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Abstract

A container C(z,y) is a set of vertex—disjoint paths between
vertices £ and y in a graph G. The width w(C(z,y)) and length
L(C(z,y)) are defined to be |C(z,y)| and the length of the longest
path in C(x,y) respectively. The w-wide distance du(x,y) between
z and y is the minimum of L(C(z,y)) for all container C(z,y) with
width w. The w-wide diameter d.,(G) of G is the maximum of
dw(z,y) among all pairs of vertices =,y in G,z # y. In this pa-
per, we investigate some problems on the relations between d.,(G)
and diameter d(G) which raised by D.F.Hsu([1]). Some results about
graph equation of d.,(G) are proved.
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1 Introduction

Let G be a graph without loops or multiple edges. We use k(G), d(G)
and V(G) to denote the connectivity, diameter and the set of vertices of G
respectively. A container C(z,y) is a set of vertex-disjoint paths between
vertex z,y € V(G). The length of the C(z,y), written as L(C(z,y)), is the
length of the longest path in C(z,y).

Definition 1.1: Given a graph G and vertices z and y, = # y, the w-
wide distance(or simply w—distance) dy,(z,y) is the minimum of L(C(z, y))
among all C(z,y) with width w. The w-wide diameter(or simply w-
diameter)d,,(G) is the maximum of dy(z,y) among all pairs of vertices
T,Y, T # Y.

The concepts of wide distance and wide diameter of a graph are natural
generalizations of distance and diameter in a graph taking into consider-
ation the connectivity of the graph. The notions will be explored due to
their intrinsic importance in communication networks.

A graph G is said to be k—connected if k£(G) > k. For a constant ¢ and
a k—connected graph G, we call G strongly ¢ —resilient if di.(G) = d(G) +¢,
and weakly c-resilient if dix(G) = cd(G). And we define G*(w, b) to be the
class of graphs in which there exists a container of width w and length at
most b between any pair of distinct vertices x and y.

Clearly, when w = 1,d,,(G) = d(G). Hence we have d,,(G) 2 d(G) and
dy(z,y) > d(z,y) for any vertices z,y(z # y). On the other hand we can
assume w < k(G). More often, we are interested in relation between d,,(G)
and d(G), where G belong to an interconnection network for parallel and
distributed systems. Some open problems were raised by D.F.Hsu in the
survey [1}:

Problem 1: For w = k(G) characterize strongly c-resilient graph in
which d,,(G) = d(G) + c.(1.1)

Problem 2: For w = k(G) characterize weakly c-resilient graph in
which d,,(G) = ¢- d(G). (1.2)



In section 2, we characterize a specific class of graph G with d,,(G) =
d(G),w > 1. In section 3, we prove that for any positive integer ¢, graph

equations (1.1), (1.2) have solutions.

2 A characterization of graphs G's with d,(G) =
d(G) (w>1)

As we know, when w = 1, d,,(G) = d(G). The converse is not necessarily
true. Clearly, if G is a complete graph on k + 2 vertices with one edge
missing, then di(G) = d(G) = 2. We now characterize a specific class of G
with di(G) = d(G), w>1.

We establish the following definitions.

Definition 2.1: Let C(z,y) = {p1,p2,...,Pw} be a container with
width w, where py,ps,...,p, are vertex—disjoint paths between z and y,
z # y. If |p1| = |p2| = --- = [pw| = p, where |p;| denotes the number of
edges of path p;, C(x,y) is called a p-uniform container. We call p the
length of C(z, y).

Definition 2.2: A pair of vertices {z,y} in V(G) is called paired w-
poles of G if dy,(x,y) = d,,(G). Namely, the distance of 1-poles of G is the
diameter of G. Let V¥ = {{z,y} |,y € V(G),di(z,y) = dr(G)}.

The following is a characterization of graphs with d,,(G) = d(G).

Theorem 2.1 Letd = d(G) and w < k(G). Then the following three state-
ments are equivalent.

