Certain classes of groups with commutativity

degree
$$d(G) < \frac{1}{2}$$

H. Doostie¹ and M. Maghasedi²

¹Mathematics Department, Teacher Training University, 49 Mofateh Ave., Tehran 15614, Iran.

Email: doostih@saba.tmu.ac.ir

²Mathematics Department, Islamic Azad University, Karaj Branch, Iran.

E-mail: mmaghasedi@gmail.com

Abstract

For a finite group G the commutativity degree,

$$d(G) = \frac{|\{(x,y)|x, y \in G, xy = yx\}|}{|G|^2}$$

is defined and studied by several authors and when $d(G) \geq \frac{1}{2}$ it is proved by P. Lescot in 1995 that G is abelian, or $\frac{G}{Z(G)}$ is elementary abelian with |G'|=2, or G is isoclinic with S_3 and d(G)=1. The case when $d(G)<\frac{1}{2}$ is of interest to study. In this paper we study certain infinite classes of finite groups and give explicit formulas for d(G). In some cases the groups satisfy $\frac{1}{4} < d(G) < \frac{1}{2}$. Some of the groups under study are nilpotent of high nilpotency classes.

AMS Subject Classification: 11b39, 20K05

Key words: Commutativity degree, Finite groups.

1. Introduction

The notion of commutativity degree of a finite group G,

$$d(G) = \frac{|\{(x,y)|x, y \in G, xy = yx\}|}{|G|^2}$$

or $d(G) = \frac{k(G)}{|G|}$, where k(G) is the number of conjugacy classes of G, defined in 1973 by Gallagher [2] and studied during the years for certain properties (one may refer to [3,6,7]). In obtaining the properties of d(G), Gustafson [3] proved that for a non-abelian finite group G, $d(G) \leq \frac{5}{8}$, and P. Lescot [6] studied the groups where $d(G) \geq \frac{1}{2}$ and classified these groups. Moghaddam and etal in [7] studies the isoclinism of groups and the n-nilpotency degree of finite groups where n-nilpotency degree of a finite group G is defined by:

$$d_G^n = \frac{1}{|G|^{n+1}} |\{(x_1, \dots, x_{n+1}) | x_i \in G, [x_1, \dots, x_{n+1}] = 1\}|,$$

where the notation $[x_1, \ldots, x_{n+1}]$ is used for the commutator

$$[x_1,\ldots,x_{n+1}]=[[x_1,\ldots,x_n],x_{n+1}].$$

In fact they prove the equality $d^n(N \times H) = d^n(N) \times d^n(H)$ for every $n \ge 1$, where N and H are finite CN-groups (a CN-group is a finite group where the centralizer of every element is a normal subgroup).

In this paper we study certain infinite classes of finite groups which are not CN-groups and we give explicit formulas for d(G). We use the notation $N:_{\varphi}H$ for the semidirect product of a group N by a group H with respect to a homorphism $\varphi:H\longrightarrow Aut(N)$ where $h\varphi=\varphi_h$, for every $h\in H$. Certainly N is a normal subgroup of $N:_{\varphi}H$ and $\frac{N:_{\varphi}H}{N}\cong H$. Our considered classes of groups are as follows:

$$G_1(m,n) = D_{2n} : Z_{2m}, \quad m,n \geq 3,$$
 $G_2(m,n) = Q_{2^n} : Z_{2m}, \quad m,n \geq 3,$ $G_3(n) = Z_{2^n} \wr Z_2, \qquad n \geq 2,$ (the wreath product of Z_{2^n} by Z_2 ,) $G_4(n) = S_n, \qquad n \geq 5,$ (the symmetric group of degree n).

2. The Computation of d(G)

The main results of this section are:

Proposition 2.1. For every integers $m, n \geq 3$,

(i) if $G = G_1(m, n)$ then

$$d(G) = \begin{cases} \frac{n+3}{4n} & \text{, if } n \text{ is odd,} \\ \frac{n+6}{4n} & \text{, if } n \text{ is even,} \end{cases}$$

which is independent of m;

(ii) if $G = G_2(m, n)$ then $d(G) = \frac{2^{n-3}+3}{2^n}$, which is also independent of m;

(iii) if $G = G_3(n)$ then $d(G) = \frac{2^n + 3}{2^{n+2}}$;

(iv) if $G = S_n$ then $d(G) = \frac{P(n)}{n!}$, where P(n) is the number of partitions of the integer n.

Proof. Let $d'(G) = |\{(x,y)|x,y \in G, xy = yx\}|$.

