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Abstract

Greedy defining sets have been studied first time by the author
for graphs. In this paper we consider greedy defining sets for
Latin squares and study the structure of these sets in Latin
squares. We give a general bound for greedy defining numbers
and linear bounds for greedy defining numbers of some infinite
families of Latin squares. Greedy defining sets of circulant
Latin squares are also discussed in the paper.

AMS Classification: 05B15, 05C15.

Keywords: Latin square, critical set, greedy coloring, greedy
defining set.

1 Introduction

Let K, be the complete graph on n vertices with vertex set {1,2,...,n}.
By K,OK, we mean the graph with vertex set {(¢,j) : ¢,5 = 1,2,...,n},
where two distinct vertices (z1,7;) and (i2,j2) are adjacent if and only if
either 4; = i or j; = jo. A Latin square is an n X n array from the numbers
1,2,...,n such that each of these numbers occurs in each row and column
exactly once. We note that any n x n Latin square is equivalent to a proper
vertex n-coloring of the graph K,,0K,.
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In a graph G, a set of vertices S with an assignment of colors is said to be a
defining set, if there exists a unique extension of the colors of S to a x(G)-
coloring of the vertices of G. Since any nxn Latin square is equivalent to an
n-coloring of the graph K,,0K,, then defining sets can also be defined for
Latin squares. In this case a defining set for a Latin square which does not
contain properly another defining set is known as a critical set. Defining
sets of graphs are widely studied in the literature, see 6, 7, 8]. Also critical
sets of Latin squares and their various aspects have been much studied,
see for example (1, 2, 5, 8, 9]. For a recent survey on defining sets and
critical sets see [4]. The concept of greedy defining set in graph colorings
was studied for the first time in [10]. This new concept arises when we
consider the greedy coloring of graphs. Given a graph G and an order o
on the vertex set of G. Let o order the verticesof Gasv; < v < ... < Un.
The greedy coloring of G corresponding to o starts with the first vertex
v; and colors it by 1, and then scans the other vertices in turn according
to the order o and at each time gives the minimum available color to the
vertex to be colored. Greedy defining sets can be considered as a variation
of ordinary defining sets when the vertices of graph are to be colored by
a greedy coloring. We know that a greedy coloring of a graph G does not
always color it with minimum number of colors and sometimes it uses many
more colors than x(G). For example the greedy coloring of the tree (with
given order) in Figure 1 uses four colors and there is a greedy coloring of
the bipartite graph K, ,, \ nK, (complete bipartite graph minus a perfect
matching) which uses exactly n colors. Greedy defining sets can be used
to reduce these extra number of colors in order for graph G, be colored
greedily with x(G) colors. We first begin with the definition of greedy
defining sets for graphs.

Definition 1. For a graph G and an order o on V(G), e greedy defining
set is a subset S of V(G) with an assignment of colors to vertices in S, such
that the pre-coloring can be extended to a x(G)- coloring of G by the greedy
coloring of (G, o) and fizing the colors of S. The greedy defining number of
G is the size of a greedy defining set which has minimum cardinality, and
is denoted by GDN(G,0). A greedy defining set for a x(G)-coloring C of
G is a greedy defining set of G which results in C. The size of a greedy
defining set of C with the smallest cardinality is denoted by GDN(G, o, C).

An example of a greedy defining set of size 2 for the graph G is given in
Figure 1, while the greedy coloring of G uses four colors.
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Figure 1: An ordered graph G with GDN(G)=2

In [10], the computational complexity of determining the greedy defining
number of a coloring of an ordered graph has been studied.

Theorem 1.([10)) The following problem is N'P-complete:
Instance: An ordered graph (G,o), a x(G)-coloring C and integer k.
Question: GDN(G,0,C) < k?
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Figure 2: Greedy defining sets for 5 x 5 and 6 x 6 Latin squares

2 Latin Squares

In this paper we study greedy defining sets and numbers for Latin squares.
Throughout the paper the cells of Latin square are ordered lexicographi-
cally. It means that we scan cells from top row to below and in each row
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from left to right. Let L be a Latin square. Then L can be considered as a
vertex coloring of K,OK, for some n. By a greedy defining set (or simply
GDS) for L we mean any GDS for K,0K, which results in the square L,
where the order on V(K,OK,,) is lexicographic order. Greedy defining sets
of size 2 for 5 x 5 and 6 x 6 Latin squares are given in Figure 2.

