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Abstract

We present 3 open challenges in the field of Costas arrays. They
are: a) the determination of the number of dots on the main diago-
nal of a Welch array, and especially the maximal such number for a
Welch array of a given order; b) the conjecture that the fraction of
Welch arrays without dots on the main diagonal behaves asymptoti-
cally as the fraction of permutations without fixed points and hence
approaches 1/e, and c) the determination of the parity populations
of Golomb arrays generated in fields of characteristic 2.

1 Introduction

Costas arrays appeared for the first time in 1965 in the context of SONAR
detection [5, 6], when J. P. Costas, disappointed by the poor performance
of SONAR, used them to describe a novel frequency hopping pattern for
SONAR with optimal auto-correlation properties. At that stage their study
was entirely empirical and application-oriented. In 1984, however, after the
publication by S. Golomb [11] of the 2 main construction methods for Costas
arrays (the Welch and the Golomb algorithm) based on finite fields, still
the only ones available today, they officially acquired their present name
and they became an object of mathematical interest and study.

Many of the results in the field have been triggered by the exploration
of Costas arrays properties through computers (see, for example, [2, 4, 16]).
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The evidence gathered led to the formulation of conjectures 12, 14], some
of which subsequently were, at least partially, proved.

In this work we collect our findings in 3 numerical experiments per-

formed on Costas arrays, whose results are inexplicable at present, and
we present them to the broader scientific community, hoping to accelerate
progress towards their solution.

2

o The determination of the number of dots on the main diagonal of a

Welch array, and especially the mazimal such number for a Welch ar-
ray of a given order: diagonals of Costas arrays form Golomb rulers
[1], that have many applications in synchronization, frequency allo-
cation to radio stations, phased array antenna design etc.; they are
also related to PPM sequences [10]. Of particular interest is the main
diagonal of a Costas array, as it is potentially the longest Golomb
ruler within the array; additionally, of particular interest are dense
Golomb rulers, so we would like to search for Costas arrays whose
main diagonal contains as many dots as possible. A particular sub-
family of symmetric Golomb arrays is known to have asymptotically
optimally dense main diagonals [8], but what about Welch arrays?

The conjecture that the fraction of Welch arrays without dots on the
main diagonal behaves asymptotically as the fraction of derangements,
namely permutations without fized points, and hence approaches 1/e:
this observation links Welch arrays to the infamous “problem of the
misaddressed letters” in combinatorics.

The determination of the parity populations of Golomb arrays gener-
ated in fields of characteristic 2: this is the only as yet unexplained
case in parity populations of algebraically constructed Costas arrays,
which otherwise are known to involve quite deep mathematical results.
For example, parity populations of some Welch arrays are expressible
in terms of the Class Number (3, 9].

Basics

In this section we give precise definitions for the terms used in the paper.

2.1 Definition of the Costas property

Simply put, a Costas array is a square arrangement of dots and blanks,
such that there is exactly one dot per row and column, and such that all
vectors between dots are distinct.
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Figure 1: The Costas array of order 6 corresponding to the permutation
526134

Definition 1. Let f : [n] — [n], where [n] = {1,...,n}, n € N, be a
bijection; then f has the Costas property iff the collection of vectors {(i —
3 f(@) = f(5)) : 1 £ j < i < n}, called the distance vectors, are all distinct,
in which case f is called a Costas permutation. The corresponding Costas
array Ay is the square array n x n where the elements at (f(i),%), i € [n]
are equal to 1 (dots), while the remaining elements are equal to 0 (blanks):

lifi=f(j)

0 otherwise '’ i€l

Ag = lay] = {
From now on, the terms “array” and “permutation” will be used inter-

changeably. An example of a Costas array of order 6 and its corresponding
permutation is shown in Figure 1.

Remark 1. The horizontal flip, the vertical flip, and the transposition of
a Costas array result to a Costas array as well: hence, out of a Costas array
8 can be created, or 4 if the particular Costas array is symmetric.

