Group connectivity of certain graphs
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Abstract

Let G be an undirected graph, A be an (additive) Abelian group
and A* = A—{0}. A graph G is A-connected if G has an orientation
such that for every function b: V(G) — A satisfying 3 vicy bv) =
0, there is a function f : E(G) — A* such that at each vertex v €
V(G) the net flow out of v equals b(v). We investigate the group
connectivity number Ag(G) = min{n : G is A-connected for every
Abelian group with |A| > n} for complete bipartite graphs, chordal
graphs, and biwheels.

1. Introduction

Graphs in this paper are finite and may have loops and multiple edges.
Terms and notation not defined here are from [1]. Throughout the paper,
Z,, denotes the cyclic group of order n, for some integer n > 2.

Let D = D(G) be an orientation of an undirected graph G. If an edge
e € E(G) is directed from a vertex u to a vertex v, then let tail(e) = v and
head(e) = v. For a vertex v € V(G), let

Ef(v)={e€ E(D) : v= tail(e)} and
Ep(v) ={e € E(D) : v= head(e)}.

The subscript D may be omitted when D(G) is understood from the con-
text.

Let A denote a nontrivial (additive) Abelian group with identity 0, and
A* = A - {0}. Let F(G, A) denote the set of all functions from E(G) to
A, and F*(G, A) denote the set of all functions from E(G) to A*. Unless
otherwise stated, we shall adopt the following convention: if X C E(G)
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and f: X — A is a function, then we regard f as a function f: E(G)— A
where f(e) =0for all e € E(G) — X.

Given a function f € F(G, A), let 8f : V(G) — A be given by
0fv) = Y fle) = D fle),

e€Ef(v) e€E(v)

where “Y"” refers to the addition in A.

A function b : V(G) — A is called an A-valued zero-sum function on
G if 3 yev(c) b(v) = 0. The set of all A-valued zero-sum functions on G
is denoted by Z(G, A). Given b € Z(G, A) and an orientation D of G, a
function f € F*(G, A) is an (A, b)-nowhere-zero flow ((A, b)-NZF) if 8f = b.
A graph G is A-connected if G has an orientation D such that for any
b€ Z(G, A), G has an (A,b)-NZF. For an Abelian group A, let (A) be the
family of graphs that are A-connected. The concept of A-connectivity was
introduced by Jaeger, et al. in [6]. A concept similar to group connectivity
was independently introduced in (7], with a different motivation from [6].

It is observed in [6] that the property G € (A) is independent of the ori-
entation of G: If D(G) and f satisfy the condition for G to be A-connected,
then for an orientation D’ of G that reverses the direction of an edge e, re-
place f(e) with —f(e). Thus, A-connectivity is a property of an undirected
graph whose definition assumes an arbitrary orientation.

An A-nowhere-zero flow (abbreviated as A-NZF) in G is an (A, 0)-NZF;
thus, each A-connected graph admits an A-NZF. Nowhere-zero flows were
introduced by Tutte [14] and have been studied extensively; for a survey
see [5]. A graph that admits an A-NZF is necessarily 2-edge-connected
(bridgeless) (see [15]).

Tutte [5] conjectured that every 4-edge-connected graph admits a Zs-
nowhere-zero flow and Jaeger, et al. [6] conjectured that every 5-edge-
connected graph is Zz-connected. For more on the literature on nowhere-
zero flow problems, see Tutte [14], Jaeger [5] and Zhang [15].

For a 2-edge-connected graph G, the group connectivity number of G is
defined as

Ay(G) = min{k : G is A-connected for every Abelian group with |A| > k}.

We show that if G is 2-edge-connected, then A,(G) exists as a finite number.
We also investigate the group connectivity number for certain families of
graphs and determine the corresponding best possible upper bounds.
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2. Preliminaries

In this section we present some of known results that we use in our
proofs.

Let G be a graph. For a subset X C E(G), the contraction G/X is the
graph obtained from G by identifying the two ends of each edge e in X
and deleting e. Note that even when G is a simple graph, the contraction
G/X may have loops and multiple edges. For convenience, we write G/e
for G/{e}, where e € E(G). If H is a subgraph of G, then we write G/H
for G/E(H).

Proposition 2.1 (Lai [9]) Let A be an Abelian group. Then (A) satisfies
each of the following:

(C1) K € (4).
(C2) If G € (A) and e € E(G), then G/e € (A).
(C3) If H is a subgraph of G, H € (A), and G/H € (A), then G € (A).