Definition 2. Let L be any Latin square whose cells is ordered lezicograph-
ically. We define a descent to be three cells in the Latin square L such as
the following:

where ¢ and y are any entries with x > y.

An example of a descent is displayed in Figure 3, where the entries of the
descent is specified by boxes.
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Figure 3: An example of descent in a 5 x 5 Latin square

In the following we explain the structure of greedy defining sets in Latin
squares in terms of hypergraph theory using the concept of descents. By a
hypergraph H = (V, E), we mean any nonempty set V (as the vertex set
of H) and a collection E consisting of some subsets of V. We call every
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member of £ a hyperedge of H. In any hypergraph H, a blocking set is
any subset of vertices B such that B intersects every hyperedge of H.

Definition 3. Let L be a Latin square of order n. The hypergraph on n?
entries of L and consisting of all descents in L is denoted by Hy.

Theorem 2. Suppose a Latin square L is given. A partial Latin square D
of L, is a greedy defining set (or GDS) of L if and only if D is a blocking
set for Hy.

Proof. Suppose D is a greedy defining set for L. Then obviously D is a
blocking set for H, because D should intersect any descent of L. Otherwise
if D does not intersect a descent with entries z, y and y, where £ > y, then
when we color greedily the cells of L and when we arrive at the position
of z in D, this position can not be colored by z because y < z and no
neighbor of x is previously colored by y (the only entries of y in the same
row and column of = appear after z). Therefore the resulting coloring is
not the same as L, and hence D can not be a greedy defining set.

Conversely, while coloring an arbitrary position (z, j) with entry = in L, we
observe that any value y < z either appears in the same row or column of
z and before z, or otherwise -forming a descent in L which is intersected
by D- is given in the defining set itself. Therefore the only admissible value
to color the position (¢, 7) is z itself. o

Let g, denote the smallest size of a greedy defining set in an n x n Latin
square, The following proposition shows when g, is zero.

Proposition 1. g, =0 if and only if n is a power of 2.

Proof. g, = 0 if and only if the greedy coloring of K,,0K,, with respect to
lexicographic order results in a minimum coloring with n colors. If n = 2™,
for some integer m, then the Latin square obtained by the greedy coloring
of K,,0K,, is isomorphic to the Cayley table of Zy & Zs & - - - @ Zy, which
is the direct sum of m copies of the additive cyclic group Z, of order 2. For
n = 23 this is displayed in Figure 4. Another way of seeing this is that in
that Cayley table there exists no descent (because of the structure of the
group), therefore no need to have an entry in a minimum greedy defining
set, namely g, = 0 in this case.
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Now let 2! < n < 2F, for some k. Let A be the array obtained by the
first n rows and columns of the Cayley table of k copies of Z,. Because
the order in greedy coloring is the lexicographic order, we note that A is
in fact equivalent to the greedy coloring of K,OK,,. But we note that the
number of colors used in A is 2¥. Since 2% appears in the (2%¥~! + 1)-th
row of that Cayley table and 25~! < n , hence A contains this entry 2%,
Therefore unless n = 2%, we will not have g, = 0. a

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 41 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3
7 8 5 6 3 4 1 2
8 7 6 5 4 3 2 1

Figure 4: Cayley table of size 8

Besides the powers of 2, the only known exact values for g, are gz = 1,
gs = gs = 2. It can be easily seen that g3 = 1 and for n = 5,6 we have
checked by hand that one can not block all of the descents in an n x n Latin
square by only one entry.

In the proof of the following theorem we use a construction based on tensor
product of Latin squares. In order to define this concept, let L and K be
two Latin squares with entries {1,2,---,n} and {1,2,---,m} and sizes
n and m, respectively. By L", for each r € {0,1,--- ,m — 1}, we mean
the n x n array obtained by adding rn to any entry of L (in other words
L™ = rnJ + L, where rnJ is an n x n array in which each entry is rn,
and the operation + performs just like the sum of matrices). The tensor
product of L and K, denoted by L ® K, is the nm x nm Latin square
obtained by replacing any entry in K which is r + 1 by L". There is an
example in Figure 5.

Defining sets of cartesian product of graphs and direct product of Latin
squares have been studied in {8] and {3, 5], respectively.
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Figure 5: Tensor product of two Latin squares

Theorem 3. Suppose n = rs, then

gn < "'295 + (32 - gs)gr-

Proof. Suppose L and K are two Latin squares which have greedy defining
sets of size g, and g;, respectively. We prove the theorem by showing that
L ® K has a greedy defining set of size s?g, + (r2 — g,)gs. The Latin
square L ® K contains s? subsquares of the form L? in such a way that the
subsquare in position (4, ) is Lt if the (i, 7)-th entry in K is ¢ + 1.

