn-?l.
=]

Corollary 2.2.

(i) For the groups G = Gi(m,n), G = Gz(m,n) and G = G3(n),
$<dG)< i}

(ii) If G = G4(n), then d(G) < 3 and limp_o d(G) = 0.
Proof. (i) is a straightforward consequence of Proposition 2.1. For (ii) we

observe that

n — 00.

{ P(n) ~ LmeVE

1 _V®
(To prove one may refer to [1]). Then lim, o %’ﬂ = limy oo ﬂ—‘@%— =

0. O
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