Lemma 2.2 (Jaeger, et al. [6], Lai [9]) Let A be an Abelian group and C,
denote a cycle on n > 1 vertices. Then Cy, € (A) if and only if |[A| > n+1.

Lemma 2.3 (Jaeger, et al. [6]) Let G be a connected graph with n vertices
and m edges. Then Ay(G) =2 if and only if n = 1 (and so G has m loops).

Let O(G) = {odd degree vertices of G}. A graph G is collapsible if for
any subset R C V(G) with |R| = 0 (mod 2), G has a spanning connected
subgraph I'p such that O(T'g) = R.

Theorem 2.4 (Catlin [2]) Suppose that graph G is one edge short of having
two edge-disjoint spanning trees. Then G is collapsible if and only if '(G) >
2.

Lemma 2.5 (Lai [8]) Let G be a collapsible graph and let A be an Abelian
group with |[A| = 4. Then G € (4).

Lemma 2.6 (Lai [10]) Let A be an Abelian group with |A| > 3, and S be
a connected spanning subgraph of graph G. If, for each e € E(S), G has a
subgraph H, € (A) with e € E(H.), then G € (A).

We will sometimes apply Lemma 2.6 with S = G.

A wheel W, is a graph obtained by joining a cycle with n vertices and
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K. The vertex of K is called the center of W,.

Lemma 2.7 (Lai, Xu and Zhang [11])

(1) Wan € (Z3).

(2) Let G = Wany1 and b € Z(G,Z3). Then there exists a (Z3,b)-NZF
f € F*(G,23) if and only if b # 0.

Lemma 2.8 Ay(Wa2,) =3 forn > 1.

Proof. Since every edge of W, lies in a Cj, it follows from Lemma 2.2
and Lemma 2.6 that W5, € (A4) for any Abelian group A with [A] > 4.
Furthermore, by Lemma 2.7, we know that Wa,, € (Z3). 0

Proposition 2.9 If G is a 2-edge-connected graph, then Ay(G) exists as a
finite number.

Proof. Since G is 2-edge-connected, every edge of G must be in a cycle.
Since G is finite, there exists an integer k > 0 such that every edge of G
lies in a cycle of length at most k — 1. By Lemmas 2.2 and 2.6, A,(G) < k.
O

3. Reduction methods

Let G be a graph and v € V(G). Let Eg(v) = {e1,e2, - ,eq} denote
the set of edges in G that are incident with v, where d is the degree of v
in G. Suppose that d > 3, and that for ¢ = 1,2, e; is incident with v and
v; such that v; # vo. We define Ga{ey, ez} to be the graph obtained from
G — {e1,e2} by adding a new edge e joining v; and v (see Figure 3.1). We
also say that Ga{e;, ez} is obtained by splitting v with respect to the edges

e, and es.

€
n1 ()] V) &——ou—ve Uy

(a) (b)
Figure 3.1: Vertex splitting

€1 €2
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Theorem 3.1 Let A be an Abelian group. If Ga{e1,e2} € (A), then
G € (A). Hence, Ay(G) < Ay(Gafer,e2}).

Proof. For any b € Z(G, A), since V(G) = V(Ga{e1,e2}), we can view b €
Z(Gaf{e1, ez}, A) as well. Suppose there is a function f € F*(Ga{e1, ez}, 4)
such that 8f = b. Then we can assign the value f(e) to the edges e; and
ez in G (see Figure 3.1(a)); the values of 8f(v), 8f(v1), and 8f(ve) will be
the same in G as in Ga{e;, e2}. Thus, when Ga{e;, ez} is A-connected, so
is G. o

Theorem 3.2 Let A be an Abelian group, and H be a connected sub-
graph of 2-edge-connected graph G. If G € (A), then G/H € (A). Hence,
A(G/H) < Ay(G).

Proof. Fix an Abelian group A with |A| > A (G). Let ¥ € Z(G/H, A),
and vy be the vertex of G/H onto which H is contracted. Fix a vertex
vg € V(H). Define b: V(G) — A as follows:

Vveg) fz=w

{ b'(z) if2€ V(G) - V(H)
b(z) = .
0 if 2z € V(H) — {wo}

Then

dYoobz) = ), ¥(z) =0,

zEV(G) z€V(G/H)
and so b € Z(G, A).