Let R and S be GDS’s for L and K with g, and g5 entries respectively.
Associated with any entry i + 1 in S we have the subsquare L in L® K.
We choose all entries of these subsquares, which are |S||L| entries, i.e. 72g,
entries. Now there remain s? — g, subsquares in L ® K. From each one we
choose those entries whose positions correspond to the position of entries
of the GDS R in L. This provides (s2 — ¢5)g- new entries for our GDS for
L ® K. Let us denote the resulting partial Latin square of L ® K which
consists of these 72gs + (s — g;)g- entries by F. For example in Figure 6
our construction for 7 = 2 and s = 5 is displayed, where for r = 2 we have
g2 = 0 and for s = 5 we use the greedy defining set introduced in Figure 2.

We now prove that F consisting of r2gs + (s? — g,)g, entries is in fact a
GDS for L ® K. Using Theorem 2 it is enough to show that F' blocks any
descent D in L ® K. Noting that L ® K consists of s? subsquares of the
form L¢, there are two possibilities for D:

1. Three entries of D lie together in a subsquare having type L, say. It can
be easily seen that Hj, is isomorphic to Hy: since L™ = rnJ + L. Therefore
in this case some entry of D will also be in F.
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1 2 3 4 5 6 7 8 9 10
2 1 4 3 6 5 8 7 10 9
5 6 1 2 3 4 9 10 7 8
6 5 2 1 4 3 10 9 8 7
7 8 9 10 1 2 3 4 5 8
8 7 10 9 2 1 4 3 6 5
9 10 6] 7 8 1 2 3 4
10 9 [6] 8 7 2 1 4 3
7 8 9 10 5 6 1 2
[4] 8 7 10 9 6 5 2 1

Figure 6: A GDS for 10 x 10 Latin square using the tensor product
of Latin square of order 2 in Figure 5 and the Latin Square of order
5 in Figure 2

2. Three entries of D lie in three different subsquares of L ® K. Suppose
the largest entry = of D lies in a subsquare having the form L!. Because
other two entries of D have the same value, they should be in different
subsquares which have an identical form LP, say. Considering L ® K as
s? subsquares, assume that the position of L* as a subsquare in L @ K
is (¢,7). Similarly, let the positions of the subsquares associated with two
other entries of D be (41, ) and (%, ;) where ¢ > 4; and j > j;. We have
t > p since D is a descent. It turns out that the three entries of K located
at the positions (%, j), (¢1,5) and (4, 1) form a descent in K. Consequently
F intersects D.

The case that two entries of D place in a subsquare and another entry in
a different subsquare is impossible, because let two entries  and y be in a
subsquare L¢. This means that £ = tr+14, and y = tr + i, for some i; > 5.
Let the position of Lt in L ® K be (4, 7). Hence the entry of K in position
(¢,7) is t + 1. Now the third entry of D with value y = #r + i3 lies in a
different subsquare of L® K but in the same column of £ = tr+4;. It turns
out that there is another entry £+ 1 in the column j of K, a contradiction.
0

212



Determining g, for a given n is not an easy task and therefore one impor-
tant goal in studying g, is to find good upper bounds (in particular linear
bounds) for g, even when 7 belongs to some infinite subsets of integers.
The following three theorems are obtained for this purpose.

Theorem 4. Suppose n = 2¥ — 1 for some integer k > 1, then

gn < n—log(n+1).
Proof. To prove the theorem it suffices to obtain a GDS say, Dy of size
2k —k—1 for a Latin square Ly, of order 2¥—1, since 28— k—1 = n—log(n+1)

when n = 2¥ — 1. For this purpose we will construct our greedy defining
sets recursively, i.e. Dy will be obtained by Dy_;.