(1) d.,(G) = d(G).

(2) G € G*(w, d).

(3) There exists (u,v) € VI(G) N V)NG) such that there is a d-

uniform container with width w between u and v.

Proof. (1) = (2) If d,,(G) = d(G) = d, then for any pair of distinct
vertices z and y in G, we have d(z,y) < d. Thus G € G*(w,d).



(2) = (3) Suppose that G € G*(w, d). Let u,v be two vertices in G such
that d(u,v) = d. Since G € G*(w, d), we have d,,(u,v) < d, dw(G) < d and
there exists a container of with w. Note that d,(u,v) > d and d,,(G) > d,
thus dy,(u,v) = d and dy,(G) = d. Hence there exists (u,v) € VI)(G) N
V{®)(G) such that there is a d—uniform container with width w between u
and v.

(3) = (1) Suppose that there exists (u,v) € VI)(G) N V(¥)(G) such
that there is a d-uniform container with width w between u and v. We
have d(u,v) = d(G) = d and dy(u,v) = dy(G). Thus dy(G) = dw(u,v) >
d(u,v) = d. Since there exists a d-uniform container with width w between
u and v, it follows that d,(u,v) < d. Thus dy(G) = dw(u,v) < d, so
dw(G) =d =d(G).

This completes the proof of Theorem 2.1. [ |
Corollary 2.1 If wv € E(G) for each (u,v) € V®)(G) (w > 1), then
dw(G) # d(G).

Proof. Suppose that d,,(G) = d(G). By theorem 2.1, there exists
(u,v) € VIX(G) n V)(G). Since uwv € E(G),d(u,v) = d(G) = 1. Hence
G = K,, and d,,(G) > d(G). This is a contradiction. |

For any positive integer d with 3 < d < n—1, we can construct a graph
with n = k(d — 1) + 2 vertices such that di(G) = d(G) = d.

Taking two vertices u and v, we construct k (k < d — 1) vertex—disjoint
paths with length d that compose a graph G as follows.

Pi(u,v) : upgi)péi) .. .p‘(;zlv,i =1,2,...,k. Let

Vi={p", 6, o, o680, 080},

k k
‘/2 = {Pgl):sz)a o ’:Pg )7 pgl),sz),' : ',P;(; )}a

1 2 k 1 2 k
Va—o = {P(_)Z,P,(;_)Z, .- ‘,P‘(i_)z, pfi_)pp‘(i_)p o '1p.(1_)1}-

Adding some edges to G such that each subgraph G; with vertex set
Vi,i=1,2,...,d — 2 is a complete graph, we obtain a graph G with

V(G) = {u,v}u{p{’ :i=1,2,...,k and j=1,2,...,k} and

E(G) = {upgi) :1=1,2,...,k}U {pf:llv 11=1,2,...,k} Uf__‘_f E(G)),



where p;:") # pg’) if 71 # ja or 1y # 2.
It is easy to verify that G satisfies di(G) = d(G) =d.
If d = 2, we take G to be a complete graph on k 4 2 vertices with one

edge missing. Then di(G) = d(G) = 2.

3 The solutions of graph equations d,(G) =
d(G) + ¢ and d,(G) = c- d(G)

Certainly, for any a graph G, there exists a nonnegative integer ¢ such
that dy,(G) = d(G) +¢, where w < k(G). So we naturally raised the follow-
ing converse question. Given positive integers ¢,d and w, can one always
find a graph G that satisfies d,(G) = d(G) + ¢ and d(G) = d?

We can give the following result:

Theorem 3.1 Let ¢,d, k be any three positive integers. Then there exists
a graph G with connectivity k, such that
di(G) = d(G) + ¢ and d(G) = d.

Before constructing the graph G, we first give the following definition
and lemma.

Definition 3.1: The k-th power G* of a graph G = (V, E) is the
graph in which V(G*) = V(G) and for any u,v € V(G*), uwv € E(G*) if
d(u,v) <k in G.