Since |[A| > A4(G), there is a function f € F*(G, A) such that 8f = b.
Let Ag(H) = {2 € V(H) : z is incident with an edge in E(G) — E(H)}.
Let f’ be the restriction of f on E(G) — E(H). Then at vy,

of'en) = Y. fl& - Y fle
CGE;/H(vH) BGES/H(‘U”)
= ¥ (Z fleo = Y f(e))
vEAG(H) \ecE¥(v) e€Eg (v)
= Y f(w).
vEAG(H) ’
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Since 8f = b, b(vo) = b/ (vy), and b(2) = 0 for all z € V(H) — {vg}, we have

of (vw) = Y, 0f(v) = D 8f(v) = 8f(wo) = b(vm).

vEAG(H) veV(H)

Furthermore, for any z € V(G/H) - {vua}, 8f'(2) = 8f(z) = b(z) =
b'(z). Hence, 8f' =V, and f' is an (A,b')-NZF of G/H. o

Theorem 3.3 If H is a 2-edge-connected subgraph of a 2-edged-connected
graph G, then A (G) < max (A,(H), A((G/H)).

Proof. Let A be an Abelian group with |A| > max (A (H),Ay(G/H)).
Then H € (A) and G/H € (A). By Proposition 2.1(C3), G € (A)
also. Therefore, Ay(G) < max (A (H),Ays(G/H)). Note that if Aj(H) <
A,(G/H), then, by Theorem 3.2, A,(G) = Ay(G/H). ]

4. Complete graphs and complete bipartite graphs

For a graph G, let Aj(G) be the smallest positive integer k£ such that
for any Abelian group A with |A| > %, G has an A-NZF. Shahmohamad
([12, 13]) investigated the value of A\;(G) for several classes of graphs.

Proposition 4.1 (Shahmohamad (12, 13]) Let [, m and n be positive in-
tegers.

(i) If I > 3 is odd, then Ay(K;) = 2.

(ii) If I > 6 is even, then Ag(K;) = 3.

(i) Ag(Kyq) =4.

(iv) If both m and n are even, then Ag(Kpm ) = 2.

(v) If m and n are not both even, then Ay(Kyp n) = 3.

In this section we determine the group connectivity number for complete
graphs and complete bipartite graphs.

Proposition 4.2 Let n > 3 be an integer. Then

4 #3<n<4
Ag(K“)={ 3 ifn>5

Proof. By Lemma 2.2, A,(K3) = 4. Let A be an Abelian group with
|A| > 4. Since every edge of K, lies in a 3-cycle, which is in (4) by
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Lemma 2.2, it follows by Lemma 2.6 that K,, € (A). Thus, Aj(K,) < 4
for n > 4. It is well known that K; does not have a Z3-NZF, and so
Agy(Ky) =4.

Now suppose n > 5, and let A be an Abelian group with |A] > 3. Since

every edge of K, lies in a subgraph isomorphic to Wy, by Lemmas 2.6 and
2.8, K, € (A). By Lemma 2.2, Aj(K,) # 2. ]

Lemma 4.3 Let H be a graph on 2 vertices with n > 2 edges joining these
two vertices. Then A (H) = 3.

Proof. Let E(H) = {e1,e3,...,e,} with n > 2, and let C be the 2-cycle in
H containing the edges e; and e2. Let A be an Abelian group with |4| > 3.
By Lemma 2.2, C € (A). Since H/C is a single vertex, by Lemma 2.3,
Ay(H/C) =2, and so H/C € (A). By Proposition 2.1(C3), H € (4). O

The following lemma gives an upper bound for Ag(Km,.)-

Lemma 4.4 If n > 2 and m > max(n, 3), then
Ag(Km,n) < max (Ag(Km_]_,n),S).

Proof. If n > 2 and m > max(n, 3), the complete bipartite graph Ky, »
has a subgraph isomorphic to Ky,—1,n, and Ky, is 2-edge-connected.
K n/Km—-1, is a graph with two vertices and n > 2 edges. By Lemma 4.3,
Ag(Kmn/Km-1,n) = 3. Thus, by Theorem 3.3, we have Ag(Kmn) <
max (Ag(Km-1,n), 3)- O

Repeated application of Lemma 4.4 yields the following corollary.

Corollary 4.5 If n > 2 and m > max(n, 3), then
Ag(Km,n) < max (Ay(Kn,n),3)-

We now state the main result of this section.

