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Abstract

We classify the minimal blocking sets of size 15 in PG(2,9). We
show that the only examples are the projective triangle and the
sporadic example arising from the secants to the unique complete
6-arc in PG(2,9). This classification was used to solve the open
problem of the existence of maximal partial spreads of size 76 in
PG(3,9). No such maximal partial spreads exist [13]. In [14], also
the non-existence of maximal partial spreads of size 75 in PG(3,9)
has been proven. So, the result presented here contributes to the
proof that the largest maximal partial spreads in PG(3, ¢ = 9) have
size g° — g + 2 = 74.

1 Introduction

A spread of PG(3,q) is a set of ¢°> + 1 lines partitioning the point set of
PG(3,q). A partial spread of PG(3,q) is a set of pairwise disjoint lines of
PG(3,q) not forming a spread. A partial spread is called mazimal when
it is not contained in a larger partial spread. Let S be a maximal partial
spread of size ¢° + 1 — §, then 4 is called the deficiency of S.

A lot of attention has been paid to the construction of maximal par-
tial spreads. Until recently, the largest known maximal partial spreads
in PG(3,q), ¢ > 3, were constructed by Bruen [6], Bruen and Thas [7],
Freeman [9] and Jungnickel [19], and were maximal partial spreads of size
@ —q+2.

This led to the conjecture that g —g+2 is the largest size for a maximal
partial spread.

However, Heden recently found a maximal partial spread in PG(3,7) of
size (g2 — g + 3 =)45 [12).

The validity of this conjecture for ¢ = 8 was recently proved by Barit,
Del Fra, Innamorati and Storme [1].

Concentrating on ¢ = 9, presently, it is known that the deficiency of a
maximal partial spread in PG(3,9) satisfies § > 6.
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So the first open case is whether there exists a maximal partial spread
with deficiency § = 6.

The standard technique to study this problem is to rely on the link
between maximal partial spreads of PG(3, ¢) and blocking sets of PG(2, q).

A plane of PG(3, q) containing one line of a maximal partial spread S
is called a rich plane of S. In the other case, this plane is called poor. A
point not lying on a line of S is called a hole of S.

Let S be a maximal partial spread of deficiency §. Then a rich plane
contains é holes and a poor plane contains g + § holes. Moreover, the holes
in a poor plane II form a blocking set in II. This means that every line of
IT contains at least one hole. For proofs, we refer to [21, Lemma 2.1]. A
trivial blocking set is a blocking set containing a line.

When S is maximal, no line consists entirely of holes. This means that
the holes in II form a non-trivial blocking set in II.

Hence, lower bounds on the cardinality of non-trivial blocking sets in
PG(2,q), and information on the structure of minimal blocking sets in
PG(2, q), yield information on maximal partial spreads in PG(3,q).

Presently, the following results are known on non-trivial blocking sets
in PG(2,q), which have led to the following results on maximal partial
spreads in PG(3,q).

Theorem 1.1 (1) (Bruen [5]) The smallest non-trivial blocking sets in
PG(2,q), q square, have cardinality ¢ + /g + 1 and are equal to Baer
subplanes PG(2,./q).

(2) (Blokhuis, Storme, Szényi [4]) In PG(2,q), q non-square, ¢ = p", h >
2,p > 5, p prime, |B| > g+ ¢*% + 1 for every non-trivial blocking set B.
(3) (Blokhuis [2]) In PG(2,q), q prime, ¢ > 2, |B| > 3(g + 1)/2 for every
non-trivial blocking set B.

(4) (Blokhuis, Storme, Szényi [4]) In PG(2,q), q square, ¢ = p*,h > 2,p >
5, p prime, every non-trivial blocking set B of cardinality |B| < g+ ¢?/3 +1
contains a Baer subplane.

(5) (Szényi [26]) In PG(2,q), ¢ = p?, p prime, every non-trivial blocking
set B of cardinality |B| < 3(g + 1)/2 contains a Baer subplane.

Theorem 1.2 (Polverino, Polverino and Storme [22, 23, 24]) The smallest
minimal blocking sets in PG(2,p%), p = p{,‘, po prime, po > 7, with exponent
e > h, are:

(1) a line,

(2) a Baer subplane of cardinality p® + p3/2 + 1, when p is a square,

(3) a set of cardinality p® + p® + 1, equivalent to

3/2

{(z,T(2), Vllz € GF(p°)} U{(z,T(2),0)llz € GF(»*) \ {0}},
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with T the trace function from GF(p®) to GF(p),
(4) a set of cardinality p® + p® + p + 1, equivalent to

{(z,2%, Dllz € GFE*)} U {(z,27, )]z € GF(p*) \ {0}}.