Proposition 3.1: Let G* be the k-th power of a graph G. Then
E(G'k —1)) € E(G*).

Lemma 3.1 Denote a path with n vertices by P, and denote the k-th
power of P, by P¥. Then Pk is a k-connected graph, and

di(PF) = [222] + 1,d(PF) = [22], namely
d(Py), ifk|(n—-2)

du(PE) =
(Fx) d(PF) +1, otherwise.



Proof. Let u,v be the two endpoints of P, and P, = uujus ... up_ov.
Then by definition 3.1, for the graph P¥ we have d(u,v) = d(PF). Obviously
d(u,v) = [21] in PE. Thus d(PF) =d(u,v) = [222].

Let n—2 = kq+r, where g = | 22| and 0 <7 < k— 1. Then if r =0,

the paths W; = uujuryitorsi.. Yg-1e+its 2 = 1,2,...,k, and if r = 1,
the paths W/ = uujug4itorsi - - - U(g—1)k+ilke+i¥ ¢ = 1,2,...,7, and W] =
UU Uk iUk i - - - U(g—1)k4i¥, § = T+1,7+2,. .., k, are just k vertex-disjoint

paths between u and v. Hence di(PF) = di(u,v) = |Pe| = [22] +1. 1

Now we construct a graph satisfying the condition of Theorem 3.1.

(The proof of Theorem 3.1)
Proof. If c = 0, let n = k(d — 1) + 2. By Lemma 3.1, we have
dk(Py) = d(Py) =d.

If c > 1,d =d+c, consider the (k — 1)th power P¥~1 of the path P,
with consecutive vertices vy, vs,..., v, Where n = (k —1)(d +c—1) + 2.
Then

de_1(PE-1) = [;;:—ﬂ +l=d+c=d.

In addition, consider a path Py_; with d — 1 consecutive vertices u;, ua,
..., Ud—1 and define

G =PI @ Piy,

where V(G) = V(P5-1)UV(P;-,) and

E(G) = E(P¥~Y) U E(Py-1) U {uivjlv; € V(P¥ 1), u; € V(Py-y). If
1=1,2,..,d-2,(i—-1)k—-(1—-2)<j<ik—(i—-1);ifi=d-1,(d—-2)k—
(d-3)<j<n}.

We see that d(v;) > d(v)) =d(vs) =k for 1 < j < mn,d(w) =k+1,
diw;)=k+2for2<i<d-2andd(ug—1)=(k—1)c+k+2. Thus G is
a graph with connectivity k.

By Lemma 3.1, there are exactly k—1 vertex-disjoint paths, say W;, Wa,
...,Wi_1, between vertices © and v. Let path Wy = vjujus...ug_1vn,.
Then Wy, Ws,..., Wi, W} are k vertex-disjoint paths between vertices u
and v. Thus,

di(G) = di(v1,vp) = dp_1(PE~) =d+c=d, and



d(G) = d(v1,vs) = d.
Hence di(G) = d(G) + c. The proof is complete. |

For problem 2, we can give a similar result.

Theorem 3.2 Let ¢, d, k be any three positive integers and d = cd
Then there erxists a graph G with connectivity k, such that

di(G) = cd(G) and

di(G) = d',d(G) = d.

Since d' = ¢d = d + (¢ — 1)d, as the proof of Theorem 3.1, we construct
a graph G with connectivity k as follows.
G =P-1@ Py, wheren = (k—1)(cd—1)+2, ¢> 2,
V(G) = V(Py~ ') UV(Py-y) and
E(G) = E(PEY) U E(Ps_y) U {wivjlv; € V(PEY),u; € V(Paiy). If
i=1,2.,d-2,i-1)k-(i-2)<j<ik-(i-1);ifi=d-1,(d-2)k—

(d-3) <j<n}
It follows from the proof of Theorem 3.1 that
di(G)=cd=d,
dG)=d and

di(G) = cd(G).
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