Theorem 4.6 Let m > n > 2 be integers. Then

5 ifn=2
Agy(Kmn)=4¢ 4 ifn=3 .
3 ifn>4

Proof. The cases for n =2, n = 3 and n > 4 follow from Lemmas 4.7, 4.9
and 4.10, respectively. O
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n

v2
Figure 4.1: Ky, 2
Lemma 4.7 Ay(Kp, 2) = 5 for any integer m > 2.

Proof. Note that K 2 is isomorphic to the 4-cycle C4;. By Lemma 2.2, we
have

Ag(Kap2) = 5. (1)
Then, by Corollary 4.5,
Ag(Km,2) <5, whenm > 3. (2)
Next, we show that
Agy(Km,2) > 4, when m > 2. 3)

We prove Inequality (3) by contradiction. Let A = {0,a;,a2,a3} be an
Abelian group, where a; is an element of order 2. By way of contradiction,
assume that K, 2 € (A). Thus, for each b € Z(A,G), one can always find
f € F*(G, A) such that

of =b. 4

Using the notation in Figure 4.1, we consider the following function
b:V(G) — A such that b(u;) = b(uz) = ... = b(um) = az. Orient each
edge in this K, 2 from a u; to a v;. Thus,

Fluivy) + fuve) = b(u;) = ag, foreachi=1,2,.--,m. (5)

We will discuss the two groups of order 4, Z, and Zy x Z,, separately.
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Case 1: Suppose that A = Z,;. The Equations (5) above each have solu-
tions f(u;v1) = f(u;vz) = a; and f(u;v1) = f(u;vz) = a3. It follows by
Equation (4) that

b(v1) = =) flww) = =) fluivz) = b(vz). (6)
i=1 i=1

Now if we set b(v,) = a; # b(v2) = ag when m is even, and set b(v;) = 0 #
b(v2) = ay when m is odd (in both cases Y b(v;) = 0 is satisfied), we find
a contradiction to Equation (86).

Case 2: Suppose that A = Z; x Z,. Then the Equations (5) above each
have the solution {f(u;v1), f(u;v2)} = {a1,a3}. Without loss of generality,
we may assume that for 1 < i <k, f(u;v,) = a1, and for k+1 <i <m,
f(u;v1) = a3. It follows by Equation (4) that

b(vy) = —ka, — (m — k)as = kay + mas, )

where we have used the fact that a; = —a; (i = 1,2,3) and a; + a3 = a».
When m is even, Equation (7) implies that b(v;) = kas = a3 or 0. If we set
b(v;) = a1 = b(vz), we get a contradiction. When m is odd, Equation (7)
implies that b(v,) = kas+a3 = a; or a3. If we set b(v;) = 0 and b(vp) = aa,
we also get a contradiction.

These contradictions imply that no function f € F*(G, A) satisfying
Equation (4) exists. Thus, Equation (3) must hold. The lemma now follows
by combining Equations (1), (2), and (3). |

(51 ) U3

.. N
(] uz

Lo
- g

Figure 4.2: K33 plus an edge

Lemma 4.8 A,(K33) < 4.

Proof. By Lemma 4.4 and Lemma 4.7, Aj(K3,3) < 5.
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K33 has nine edges, and therefore, does not have two edge-disjoint
spanning trees. If we add the edge vov; to the graph K3 3 (as depicted in
Figure 4.2), we can find two edge-disjoint spanning trees:

Ty with E(Ty) = {viu1, u1vs, v3uz, ugve, vaus}, and
T> with E(Tz) = {u;vz, Uav3, V3 U3, U3V1, ‘Ul‘u.z}.

Therefore, by Theorem 2.4, K33 is collapsible. Then, by Lemma 2.5,
Ay(K33) < 4. m)

U1 (7] Us Um

Figure 4.3: Kin 3
Lemma 4.9 Aj(Kp, 3) = 4 for any integer m > 3.

Proof. By Corollary 4.5 and Lemma 4.8, when m > 3, Ay(Kn3) <
Ay(K33) < 4. We shall show that

Ay(Km;3) > 3, when m > 3. (8)

It suffices to show that K, 3 & (Z3). By way of contradiction, suppose
that K, 3 € (Z3).