The analog of a Costas array in one dimension is a Golomb ruler, which
has already appeared above in connection with the first challenge:

Definition 2. Let A = {a;}, ¢ € [m] be a sequence of m distinct integers
in [n], n,m € N, m < n; A is set to be a Golomb ruler iff all differences
{ai—a;: 1<j<i< m} are distinct; equivalently, if A describes the
numbers in [n] where f : [n] — {0,1} is equal to 1, f is also called a Golomb
ruler.
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2.2 Construction algorithms

There are 2 known algorithms for the construction of Costas arrays. We
state them below omitting the proofs (which can be found in [7, 11] in full
detail):

Algorithm 1 (Exponential Welch construction Wj(p, g,c)). Let p be a
prime, g a primitive root of the finite field F(p), and ¢ € [p — 1] — 1;
the ezponential Welch permutation corresponding to g and c is defined by
f@) =g modp, iclp-1]

Remark 2. Given a W; permutation, it is well known that its horizontal
and vertical flips also correspond to W) permutations; its transpose, how-
ever, does not: it is what we define as a logarithmic Welch permutation.
The distinction is well defined as, for p > 5, there are no symmetric W,
arrays. We will no further consider logarithmic Welch permutations in this
work, so “Welch” will henceforth be synonymous to “exponential Welch”.

Algorithm 2 (Golomb construction G(p, m,a,b)). Let ¢ = p™, where p
prime and m € N*, and let a, b be primitive roots of the finite field F(gq);
the Golomb permutation corresponding to a and b is defined through the
equation a* + /) =1, ie[g—-2.

Remark 3. The horizontal and vertical flips of a G, permutation are
themselves G, permutations, just like in the Welch case; this time, however,
the same holds true for transpositions as well.

Remark 4. The indices in W; and G» have the significance that the al-
gorithms produce permutations of orders 1 and 2 smaller than the size of
the finite field they get applied in, respectively. It is well known that both
algorithms can be extended to yield a wide range of sub-algorithms (7, 12J;
in this paper, however, we will focus exclusively on the 2 aforementioned
main algorithms.

2.3 Parity populations

Definition 3. Let f : [n] — [n], n € N*, be a function; set:

o ee(f) =|{i € [n] : i mod 2 =0, f(i) mod 2 = 0}| to be the even-even
population;

e 0o(f) =|{i € [n] : imod 2 = 1, f(i{) mod 2 = 1}| to be the odd-odd
population;

o eo(f)=|{i € [n] : imod 2 =1, f(i) mod 2 = 0}| to be the even-odd
population;
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o oe(f)={i € [n] : imod 2 =0, f(i) mod 2 = 1} to be the odd-even
population;

If f is a permutation, the parity populations are closely connected:

Theorem 1. Let f: [n] — [n], n € N*, be a permutation; then
o ee(f) + 0o(f) + eo(f) + oe(f) =m;

o oe(f) = eo(f);
¢ 00(f) — ee(f) = n mod 2.

Proof. This is actually a very simple, almost obvious result (also appearing
in [9]). Clearly, ee + eo = ee + oe, as both sums equal the number of even
integers in [n]; hence, eo = oe. Further, 0o + oe is the number of odd
integers in [n], whence:

lifnmod2=1

0 - =oo—ee=
00 + oe — (ee + eo0) = 00 — ee {0ifnm0d250=nm0d2

O

There is then only one degree of freedom: if one of the populations is
given, all 4 can be determined.

3 First challenge: the number of dots on the
main diagonal of a Welch array

Golomb rulers (see Definition 2) have many important applications (in syn-
chronization, frequency allocation to radio stations, phased array antenna
design etc. [1]), and are also related to PPM sequences [10]. Although any
diagonal of a Costas array is a Golomb ruler by definition, the main diago-
nal is potentially the longest one within the array, and a further desirable
property is that it be “dense”, namely have as many dots as possible. Do
W, arrays yield dense Golomb rulers?

In accordance with Algorithm 1, given a prime p, we are interested in
the number of solutions of

i=g¢"" " mod p (1)

with respect to i, where g is a primitive root of the field F(p) and ¢ €
[p—1] — 1is a constant.

Equation (1) strikes one immediately as “unalgebraic”: the i on the
RHS is simply an index, and in particular an integer in [p— 1] — 1, based on
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Fermat’s Little Theorem; the 7 on the LHS, however, is an element of F(p),
and elements of F(p) just happen to be representable by integers because
F(p) is a field of prime size and not an extension field (whose elements are
routinely represented as polynomials). In other words, algebra traditionally
considers the 2 instances of ¢ in (1) as different, non-comparable objects,
and these 2 object types happen to coincide in finite fields of prime size; the
solution of this equation then needs to exploit properties of these fields not
present in extension fields, where this equation is impossible to formulate
in the first place, and this probably means that we need to consider F(p)
as something more complex than a field.