To prove (i), let $G = G_1(m, n)$ and we get the following presentation for G,

$$G = \langle a, b, c | a^2 = b^n = c^{2m} = 1, c^{-1}aca = 1, c^{-1}bcb = 1 \rangle.$$

Every element x of G may be represented as $x=a^ib^jc^k$, where $i\in\{0,1\}$, $j\in\{0,1,\ldots,n-1\}$ and $k\in\{0,1,\ldots,2m-1\}$. For every $x=a^ib^jc^k$ and $y=a^sb^tc^l$ of G, where $i,s\in\{0,1\},\ j,t\in\{0,1,\ldots,n-1\}$ and $k,l\in\{0,1,\ldots,2m-1\}$, if xy=yx then

$$(a^ib^jc^k)(a^sb^tc^l) = (a^sb^tc^l)(a^ib^jc^k),$$

so

$$a^{i+s}b^{(-1)^sj+(-1)^kt}c^{k+l} = a^{s+i}b^{(-1)^it+(-1)^lj}c^{l+k}$$

Hence we obtain

$$b^{(-1)^s j + (-1)^k t} = b^{(-1)^i t + (-1)^l j}.$$

or

$$(-1)^{s}j + (-1)^{k}t \equiv (-1)^{i}t + (-1)^{l}j \pmod{n}. \tag{\dagger}$$

Let $A_{i,s} = \{(i, j, k, s, t, l) | j, t \in \{0, 1, ..., n-1\}, i, s \in \{0, 1\}, k, l \in \{0, 1, ..., 2m-1\}\}$, where (i, j, k, s, t, l) satisfies the condition (†). Then we deduce that

$$|\bigcup_{i=0}^{1}\bigcup_{s=0}^{1}A_{i,s}|=\sum_{i=0}^{1}\sum_{s=0}^{1}|A_{i,s}|=d'(G).$$

To compute $|A_{0,0}|$, $|A_{0,1}|$, $|A_{1,0}|$ and $|A_{1,1}|$ we consider two cases for n:

Case 1: n is odd. First we suppose that i = s = 0 and show that $|A_{0,0}| = m^2(n^2 + 3n)$. The values of $|A_{0,1}|$, $|A_{1,0}|$ and $|A_{1,1}|$ may be determined in a similar way. By the assumption i = s = 0 the relation (†) will be reduced to:

$$(-1)^k t - t \equiv (-1)^l j - j \pmod{n},\tag{\ddagger}$$

and there are four possible cases to consider the solutions of (‡), as follows:

- (a). if k and l are even then (\ddagger) holds for every values of t and j,
- (b). if k and l are odd then (\ddagger) holds for t = j,
- (c). if k is odd and l is even then (1) holds for t = 0,
- (d). if l is odd and k is even then (‡) holds for j = 0.

Since each of the integers k and l take m possible values, there are $m^2(n^2 + n + n + n)$ solutions (i, j, k, s, t, l) for (\ddagger) when i = s = 0; i.e., $|A_{0,0}| = m^2(n^2 + 3n)$.

In a similar way we obtain $|A_{1,0}| = |A_{0,1}| = |A_{1,1}| = m^2(n^2 + 3n)$, and hence $d'(G) = 4m^2(n^2 + 3n)$. Since |G| = 4mn one obtains $d(G) = \frac{n+3}{4n}$, as desired.

Case 2: n is even. In this case we show that

$$|A_{0,0}| = |A_{1,0}| = |A_{0,1}| = |A_{1,1}| = m^2(n^2 + 6n).$$

A similar proof to that of case 1 may be used for this calculations. For simplicity we give the possible cases for the solutions of (1) when i = s = 0:

- (e). if k and l are even, then (‡) holds for every values of t and j;
- (f). if k and l are odd, then (‡) holds for $t \equiv j \pmod{\frac{n}{2}}$;
- (g). if k is odd and l is even, then (‡) holds for $t \equiv 0 \pmod{\frac{n}{2}}$ and j is arbitrary;
- (h). if l is odd and k is even, then (‡) holds for $j \equiv 0 \pmod{\frac{n}{2}}$ and t is arbitrary.

We note that in the case (f), for every value of t there are two different values for j. Consequently, there are $m^2(n^2 + 2n + 2n + 2n)$ solutions for (‡), when i = s = 0 and the result follows immediately.

To prove (ii) we may consider the following presentation for $G = G_2(m, n)$:

$$G = \langle a, b, c | a^{2^{n-1}} = c^{2m} = 1, b^2 = a^{2^{n-2}}, b^{-1}aba = c^{-1}aca = c^{-1}bcb = 1 \rangle.$$

Then every $x \in G$ may be presented as $x = a^i b^j c^k$, where $i \in \{0, 1, ..., 2^{n-1} - 1\}$, $j \in \{0, 1\}$ and $k \in \{0, 1, ..., 2m - 1\}$. Now two elements $x = a^i b^j c^k$ and $y = a^s b^t c^l$ of G commute if and only if

$$a^{i(1-(-1)^{l+t})+s((-1)^{k+j}-1)} = b^{t(1-(-1)^k)+j(-1+(-1)^l)}.$$

Equivalently, the equations

(*)
$$\begin{cases} i(1-(-1)^{l+t})+s((-1)^{k+j}-1) \equiv 0 \pmod{2^{n-1}}, \\ t(1-(-1)^k)+j((-1)^l-1) \equiv 0 \pmod{4}, \end{cases}$$

hold. Now, computing d(G) is reduced to determining the number of elements of the set

$$A = \{(i, j, k, s, t, l) | i, s \in \{0, 1, \dots, 2^{n-1} - 1\}, j, t \in \{0, 1\}, k, l \in \{0, 1, \dots, 2m - 1\}\},\$$

where (i, j, k, s, t, l) satisfies the above system of equations. We observe that |A| = d'(G), then we try to calculate |A| by considering four cases for k and l.