We shall use the notation in Figure 4.3 and denote Z3 = {0,1,2}. Con-
sider a function b : V(K,, 3) — Z3 such that for each i = 1,2,...,m,
b(u;) = 0, and b(v;) = 0,b(v2) = 1 and b(vs) = 2. Then b € Z(G, Z3).
Orient each edge in this K, 3 from a u; to a v;.

Since K, 3 is assumed to be in (Z3), there must be an f € F*(K;, 3,23)
such that 8f = b. Then the equality 8f = b reduces, for each i, to

b(us) = f(usv) + f(uiv2) + fuzv3) = 0. 9)
Note that in Z3, for each i = 1,2,...,m, Equation (9) has solutions

fluivy) = f(uivz) = fusvs) =1 and fuivr) = f(uive) = f(uvs) =2. In
all cases, we have 8f(v;) = 0f(v2) = 0f(v3).
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Therefore, as b = 8f, we must have b(v,) = b(v2), which is contrary to
the fact that b(v;) # b(v2). This contradiction establishes Equation (8). O

(a) The graph G

V1 V2 U2 V4
Uy VH U3 Ug
(d) (e) The graph H

Figure 4.4: Reduction of Ky 4

Lemma 4.10 Ay(K,, ») = 3 for any integers m > n > 4.

Proof. Suppose that m > n > 4. By Lemma 2.3, it suffices to prove
that for any Abelian group A with |A| > 3, K, » € (A). Since every edge
of K, lies in a subgraph isomorphic to K33, it follows by Lemmas 2.6
and 4.8 that K, , € (A) whenever |A| > 4. Thus, it suffices to show that
Km,n € (Z3)

We first show that K, 4 € (Z3). The process is depicted in Figure 4.4.
Using the notation in Figure 4.4, we split v; with respect to the edges
viu3 and viug, and split v, with respect to the edges voup and vouz. The
resulting graph, depicted in Figure 4.4(b), contains the subgraph H induced
by the vertices {ua,us,u4,vs,v4}, which is isomorphic to Wy € (Z3). The
graph H is illustrated in Figure 4.4(e).

We contract H to obtain the graph depicted in Figure 4.4(c). By The-
orem 3.1, and by Lemma 2.7 and Proposition 2.1(C3), if the graph in Fig-
ure 4.4(c) is Zz-connected, so is K4 4. Note that the graph in Figure 4.4(c)
contains a 2-cycle. Contract the 2-cycle to obtain the graph depicted in
Figure 4.4(d), which can then be seen to be in (Z3) by Lemmas 2.2 and
2.6. By Lemma 2.2 and Proposition 2.1(C3), the graph in Figure 4.4(c) is
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also in (Z3), and so K4 € (Z3), as desired. And hence, by Lemma 2.3,
Ag(Ks4)=3.

It follows by Corollary 4.5 that we have an upper bound for K, , when
m>n2>4,
Ag(Km,n) < ma-x(Ag(K‘iA), 3)=3. (10)

Therefore, the lemma follows by Lemma 2.3 and Inequality (10). O

For a nontrivial graph G, the line graph of G, denoted by L(G), has
vertex set E(G), where two vertices are adjacent in L(G) if and only if the
corresponding edges are adjacent in G. Tutte conjectured [5] that every 4-
edge-connected graph has an A-NZF, for any Abelian group A with |A| > 3.
In (3], it is shown that to prove this conjecture of Tutte, it suffices to prove
the same conjecture restricted to line graphs. As an application, we have
the following corollary.

Corollary 4.11 Each of the following hold:

(1) If G = L(H) is the line graph of a connected graph H with minimum
degree 6(H) > 5, then Ay(G) = 3.

(2) In particular, the line graph of a 5-edge-connected graph is A-connected
for any Abelian group A with |A| > 3.

Proof. Statement (2) follows from (1), so it suffices to prove (1). If H is
a connected graph with 6(H) > 5, then by the definition of a line graph,
every edge of G lies in a subgraph isomorphic to K5. Thus, by Lemma 2.3,
Lemma 2.6, and Proposition 4.2, we have A,(G) = 3. o

5. Chordal graphs

A graph G is chordal if every cycle in G of length greater than 3 possesses
a chord. That is, any induced cycle of G has length at most 3. In this
section we characterize the 3-connected chordal graphs with A,(G) = 3.
We also characterize the 2-connected and 1-connected chordal graphs with
Ag(G) =4.