The bottom line is that we are left with a transcendental equation over a
finite field. Such equations have almost not been studied at all, as opposed
to polynomial equations, on which the literature is abundant. The only
instance of a relevant problem studied in the literature (that we have been
able to trace) has been one proposed by Demetrios Brizolis: is it true that
Viec[p—1], 3g € [p—1]: i = g modp? This was answered in the
affirmative by W. P. Zhang [17] for sufficiently large primes, and later C.
Pomerance and M. Campbell “made the value of “sufficiently large” small
enough that they were able to use a direct search to affirmatively answer
Brizolis’ original question” ([13] and references therein). Observe, though,
that this is quite a different problem than the one we are interested in.

Let S(p, g,¢) = |{i € [p— 1] : i = ¢"~1*°}|, namely the number of solu-
tions of (1) for a given constant ¢ and a primitive root g € F(p), p prime.
Table 1 shows r(na:)c S(p, g, c) for all p < 5000: the data do not seem to follow

ag.c

a recognizable pattern, but they roughly seem to behave “logarithmically”.
Indeed, 1 + [In(p)], where [-] is the rounding function, seems to fit the data
very well: 402 out of 669 entries (60.1%) are captured exactly, while 652
entries (97.5%) are captured within an error margin of +1. Figure 2 plots
the data of Table 1 and their logarithmic approximation. Table 2 collects
the values of p where a maximal number of solutions n € [11] occurs in
Table 1 for the first time, as well as the (probable) values of p where a
maximal number of solutions n € 7] occurs in Table 1 for the last time.

Table 1: The maximum number of solutions of the equation i =
g'~1*° mod p over all possible values of ¢ and primitive roots g €
F(p), p < 5000. First occurrences of values are bold, while the
last ones (up to 7) are bold and italic. The first and (probable)
last p for which a certain maximal number of solutions appears is
tabulated in Table 2.

p|# p| # P p| # p|# p|l#
2| 1| e17] 8[1427 2269(10[[3169| 9[[4073[10

continued on next page

ofdk
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Table'1: continued

p|# p| #|| »p|# pl#|| pl#| pl#
3| 2| 619( 8{[1429| 8| 2273|10([3181| 9|[4079] 9
5[ 2] 631] 7|[1433[ 8| 2281[ 8|[3187| 9{[4091[10
7| 3| 641] 7][1439[ 8] 2287 9][3191[10([4093[10
11| 4] 643| 8|[1447| 9] 2293| 9]|3203[10][4099] 9
13[ 4| 647| 9(|1451| 9]| 2297] 9[|3209| 8|[4111[10
17| 3| 653| 7||1453| 9| 2309] 9([3217[10][4127[10
19| 5| 659 7||1459( 8| 2311| 9][3221]10][4129]10
23| 5| 661| 7||1471| 8| 2333 9([3229] 9[[4133| 9
29[ 4|| 673] 7|[1481] 8| 2339 9|{3251| 9/[4139] 9
31[ 4| 677| 9][1483] 8[| 2341| 9]{3253] 9([4153] 9
374 683 7|[1487| 8|/ 2347| 9[|3257(10([4157| 9
41| 5] 691 7[j1489] 8| 2351|10([3259] 9|[4159]10
43[ 4|[ 701 7[[1493] 9| 2357| 8][3271| 9|[4177| 9
47| 5]| 709| 8[[1499] 8| 2371| 8][3299] 8[[4201] 9
53 5| 719] 7|[1511| 8[| 2377| 9|[3301] 9[[4211] 9
59| 5| 727| 8[[1523[10(| 2381 9}[3307| 9[[4217| 9
61| 5| 733] 8[|1531] 8[| 2383] 9||3313| 9[[4219] 9
67| 5[] 739] 8][1543| 8]| 2389| 8][3319| 8[[4229|10
71 5| 743| 7[[1549]| 8] 2393| 8|[3323] 8[[4231] 9
73] 5[ 751] 7][1553| 8]f 2399 9([3329|10[[4241| 9
79 5| 757| 8[[1559] 9] 2411| 9([3331| 8[[4243]11
83| 6| 761 7([1567] 9] 2417|10([3343| 8[[4253|11
89| 5] 769] 8][1571| 9]|2423(11][3347| 9[[4259[11
97] 6] 773| 9|[1579| 8| 2437|10([3359| 9[[4261| 9
101| 6] 787 8([1583| 9| 2441 8||3361| 8||4271] 9
103] 6| 797 7|[1597| 8| 2447| 9||3371| 9[[4273] 9
107| 6] 809| 8][1601| 8| 2459| 8|[3373[11[[4283[10
109] 6] 811 8|[1607| 8| 2467| 8|[3389] 9][4289] 9
113] 5| 821 9([1609] 9l 2473| 9|[3391[10([4297| 9
127] 5| 823| 7|[1613] 8| 2477| 9|[3407[10[[4327| 9
131 6] 827| 7([1619] 9| 2503| 9(|3413] 9([4337] 9
137] 6] 829 9[[1621] 9f 2521| 9|[3433] 9[[4339] 8
139] 6| 839 8([1627| 8| 2531| 9|[3449] 9[[4349| 9
149| 6| 853| 8][1637| 9| 2539| 9||3457|10([[4357] 9
151] 5| 857| 8|[1657| 8| 2543| 9||3461| 9[4363] 9
157| 5| 859 8[[1663] 8| 2549| 9|[3463] 9([4373[10
163| 6] 863| 8[[1667| 8| 2551| 8|[3467| 9[[4391(11
167| 7| 877| 7||1669] 9| 2557| 9||3469| 8/[4397| 9