Corollary 1.3 Let S be a mazimal partial spread of PG(3,q) of deficiency
6. Then

(1) 6 > /g + 1 when q is square,

(2) 6 > %% + 1 when q is non-square, g =p",h > 2,p > 5, p prime,

(3) 6 = (g + 3)/2 when q is an odd prime.

Corollary 1.4 (Metsch and Storme [21]) (a) Suppose that § is an integer
and q square, ¢ = p", h > 2,p > 5, p prime, such that 0 < § < P +1.

If S is a mazimal partial spread of PG(3,q) with ¢*> + 1 — ¢ lines, then
0 = s(\/g + 1) for an integer s > 2 and the set of holes is the union of s
pairwise disjoint Baer subgeometries PG(3,./q).

(b) Suppose that § is an integer and q = p?, p prime, q > 4, such that
0<2i<qg+1.

If 8 is @ mazimal partial spread of PG(3,q) with ¢® + 1 — § lines, then

= $(/q + 1) for an integer s > 2 and the set of holes is the union of s

pairwise disjoint Baer subgeometries.

Theorem 1.5 (Metsch and Storme [21]) Let S be a mazimal partial spread
of PG(3,¢%), q non-square, ¢ = p*, h > 1, p prime, p > 7, of deficiency
§<q®>+q+1. Then 6 = ¢ + q+ 1 and the set of holes forms a projected
subgeometry PG(5,q) in PG(3,¢%).

Theorem 1.6 (Metsch and Storme [21]) Let S be a mazimal partial spread
of PG(3,¢3), ¢ = p", h > 2, h even, p prime, p > 7, of deficiency § <
@?+qg+1.

Then, (1) 6 = 0 (mod ¢*2 + 1), § > 2(¢*/% + 1), and the set of holes
is the union of pairwise disjoint subgeometries PG(3,q%/2), or (2) § =
¢° + g+ 1 and the set of holes forms a projected subgeometry PG(5,q) in
PG@3, ).

In the following theorems, for ¢ = p%, p prime, p > 17, & is the largest
integer smaller than (3p3 + 27p? — 5p + 25)/25. For p = 7,11,13, §p =
90,80 = 285 and &9 = 441 respectively. For ¢ = p3, p = phk, po prime,
po > 7, h > 1, & is defined as the largest integer smaller than (3p® +
27p? — 5p + 25)/25 and smaller than the value &’ for which p* + & is the
cardinality of the smallest non-trivial minimal blocking set in PG(2, p3) of
cardinality larger than p® + p? +p + 1.

Theorem 1.7 (Ferret and Storme [8]) Let p = pl, po > 7 a prime, h > 1
odd. The set of holes of a mazimal partial spread in PG(3,p3) of deficiency
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6 < d¢ is the union of pairwise disjoint projected subgeometries PG(5,p) of
cardinality p° + p* + p® +p* +p + 1, and so § = s(p? + p + 1) for some
integer s.

Theorem 1.8 (Ferret and Storme [8]) Let p = p}, po > 7 a prime, h > 1
even. The set of holes of a mazimal partial spread in PG(3,p®) of deficiency
8 < & is the union of pairwise disjoint subgeometries PG(3,p%/?) and
projected subgeometries PG(5,p) of cardinality p® +p*+p® +p? +p+1 and
so the deficiency 6 of a mazimal partial spread in PG(3,p®) can be written
as § = r(p¥? 4+ 1) + s(p® + p+ 1) for some integers r and s.

In PG(2,8), the following results on the smallest non-trivial blocking
sets are known.

Theorem 1.9 (Innamorati and Zuanni [17]) Let B be a non-trivial mini-
mal blocking set of size 13 in PG(2,8), then B is projectively equivalent to
the set

{(t,t+ 2 +14,1)||t € GF(8)} U {(t,t + t2 + t4,0)||t € GF(8)\ {0}}.

Theorem 1.10 (Barit, Del Fra, Innamorati and Storme [1]) There do not
ezist minimal blocking sets of size 14 in PG(2,8).

The two preceding results led to the following sharp result on the size
of the largest maximal partial spreads in PG(3, 8).

Theorem 1.11 (Barét, Del Fra, Innamorati and Storme (1]) The largest
mazimal partial spreads in PG(3,8) have size ¢> — g+ 2.

In all of the preceding results on maximal partial spreads in PG(3, g} of
deficiency 4, information on minimal blocking sets of size ¢+ 6 in PG(2,q)
was of crucial importance.

To prove the non-existence of maximal partial spreads of deficiency
d = 6 in PG(2,9) in [13], we will classify the non-trivial blocking sets of
size 15 = ¢+ 6 in PG(2,q9 = 9). We will show that next to the classical
example of the projective triangle, there is a unique second example.

The minimal blocking sets of size 15 in PG(2, ¢ = 9) are minimal block-
ing sets of size 3(¢ + 1)/2.