1 2 3
For k = 2 the Latin square L5 and its greedy defining set Dy is | 2 1
3 1 2

Let Dy_; be a GDS of size 25~ — (k — 1) — 1 for a Latin square Li_; of
order 25=1 — 1. We consider a partial Latin square F of size 2 —1x 2¥ —1
consisting of the entries of Di_; and extra entries in the principal diagonal,
which are 28 — 1,2k —2,...,2%=! 1 1 (from up to down) as follows:

2k 1
2k _ 9

25141
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We prove that F' is a GDS for a Latin square of order 2% — 1. In fact the
resulting Latin square denoted by Ly will consist of the entries illustrated
in Figure 7. We consider the greedy coloring of the array F where the
order on cells is lexicographic. Let the resulting array be H. As the order
on cells is lexicographic and Dy_; is a GDS for Lx_1, it is obvious that
the subarray generated by the first 251 — 1 rows and columns in H will
be the same as Ly_;. Now let R; be the subarray generated by the rows
1,2,...,2¥=1 —1 and columns 2%¥-1,2%k-1 41 ... 2¥ —1in H. As the Latin
square Lx_, appears before R;, therefore any entry in R; is larger that
2k=1 _ 1, which is the order of Lx_;. On the other hand as the length
of R; is 25! (i.e. a power of two), using the proof of Proposition 1, we
conclude that any entry in R; belongs to {25=1,25-1 4+1,...,2F —1}. Of
course we note that the entries of the lower right subarray of F' don'’t effect
the greedy coloring of Ry. Using a similar argument we obtain that the
lower left subarray Ry of F' will be the transpose of R;. Therefore in two
subarrays R; and Rs, there will be no entry larger than 2k _ 1.

In the rest of proof we consider the lower right subarray Rs of H which is
a square of order 2¥~1. The entries in the principal diagonal of R3 (except
the last one) are given in the GDS and these entries are all larger than
25-1 which is the order of R3. On the other hand all the entries in R;
and Rp are larger than 2¥~! — 1. Let R3 be obtained by Rj by replacing
any entry in the diagonal of R3 (except the last one) by zero. We note
that Rj is equivalent to the greedy coloring of K, x Kn, n = 2¥~1 where
colors begin from 0 instead of 1. Hence in Rz the entries are belong to
{0,1,...,2%"1 — 1}, where the diagonal entries are all zero. On the other
hand the entries in the diagonal of R; (except the last one) are all larger
than 2¥-1, It turns out that in Rj except its entries in the diagonal, all
other entries belong to {1,2,...,2¥~1—1} and the last entry in the diagonal
is 28=1, This shows that H is in fact a Latin square of order 2 — 1 and F
is a GDS for it. Now we take D, = F.

By our construction |Di| = |Dg—1| + 2! — 1. Now suppose §x stands for
gn When n = 2% — 1, then using an induction we have the following:

G <1425 1 1< _(k—1)—142F ' —1=2F k-1
(m}

The array in Figure 8 illustrates the construction of above theorem for a
15 x 15 Latin square, which also includes a GDS of size 4 for a 7 x 7 Latin
square.
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Theorem 5. Suppose n = 2% — 2 for some integer k, then

gn < 2n —4(log(n +2) - 1).
Proof. We have n = 2(2%-! — 1). By taking r = 2 and s = 2%¥~1 — 1,
we apply Theorem 3, where we use the GDS obtained in Theorem 4 for

the size 28! — 1. The result is a GDS for an n x n Latin square with the
required size, i.e.,

9n <42 - 141 -k)=2(25 - 2+2—2k) = 2n — 4(log(n + 2) - 1).

O
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Figure 8: A greedy defining set constructed by the method of The-

orem 4

There is another construction for a GDS of size 2n — 4(log(n+2) —1) in an
n x n Latin square where n = 2¥ — 2, for some integer k. This construction
can be explained recursively. The method to extend one GDS to another

one is similar to the construction in Theorem 4.
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For k = 3 the GDS is

Gt O W oA =N

o - EBE - o
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Suppose we have a GDS Dj._; of size 2*! — 4(k — 1) — 4 for a Latin square

Ly_y of order 25-1 — 2,
ok=1_, 2k_2
Ly
2k 4 k=1,
#i o (-]
[*=3]
e Py
Falea]
ok=1_3 k-1
2k _o 2k—14 ok—1 2k—1_y

Figure 9: The GDS for a Latin square of order 2¢ — 2 constructed
by the GDS of L;_; and 2 x 2 blocks specified in the array.

A GDS Dy for a Latin square Ly of order 2 — 2 can be obtained by
considering the entries of Dy_; and extra entries which are shown in the
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array of Figure 9. These new entries are entries of diagonal 2 x 2 subsquares
in the opposite subrectangle of Ly_; in that arrary. These subsquares are
as follows:

2k_3 | 22 255 | 2¢—4 26141 | 25142

k.9 | 2k_3 2k_4 | 2k—5 k=149 | 2k-141

The result is our GDS Dy, as indicated in Figure 9.