continued on next page
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Table 1: continued

p|# p|#|| p|# p|#|  p|#l pl#
173 6] 881| 8/1693] 8| 2579|10(/3491[10([4409| 9
179 7|l 883[ 8[[1697] 8| 2591| 9||3499] 9[[4421] 9
181| 5| 887| 8[|1699] 8| 2593| 9(|3511[ 9([4423] 9
[191| 6] 907| 7|[1709] 8| 2609| 9|[3517|10||4441[10
193| 6| 911| 7[|1721| 8| 2617|10{[3527| 9|[4447| 9
197| 8| 919| 9{[1723| 9| 2621 8]|3529| 9([4451|10
199 6] 929[ 8][1733| 8|l 2633|10(/3533| 9||4457| 9
211[ 6| 937| 8|[1741| 8| 2647| 9][3539| 9][4463] 9
223[ 7] 941 8|[1747[ 9of 2657 9(|3541] 9{[4481[10
227| 6] 947 8|[1753| 9| 2659 9|[3547] 8([4483] 9
2295 953| 9||1759( 9] 2663| 9][3557| 9|[4493] 9
233| 6| 967 8|[1777| 9| 2671] 8][3559[ 9{[4507| 9
239 8| 971 8[[1783] 8[| 2677] 9|{3571| 9][4513]10
241| 7|l 977| 8[[1787| 9| 2683] 9|[3581] 9|[4517] 9
251 6|| 983[ 9[[1789[ 8| 2687| 9|[3583| 9|[4519[ 9
257] 7| 991 9[[1801] 9f 2689] 9{[3593] 9{[4523] 9
263| 6| 997[10[1811] 9| 2693| 9]|3607(10]/4547] 9
269| 7|| 1009| 7[[1823] 8| 2699] 9][3613| 9][4549] 9
271 6] 1013| 8[[1831[ 8| 2707[ 8[|3617| 9[[4561] 9
277 6|| 1019] 8[[1847] 8 2711] 9|[3623(11|[4567|10
281| 7l[ 1021 7|[1861] 9| 2713[ 9|[3631] 9([4583] 9
283| 6| 1031| 8|[1867| 9| 2719] 8|[3637| 9]|[4591] 9
203| 7]l 1033| 8]|1871] 8|| 2729 9(/3643|10([4597] 9
307| 7| 1039| 8[[1873] 9| 2731| 9||3659(10|4603[ 9
311| 6| 1049| 8|[1877| 9| 2741| 9|[3671| 9|[4621] 9
313| 7| 1051| 8|[1879] 8| 2749[ 9||3673| 9([4637] 9
317| 6| 1061| 8][1889] 8|| 2753| 8||3677| 9([4639] 9
331| 6| 1063| 8[[1901[10| 2767| 8|[3691] 9||4643]10
337| 6| 1069| 7[|1907| 8| 2777| 9||3697| 9|[4649(10
347| 6| 1087| 7|[1913| 8| 2789[ 8||3701] 8[[4651] 9
349 7| 1091 8|[1931] 9| 2791| 9|[3709[ 9|[4657| 9
353 8| 1093| 7[|1933] 8|| 2797| 8][3719| 9][4663] 9
359| 7|| 1097| 8||1949] 9| 2801| 9|[3727| 8|[4673] 9
367 8| 1103| 8||1951| 8| 2803 9([3733| 9][4679] 9
373| 7|| 1109| 8||1973[10| 2819 10{|3739| 9]l4691] 9
379 7| 1117| 7|[1979(10| 2833| 9]|3761] 9]|4703] 9
383 7[[ 1123 8||1987| 8| 2837| 9([3767| 9[[4721|10
389] 7] 1129| 8||1993| 9| 2843] 9[[3769(10([4723]10