Regarding their classification in other planes PG(2,q), for small odd
values of g, we note that also in PG(2,7) and in PG(2,13), there is a
unique example different from the projective triangle. But in PG(2,q),
g = 11, or g an odd prime number satisfying 17 < ¢ < 37, the projective
triangles are the only examples of minimal blocking sets of size 3(g + 1)/2
(see Blokhuis, Brouwer and Wilbrink [3]).
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Regarding the classification of the largest maximal partial spreads in
PG(3,9), we note that also the non-existence of maximal partial spreads
of size 75 in PG(3,9) has been proven [14]. This altogether proves that the
largest maximal partial spreads in PG(3, ¢ = 9) have size ¢°> — ¢ + 2 = 74.

2 The known minimal blocking sets of size 15

Presently, there are two known examples of minimal blocking sets of size
15 in PG(2,9).

2.1 The projective triangle

The first example is the projective triangle [15, Lemma 13.6]. This is the
set of points projectively equivalent to the set

{(0,1, a0), (1,0, ay), (—a2,1,0)||ao, a1, a2 squares of GF(9)}.

There are exactly three non-concurrent 6-secants to the projective trian-
gle. The intersection points of two of these 6-secants are called the vertices
of the projective triangle.

A vertex lies on two 6-secants, four 2-secants and four tangents to the
projective triangle. A non-vertex point of the projective triangle lies on
one 6-secant, four 3-secants, one 2-secant and four tangents.

2.2 The sporadic blocking set

In PG(2,9), there is a unique complete 6-arc [15, p. 386]. The 15 bisecants
to this complete 6-arc form a minimal blocking set in the dual projective
plane.

So, dualizing this situation, a sporadic example of a minimal blocking
set of size 15 arises.

The characteristic properties of this sporadic example are:

1. There are exactly six 5-secants to this blocking set which form a
complete 6-arc of lines.

2. There are ten 3-secants to the blocking set. These ten 3-secants form
a dual conic.

3. And furthermore, there are fifteen 2-secants to the blocking set. These
fifteen 2-secants are the secants to a complete 6-arc in PG(2,9).
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3 The classification of the minimal blocking
sets of size 15

From now on, let B be a minimal blocking set of size 15 in PG(2,9). Since
B is non-trivial, a line L intersects B in at most 6 points. Namely, for a
fixed point p € L \ B, the nine lines through p which are different from L
all contain at least one point of B, so L contains at most 6 points of B.
Blocking sets of size 15 in PG(2,9) having at least one 6-secant are called
blocking sets of Rédei-type [25).

3.1 Introductory results

Lemma 3.1 Every point of B lies on at least four tangents to B.

Proof: Let p € B and let L be a tangent line to B at p. Consider
PG(2,9) \ L and call this AG(2,9). Then a set B\ L of size 14 remains.

A minimal blocking set in AG(2,9) contains at least 17 points [18]. This
means that we need to add at least three points to B\ L to get a blocking
set in AG(2,9).

The only external lines to B\ L in AG(2,9) are the tangents to B at p
(different from L). Since at least three points need to be added to B\ L to
obtain a blocking set in AG(2,9), there are at least three external lines to
B\ L in AG(2,9); so p lies already on at least three tangents to B, different
from L. Also L is a tangent line to B. Hence p lies on at least four tangents
to B. O

Lemma 3.2 B has at least one secant with at least four points.

Proof: Suppose there are only 1-, 2- and 3-secants. Let the number of
them be denoted by a, b and ¢ respectively. Then the following equations
must hold by standard counting arguments.

a+b+c=91
a+ 2b+3c=150
2b+ 6¢ = 210

From these equations, & = —33, which is a contradiction. O

3.2 There are at least 5- and/or 6-secants

Suppose that there are only 1-, 2-, 3- and 4-secants. Let the respective
numbers be a, b, c,d. Then the standard counting arguments imply that
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b = -=-3a+201
c = 3a-—188
d = —a+78

So a > 63.

It is impossible that there is a point lying on at least 9 tangents. Namely,
if a point p of B lies on at least 9 tangents, then the 14 other points of B lie
on the tenth line through p, which is impossible. If a point p not belonging
to B lies on 9 tangents, then the tenth line contains the 6 remaining points
of B, but this contradicts the fact that there are at most 4-secants to B.
So, the tangents form a (k,8)-arc in the dual plane of PG(2,9). Table 5.4
of [16] shows us that a (k, 8)-arc in PG(2,9) contains at most 65 elements,
so there are at most 65 tangents to B.

So, there are only the following three possibilities:

al|lblc|d
6312|1115
649 [4]14
65| 6 [7]13

Lemma 3.3 Only the case (a,b,c,d) = (65,6,7,13) occurs.