If k and l are even then we must only consider the possible cases for t and j. For the values t = j = 0, each of the integers i and s admit m values and there are $m \times m \times 2 \times 2^{n-1} = 2^m m^2$ solutions of the system (*)

in A. Using a similar manner as above for each case, when (t = 1, j = 0) and (t = 0, j = 1) we get $2^m m^2$ elements of A satisfying (*). In the final case, t = j = 1, the system (*) holds for every values of i and s, and there are $m^2 \times 2^{2n-2}$ solutions. So, for the even velues of k and l there are $m^2 2^n (2^{n-2} + 3)$ solutions of (*) in A.

If at least one of k or l is odd, we consider three cases and in each case as the above we get $m^2 2^n (2^{n-2} + 3)$ solutions. Consequently, $|A| = 4m^2 2^n (2^{n-2} + 3)$ and then $d(G) = \frac{2^{n-3} + 3}{2^n}$.

The proof of (iii) is similar to those of (i) and (ii). Indeed, the group $G = G_3(n)$ may be presented as

$$G = \langle a, b, c | a^{2^n} = b^{2^n} = c^2 = 1, c^{-1}ac = b, c^{-1}bc = a \rangle$$

and hence we immediately obtain $d(G) = \frac{2^n + 3}{2^{n+2}}$.

The assertion (iv) may be proved by considering the permutations θ and ψ of S_n . We now that θ and ψ are conjugate if and only if θ and ψ have the same cycle structures. Let $n=n_1+n_2+\ldots+n_k$ be a partition of n where $n_1 \leq n_2 \leq \ldots \leq n_k$, we denote this partition by $n=(n_1,n_2,\ldots,n_k)$. Define the cycles

$$\begin{cases} \theta_1 = (1, 2, \dots, n_1), \\ \theta_2 = (n_1 + 1, n_1 + 2, \dots, n_1 + n_2), \\ \vdots \\ \theta_k = (n_1 + n_2 + \dots + n_{k-1} + 1, \dots, n_1 + n_2 + \dots + n_{k-1} + n_k), \end{cases}$$

and let $\psi_{(n_1,n_2,...,n_k)} = \theta_1 \theta_2 ... \theta_k$. Now, if $P(\mathbf{n})$ is the set of all partitions of n and $C(\mathbf{n})$ is the set of all disjoint conjugacy classes of S_n then we may define

$$f: P(\mathbf{n}) \longrightarrow C(\mathbf{n})$$

given by

$$f(n_1, n_2, \ldots, n_k) = [\psi_{(n_1, n_2, \ldots, n_k)}],$$

where $[\psi_{(n_1,n_2,...,n_k)}]$ is the conjugacy class of $\psi_{(n_1,n_2,...,n_k)}$. Since f is a bijection, it follows that |P(n)| = |C(n)|. This implies that $P(n) = k(S_n)$

and by the definition of d(G) we get the required result as $d(S_n) = \frac{P(n)}{n!}$.

Corollary 2.2.

- (i) For the groups $G = G_1(m,n)$, $G = G_2(m,n)$ and $G = G_3(n)$, $\frac{1}{4} < d(G) < \frac{1}{2}$.
 - (ii) If $G = G_4(n)$, then $d(G) < \frac{1}{2}$ and $\lim_{n \to \infty} d(G) = 0$.

Proof. (i) is a straightforward consequence of Proposition 2.1. For (ii) we observe that

$$\begin{cases} P(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}} \\ n \to \infty. \end{cases}$$

(To prove one may refer to [1]). Then $\lim_{n\to\infty} \frac{P(n)}{n!} = \lim_{n\to\infty} \frac{\frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}}{n!} = 0$.

References

- S. Ahlgren, The partition function modulo composite integers m, Math. Ann. 318 (2000), 795-803.
- [2] P. X. Gallagher, The number of conjugacy classes in finite groups, Math. Z. 118 (1970), 175-179.
- [3] W. H. Gustafson, What is the propability that two group elements commute? Amer. Math. Monthly. 80 (1973), 1031-1034.
- [4] M. R. Jones, Muliplcators of p-groups, Math. Z. 127 (1972), 165-166.
- [5] M. R. Jones, Some inequalities for the muliplcator of a finite group, Proc. Amer. Math. Soc. 39 (1973), 450-456.

- [6] P. Lescot, Isoclinism classes and commutativity degrees of finite groups, J. Algebra 177 (1995), 847-869.
- [7] M. R. R. Moghaddam, A. R. Salemkar and K. Chiti, n-isoclinism classes and n-nilpotency degree of finite groups, Algebra Colloquium, 12:2 (2005),255-261.