continued on next page
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Table 1: continued

p|# pl #||  »p|# pl#|| pl#| pl#
397] 7| 1151 7[[1997] off 2851 8[[3779| 9[[4729| 9
401| 7| 1153| 8[[1999] 8] 2857 8|[3793| 8][4733| 9
409( 7|l 1163| 8][|2003| 8][ 2861 8|[3797] 9[[4751[10
419 7{| 1171| 9lj2011| 9] 2879| 8]|3803| 9[[4759] 9
421| 6| 1181] 8][2017| 9| 2887 9(|3821[10([4783[10
431] 7| 1187] 9][2027 9| 2897| 9][3823| 9|[4787|11
433] 7|] 1193] 8]{2029| 9| 2903| 8][3833[10][4789[10
439| 8] 1201] 7[[2039] 9]| 2%09| 9]{3847[10][4793|10
443 7]| 1213 8][2053] o[ 2917] 8]|3851[10([4799] 9
449] 7| 1217] 8[[2063]10]] 2927] 9][3853] 9||4801| 9
457] 7]| 1223] 8{[2069] 9| 2939 9(/3863|10([4813] 9
461| 8| 1229] 8][2081| 9| 2953 9[[3877| 9([4817[10
463| 7][ 1231] 7{[2083] 9| 2957 9][3881| 9|[4831[10
467| 7|[ 1237] 7][2087| 9][ 2963 9{[3889|10|[4861 |10
479] 8] 1249] 8][2089| 8][ 2969| 9([3907[11([4871| 9
487] 8| 1259] 8[[2099] 9| 2971 9f[3911] 9([4877|10
491( 7| 1277] 8[[2111] 8] 2999| 9|[3917] 9|[4889]11
499( 7{[ 1279] 8][2113[ 9| 3001] 9]{[3919] 9([4903] 9
503| 7] 1283| 8{[2129] 9f 3011 9{[3923|10[[4909] 8
509| 7| 1289] 9[[2131] 9f 3019| 9{[3929] 9[[4919[10
521 7{ 1201 7{[2137[ 8| 3023[11|[3931| 8[4931] 8
523 8| 1297| 9l[2141] of 3037[ 8|[3943| 9[[4933] 9
541[ 7] 1301 8][2143| 8| 3041 9(|3947[10([4937] 9
547] 7|| 1303| 7[[2153] 9| 3049| 9|[3967| 9|[4943[ 9
557] 7|| 1307] 8[[2161] 8] 3061[ 9][3989[10][4951| 9
563 8] 1319| 9l[2179] 8| 3067| 9[[4001|10][4957] 9
569| 8|| 1321 8[|2203] 9]/ 3079| 9][4003| 9[j4967| 9
571 7|| 1327| 8[|2207| 9] 3083| 9|[4007([10([4969] 9
577| 7|l 1361 8{[2213[10]] 3089| 9|[4013[10][4973[10
587] 8| 1367| 8[[2221| 9] 3109| 9|[4019] 9[[4987| 9
593[ 7|| 1373| 9[{2237| 9| 3119[ 9([4021 9[[4993| 9
599 7|[ 1381[ 9}|2239[ 8] 3121| 9][4027| 9[[4999| 9
601 7][ 1399| 7|[2243[10| 3137 9[|4049] 9
607| 8[| 1409] 8|[2251| 8| 3163] 8|[4051| 9
613] 8]|1423] 7{[2267] 9| 3167[10][4057| 9

To summarize:

Challenge 1. For p prime, g a primitive root of F(p) and c€ [p— 1] — 1,
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Approximation of max . $(p.9.) by 1+{In(p)]
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Figure 2: Plot of t(naa)c S(p, g,c) for all p < 5000, as tabulated in Table 1,
g.c

along with the approximation by 1 + [In(p)]. A graph of these results for
P < 1000 was presented by the author in a previous paper [8].