If G is a 2-edge-connected chordal graph, then every edge of G lies in a
2-cycle or 3-cycle of G, and so by Lemmas 2.2 and 2.6,

Ay(G) < 4. (11)

Let G be a graph with v'v' € E(G) and H be a graph with uwv € E(H).
We use G @ H to denote a new graph obtained from the disjoint union of
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G — {v/v'} and H by identifying u’ and u and identifying v and v. This
operation is referred to as attaching G on H over the edge uv.

Lemma 5.1 (Lai [9]) Let A be an Abelian group of order at least 3. If G
is a 4-edge-connected chordal graph, then G € (A4).

Theorem 5.2 (Lai [9]) Let G be a 3-edge-connected chordal graph. Then
one of the following holds:

(1) G is A-connected, for any Abelian group A with |A| > 3.

(2) G has a block isomorphic to a K.

(3) G has a subgraph G; such that G; ¢ (Z3) and G = G; ® K.

Lemma 5.3 (DeVos, et al. [4]) Let G1, G2 be graphs and let H = G, ®Ga.
If neither G; nor G is Z3-connected, then H is not Zz-connected.

Ky

G

Figure 5.1: G1 € K,

Theorem 5.4 Let G be a 3-connected chordal graph. Then A4(G) = 3 if
and only if G 2 K.

Proof. By Proposition 4.2 we know that Aj(K4) = 4. Thus, we assume
G # K, and show that Ay(G) = 3. Since 3 < £(G) < #'(G), by Lemma 5.1
we need only consider the case when x(G) = £'(G) = 3.

If Theorem 5.2(1) holds, we are done. If Theorem 5.2(2) holds, then G
has a block isomorphic to K4 and so G has a cut vertex, contrary to the
assumption that £(G) = 3. If Theorem 5.2(3) holds, then G has a subgraph
G1 such that G1 ¢ (Z3) and G = G, @ K4 (see Figure 5.1). Thus, G has
a vertex cut of size 2, contrary to the assumption that x(G) = 3. These
contradictions establish the theorem. |

Figure 5.2: A 2-connected chordal graph
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Lemma 5.5 Let G be a 2-connected chordal graph and let V' = {a, b} be
a vertex cut of G. Then ab € E(G).

Proof. See Figure 5.2. Let G; and G2 be two connected subgraphs of
G such that V(G;) NV(G3) = V/, min{|V(G1)|,|V(G2)|} > 3 and G =
G1 U Ga. Since G is 2-connected, G has a cycle C with a,b € V(C). As G’
is chordal, @ and b must be adjacent in G.

A graph G is triengularly-connected if it is connected and for every
pair e, f € E(G), there exists a sequence of cycles Cy,Cs,...,C) such that
e € E(Cy), f € E(Ck), |E(C;)| <3for1<i<k,and E(C;)NE(Cj4+1) # 0
for1 < j < k—1. We give a sufficient condition for a triangularly-connected
graph to be Z3-connected.

Lemma 5.6 Let G be a triangularly-connected graph. If H is a nontrivial
subgraph of G and H € (Z3), then G € (Z,).

Proof. If H is spanning, then the lemma follows trivially from Lemma 2.6.
Thus, we assume that H is not a spanning subgraph of G. Since G is
triangularly-connected, G/H must contain a 2-cycle. Again, as G is a
triangularly-connected graph, we can contract 2-cycles until we obtain a
connected graph in which every edge lies in a 2-cycle. Thus, by Lemmas 2.2
and 2.6, this last graph is in (Z3), and so by Proposition 2.1(C3), G € (Z3).
a

Theorem 5.7 Let G be a 2-connected chordal graph. Then Ay(G) = 4 if
and only if G € {K3, K4} or G has two subgraphs G, and G2 such that
Ag(G1) =Ay(G2) =4and G =G, ©Ga.

Proof. By Proposition 4.2, Ag(K3) = Ay(K4) = 4. Now suppose that
G has two subgraphs G, and G2 such that A (G1) = Ay(G2) = 4 and
G = G1 ® G. Then, by Lemma 5.3 and Inequality (11), Ay(G) =4

Conversely, we assume that Ay(G) = 4, but G ¢ {K3, K4}. If k(G) > 3,
then by Theorem 5.4, Aj(G) = 3. Hence, G must have a vertex cut V' =
{a,b}. By Lemma 5.5, ab € E(G).