The square in Figure 10 illustrates the above construction for a 14 x 14
Latin square.

1 2 3 4 5 6 9 10 11 12 13 14
2 1 4 3 6 5 10 9 12 11 14 13
3 4 [5][6]1 2 o 10 7 8 13 14 11 12
4 3 [6] 2 1 10 9 8 7 14 13 12 11
5 6 1 2 3 4 11 12 13 14 7 8 9 10
6 5 2 1 4 3 12 11 14 13 8 7 10 9
7 8 9 10 11 12 1 2 3 4 5 6
8 7 109 12 11 2 1 4 3 6 5
9 10 7 8 13 14 1 2 5 6 3 4
09 8 7 14 13 2 1 6 5 4 3
112 13 14 7 8 3 4 5 6 [9] [W0]1 2
12 11 14 13 8 7 4 3 6 5 [8] 2 1
13 14 11 12 9 105 6 3 4 1 2 7 8
4 13 12 11 10 9 6 5 4 3 2 1 8 7

Figure 10: A GDS for a 14 x 14 Latin square
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It is clear that we can apply Theorem 3 and 4 for all sizes of the form
n = 2% — 2! where k varies in positive integers and [ is arbitrary fixed
positive integer and 0 < I < k. What is important for us, this time, is not
just to obtain a GDS, but to see how fast the function g,, grows when n is
restricted to those infinite subfamilies of N. The result is that g,, grows at
most linearly for these infinite families.

Theorem 6. Suppose n = 2% — 2!, where k is an arbitrary positive integer
and t an arbitrary fized integer with 0 <t < k. Setting A = 2*, we have

gn < An—M(k—1t).

Proof. We have n = 2¢(2%¥~t — 1). Therefore it turns out by Theorem 3
and 4 that

gn S 2225t 1 — k4 t) = 24(2% — 28) — k2% + 122 = An — N2 (k —t).

a

3 Circulant Squares

Circulant Latin squares form a well-known family of Latin squares which
are commonly studied in theories of Latin squares. For critical sets of
circulant squares see [8, 9]. In this paper by the n x n circulant Latin
square we mean the square in Figure 11.

Theorem 7. There erists a greedy defining set of size [S"—:lﬁ | for the
n X n circulant square.

Proof. A GDS of size |_5"—'41sz is specified by the following positions in
the square:

(n—1)
2

The above-specified entries in the n x n circulant square intersect any de-

scent in the square. Therefore they form a GDS with [-(";fﬁj entries.
O
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2 3
n 1 2 .. ... n-l
n 1 n-2

Figure 11: The n x n circulant Latin square

In Figure 12, a grezedy defining set with 12 entries is displayed. We note that
the bound [5"—_41)—J for the greedy defining number of the n x n circulant

Latin square is quite close to |_543J which is the upper bound for the smallest
size of a critical set in the same Latin square.

w » [o][a][N]{e] = w
AmmHB-—aww
P R S O R 8
e I NS S
N0 W oA O
LI S U S SN S
I T S T T - SR

v (@] [o][][=] (5] [=] ~

Figure 12: A GDS for 8 x 8 circulant square

4 Concluding remarks

We end the paper with introducing two conjectures and two open problems.
First, in this paper we provided linear bounds for g, for some infinite
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families of positive integers in Theorems 4, 5 and 6. We believe that this
is true for the whole N. In other words we have the following conjecture.

Conjecture 1. g, = O(n).

Our second problem concerns the complexity of determining the greedy
defining number of Latin squares. We know from [10] that determining the
minimum greedy number of a coloring of a given graph is AN"P-complete
problem.

Problem 1. Is it true that determining the greedy defining number of a
Latin square is an N'P-complete problem?

Another problem concerns the smallest size of a GDS in the n x n circulant
Latin square. In Theorem 7 it is shown that the n x n circulant square

contains a GDS of size [L'#Lz J. It can be checked by hand that for n =
3, 4,5 the minimum size of a GDS for the n x n circulant square is the same

as [g%ﬁj But no proof has been obtained so far for general cases. We
make the following conjecture.

Conjecture 2. The minimum size of a GDS in the n x n circulant Latin

square is l_ﬁn—:lﬁj .

Our last problem concerns the descents in Latin squares. Proposition 1
shows that a Latin square L is descent-free if and only if

An interesting topic is to determine the minimum or maximum number of
descents in an n x n Latin square.

Problem 2. What is the minimum or mazimum number of descents in an
n x n Latin square?
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