n [1{2|3[{4{5 6| 7 [8]9]10] 11
First p|2|3| 7 |11]19 | 83 [ 167 |197]|647(997|2423
Last p|2|5|17{37(229]|421)1423

Table 2: The first p for which the maximum number of solutions n € [11]
appears in Table 1, as well as the (probable) last p for which the maximum
number of solutions n € [7] appears in Table 1.

determine the number of solutions of the equation

i=¢""1*° mod p.
In particular, determine the maximal such number of solutions for a given p

over all possible g and ¢, and show that it behaves asymptotically as In(p).

It is known that the optimally dense Golomb ruler of length »n contains
approximately /n points [8]; the fact that, in the case of W) arrays, the
number of points depends logarithmically on the length (a much smaller
quantity than the square root of the length), shows that they do not lead
to dense Golomb rulers after all. Thus, a reformulation of this section’s
challenge would be to show that Welch arrays lead to sparse Golomb rulers.
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Figure 3: Plot of the ratio of W, arrays with no dots on the main diagonal
over the total number of W arrays generated in F(p) as a function of p;
the red horizontal line marks 1/e.

4 Second challenge: the asymptotic behavior
of the number of Welch derangements

It is a well known result in combinatorics that the ratio of derangements,
i.e. permutations without fixed points, of order n over the total number of
permutations (n!) approaches e™! = 0.3678794. .. as n — oo (this result is
often referred to as the problem of the misaddressed letters). What can be
said about the ratio of the number of W, permutations generated in F(p)
with no fixed points over the totality of (p — 1)¢(p — 1) W, arrays? It is
plotted in Figure 3 and seems to approach e~! as well, although the data
shows still some fluctuation in the given range of p.

This conjecture can also be cast in the language of probability. Let N
and W be the events that a permutation has no fixed points and that a
permutation is Wy, respectively: the conjecture then is equivalent to the
statement that P(N|W) = P(N), namely that the probability of N given
W is equal to the probability of N, at least asymptotically, so the 2 events
are independent. This result is an indication of a uniformity of distribution
of Welch arrays among the set of all permutations.

To summarize:

Challenge 2. Prove that the fraction of W1 derangements over the total
number of W, permutations generated in F(p), p prime, is asymptotically
equal to the fraction of derangements of order p— 1, as p — oo, and tends,
therefore, to 1/e.
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5 Third challenge: the parity populations of
Golomb arrays generated in fields of char-
acteristic 2

The parity populations for both W, and G, arrays generated in fields of
odd characteristic have already been completely described [9]: indeed, the
2 theorems below cover all possible Welch and Golomb constructions, ex-
cept for Golomb constructions in fields of even characteristic, namely of
characteristic 2.

Theorem 2. Let a permutation be generated by Ga(p,m,a,b), p > 2,
g =p™. Then:

-5 -1
g , eo=oe=oo=q—4—;

4
) Ifq53m0d4=>oo=q1_1, eo=oe=ee=q—3.

e lfg=1modd=ece=

Theorem 3. Let permutation be generated by Wi (p, g,0). Then:
e If p=1mod 4= ee=00=eo=oe
e If p = 3 mod 8, then eo — ee = —3h(—p);
e If p =7 mod 8, then eo — ee = h{—p),

where h(—p) is the Class Number [3] for discriminant —p: for p > 3,
p—-1 .

h(-p) = —% Z (%) i, where (*) denotes the Legendre symbol [15].
i=1

Although the proofs (omitted here, but see [9] for details) are not neces-
sarily easy (in particular the parity populations of Welch arrays invoive the
quite advanced concept of the Class Number (3]), the statements certainly
are: the parity populations of G2 arrays generated in F(p™), p > 2, are in-
dependent of the primitive roots a and b used. The same holds essentially
true for W, arrays, except that changing the value of ¢ by 1 causes ee and
eo to swap values; as W) arrays are of even order, horizontal or vertical flips
have the same effect, changing the parity of the corresponding coordinate
of the dots.