Therefore, G has two 2-connected chordal subgraphs G; and G2 such
that min{|V(G1)|, [V(G2)|} 2 3, V(G1)NV(G2) = V', and G = G, & G>.
If both Ay(G1) = Ag(G2) = 4, then we are done. Therefore, suppose that
Ag(G1) £3.

Since G is a chordal graph with «(G) = 2, any pair of edges is contained
in a cycle. Thus, G is a triangularly-connected chordal graph. Since G; €
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(Z3), by Lemma 5.6, G € (Z3). But, G € (Z3) and Ay(G) = 4 is a
contradiction. o

Theorem 5.8 Let G be a 2-edge-connected chordal graph that is not 2-
connected. Then Ay(G) = 4 if and only if there are subgraphs G, and G,
of G such that G = G1 U G;, |V(G1) NV(G2)| = 1, and Ay(G,) = 4 or
Ay(G2) =4

Proof. First note, by the assumption of Theorem 5.8, G has a cut vertex v.
Therefore, G has two 2-edge-connected chordal subgraphs G; and G3 such
that V(G1) NV(G2) = {v}, min{|V(G1)|,|V(G:2)|} = 3, and G = G, UG,.

Let G1 and G be subgraphs of G such that G = G, UG; and [V(G;)N
V(Gs2)| = 1. Note that G; & G/G2 and G, = G/G,. Moreover, since
G is 2-edge-connected and chordal, G; and G are also. Therefore, by
Inequality (11), A¢(G;) <4, for i € {1,2}.

(“only if” part) The negation of the conclusion in this case requires that
Ag(Gy) < 3 and Ay(G,) < 3. Hence, G1,G: € (Z3), and G/G, = G, €
(Z3). It follows by Proposition 2.1(C3) and Inequality (11) that A,(G) < 3.

('ii” part) If A,(G) < 3 (ie,, G € (Z3)), then by Proposition 2.1(C2)
2 G/Ga, 02 & G/G:1 € (Z3). Then, by Inequality (11), Ag(G;) < 3
and Ay(Gq) L 3.

6. Biwheels

In this section we investigate the group connectivity number for bi-
wheels. The biwheel, B, is the graph obtained by joining a cycle on n > 2
vertices and K7 (see Figure 6.1). Shahmohamad [12, 13] gave the following
results on minimum flow number of biwheels.
Lemma 6.1 ([12, 13]) Let n be a positive integer.
(1) Ag(B2n41) =2, forn > 1.
(2) Ag(Ban) =3, forn > 2.

We generalize these results to the group connectivity number of biwheels
as follows.

Theorem 6.2 A (B,) =3, for n > 2.

Proof. Since every edge of B, lies in a C3, by Lemma. 2.2 and Lemma. 2.6
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B,, € (A) for any Abelian group A with |A| > 4. By Lemma 2.3, Ay(B,) #
2. Hence, it suffices to show that B,, € (Z3). We consider two cases.

Case 1: Suppose n is even. By Lemma 2.7 we know that W,, € {(Z3). We
view W,, as a subgraph of B,. The subgraph contraction B, /W, yields
two vertices joined multiple edges, which belongs to Z3 by Lemma 4.3.
Therefore, B, € (Z3) by Proposition 2.1(C3), and Ay(B,) = 3.

3

[\, [\,

V4 v3 (2 v3

b:ow

v

Figure 6.1: Biwheel B, when n is odd

Case 2: Suppose n is odd. Let B] be a graph obtained from B, by
splitting a vertex v; on the n-cycle with respect to the two edges on the
n-cycle incident with it (see Figure 6.1). By Theorem 3.1, if B], € {Z3),
then B, € (Z3).

We now show BJ, € {Z3). Observe that B has an induced subgraph
isomorphic to W, with center a; we view W,_; as a subgraph of BJ.
By Lemma 2.8, Agj(W,_1) = 3. By Proposition 2.1(C3), we only need to
show that B),/W,_, € {(Z3). We use vw to label the vertex resulting from
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contracting W, _,. Since the graph H induced by {vw,bd} in B, /W, _; has
m 2 4 edges joining vy and b, by Lemma 4.3, H € (Z3). Contracting
H produces C;, and by Lemma 2.2 C; € (Z3). It follows by Proposi-
tion 2.1(C3) that B, /W,_, € (Z3). a

A biwheel is sometimes alternately defined as the join of a cycle on

n 2 2 vertices and K; + K, where + is the disjoint union. We note that
Theorem 6.2 holds for biwheels thus defined.
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