This effective independence of the parity populations from the specific
primitive roots used for the generation of the array holds no longer true for
G arrays generated in fields of characteristic 2: here, the parity populations
take many different values, depending on the primitive roots used for the
generation of the array, which appear to follow no readily recognizable
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pattern. As these arrays have even order, however, the same phenomenon
that we observed in W arrays applies here: for each array with parity
populations ee and eo, there exists another (its horizontal and vertical flip)
with these values swapped; hence, there are as many arrays with ee = «
and eo = y as with ee = y and eo = z. The different parity populations
observed in G, arrays generated in the fields of size 2™, m = 3,...,11 are
shown in detail in Table 3; due to the symmetry we just mentioned, only
(the top) half of the array is shown.
To summarize:

Challenge 3. Let f = G2(2,m,a,b) be a G, permutation in a field of
characteristic 2; determine its parity populations ee(f), eo(f), oe(f), oo(f).
Determine also the number of G5 permutations constructed in F(2™) with
a given set of parity populations.

6 Summary and future work

In this work we have presented, in the form of challenges, the results of
3 of our numerical experiments on Costas arrays. We chose the 3 most
intriguing experiments we have encountered so far, and presented all of the
evidence we have gathered. In brief, these 3 challenges are:

1. The determination of the number of fixed points of a W permutation,
and in particular the maximal such number among all W, arrays
generated in a particular field.

2. The proof of the conjecture that the fraction of W, arrays without
fixed points is asymptotically equal to the fraction of derangements,
and in particular that it tends to 1/e.

3. The determination of the parity populations of G arrays generated
in fields of characteristic 2. We should note further here that Table 3
shows only the simplest instance of a general phenomenon: consider
k € N* and consider the generalized parity populations modulo k.
Whenever k is a prime, the G2 arrays generated in fields of charac-
teristic k£ exhibit similar behavior. Clearly, Table 3 corresponds to
the first case £k = 2. As we have not experimented extensively with
k > 2, however, we avoided presenting any results at this time.

It is our firm belief that these results are instances of as yet unexplored
number theoretic or algebraic properties of (some families of) finite fields,
so that further study of these matters will greatly benefit both pure mathe-
matics and applications. We can only hope that we will successfully arouse
the interest of a reader, perhaps better versed in the relevant techniques
than ourselves, who will unravel the mysteries of these experiments.
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m =8 (11)

€ee| eo

#

53| 74

10

m = 10 (27)

54| 73

4

€e

€0

#

55

72

12

229

282

2

56| 71

36

230

281

4

57| 70

62

231

280

4

m =11 (39)

58} 69

106

232

279

16

ee

€o

ee

€o

59| 68

156

233

278

38

472

551

493

530

3466

60| 67

116

234

277

34

473

550

494

529

4062

61

66

166

235

276

60

475

548

495

528

4752

62| 65

178

236

275

62

476

547

496

527

5300

63| 64

178

237

274

142

477

546

497

526

5774

m

=9

(18)

238

273

164

478

545

498

525

6226

=6(4)

ee| eo

#

239

272

248

479

544

120

499

524

6948

NEINE EHEIAS
(=
=)
-
=

eo| #

110|145

8

240

271

354

480

543

136

500

523

7232

12(19] 12

111

144

8

241

270

326

481

542

224

501

522

7946

13]18] 22

112(143

32

242

269

532

482

541

348

502

521

8442

14(17| 54

113]142

26

243

268

560

483

540

444

503

520

8932

15(16| 20

114|141

90

244

267

792

484

539

488

504

519

9244

m=17T(8)

115[140

112

245

266

832

485

538

782

505

518

9426

eeleo| #

116(139

156

246

265

874

486

537

908

506

517

10180

24|39 4

117(138

350

247

264

972

487

536

1340

507

516

10952

25|38| 20

118|137

426

248

263

1130

488

535

1400

508

515

10848

26|37 44

1191136

496

249

262

1276

489

534

1730

509

514

11790

27]36(104

1201135

668

250

261

1282

490

533

2090

510

513

11306

2835|140

121

134

756

251

260

1524

4901

532

2732

511

512

11624

2934|206

122(133

872

252

259

1620

492

531

3020

30]33|336

123|132

1020

253

258

1654

31{32(280

124|131

1232

254

257

1718

Table 3: The various different parity populations for G2 arrays generated
in F(2™), m = 3,...,11: the third column of each array shows the number
of G, arrays with the given ee and eo. The numbers in parentheses next

1251130

1296

255

256

1780

126(129

1436

127|128

1384

to the value of m denote the number of different parity populations (rows).

Note that the bottom half of the arrays, which is the same as the top half

but with the values of ee and eo swapped, is omitted.
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