Proof: Otherwise, the number of 4-secants is at least 14. Two 4-secants
always intersect in a point of B. For assume they intersect in a point p not
in B. Then since the eight other lines through p all contain at least one
point of B, |B| > 2 x 4 + 8 = 16, which is false.

Consider a 4-secant L. The (at least) 13 other 4-secants intersect L in
a point of B, so some point p of L N B lies on at least five 4-secants, the
line L included. But-then |B| > 1+ 5 x 3 = 16 when counting the number
of points of B on the lines through p, which is false. O

Let L be a 4-secant. Let L : Z = 0 where the coordinates of a point are
(z,y,2). Let r, = (0,1,0), 72 = (1,0,0) be points of L not belonging to B.
Let r3,74,75,7¢ be the other points of S = L\ B. We identify r; with (oo},
ro with (0), and the points (1,y,0) with (y). We also identify the affine
points (z,y, 1) with (z,y). Let (a;, b;),i = 1,...,11, be the points of B\ L.

Then the following result is valid.

Lemma 3.4 At most two of the points r;,i=1,...,6, lie on a 3-secant.

Proof: Suppose the points r; and 77 lie on 3-secants to B. Let p = (0,0)
be the intersection of these 3-secants. Since 7, and 7o are the points at
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infinity of respectively the vertical and horizontal line through the origin p,
the vertical and horizontal line through the origin contain three affine points
of B, and this implies {a;||i = 1,...,11} = {b||i = 1,...,11} = GF(9)
where every non-zero element appears once and where zero appears three
times in the sequence of elements a;, resPectlvely b;.

This shows that []}2,(X —a;) = [[i, (X — b;) = X! — X3.

Let -

ora(ar, .., 011501, b1) = ) ai, - o-aq, - bjy -+ by

where the sum is over all index sets {i;,...,%} and {j1,...,7} being dis-
joint subsets of {1,...,11} of cardinality k and [, respectively.

Then HI(X - a,-) = Ht(X - b,) = Xu - .X3 implies 01,0 = 09,1 =
020 =0p,2 =0.

We now use the lacunary polynomial associated with the set {(a;, b;)||i =
1,...,11}. This is the polynomial

11
HX,Y)=[](X +a:¥ —b;) = X' +a(Y) X + b(Y)X° +

i=1

where a(Y) = 0'1,0Y - 00,1 and where b(Y) = 0‘2,0}/2 - 0’1,1Y + 00,2.

Since 01,0 = 09,1 = 020 = g2 = 0, a(Y) is identically zero and
b(Y') = —cY, for some constant c.

So, H(X,y) = (X — X)(X? — cy) for all (00) # (y) € S = L\ B since
all affine lines through such a point must contain a point of B.

If ¢ # 0, then X2 — cy cannot have a double root for a fixed value y # 0,
so these points (y) lie on two 2-secants to the affine part. On the other
hand, ¢ = 0 would imply that all lines through p and a point of S are
3-secants. If p € B, then |B| > 1+ 3 x 6, which is false. So p € B, but
then B is not minimal. a

Lemma 3.5 It is impossible that B has at most 4-secants.

Proof: The preceding lemma shows that there are at least eight 2-secants
to B since we know that there are at least four points r; lying on two 2-
secants to B. But the number b of 2-secants is b = 6 (Lemma 3.3). So we
have a contradiction. O

3.3 The computer search for a minimal blocking set of
size 15 of Rédei-type

A minimal blocking set of size 15 of Rédei-type has at least one 6-secant L.
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Using MAGMA [20], it was determined that there are two orbits of
the group PI'L(2,9) on the subsets of size 4 of a line L. This gives two
possibilities for the orbits of sets of 6 points on such a line. So there are
two possibilities for L N B. The stabilizer group of the first 6-set acts
transitively on the 6 points; the stabilizer group of the other 6-set has two
orbits on the 6-set.

Consider the affine plane PG(2,9) \ L. This shares 9 points with B.
Every secant M to B\ L intersects L in a point of B. For let p be a point
of L\ B. Since L contains already 6 points of B, there only remain 9 other
points in B, and since every one of the nine lines through p different from
L must contain at least one point of B, these nine points of B \ L must lie
one by one on the nine lines through p different from L. So a point of L\ B
does not lie on a secant to B\ L; secants to B\ L intersect L in a point of
LnB.

Suppose the 9 points of B\ L form a 9-arc, then the four points of L\ B
extend this 9-arc to a 10-arc since they only lie on tangents to B\ L. A
9-arc in PG(2,9) consists of 9 points of a conic [16, p. 386], so can only be
extended by the tenth point of this conic to a 10-arc.

So there are at least three collinear points in B\ L. The line containing
these collinear points intersects L in a point of B. Using the preceding
results on the stabilizer groups of the two possibilities for the 6-sets BN L,
there are in total three possibilities for this intersection point.

So it is possible to determine 9 points of B, without having too many
possibilities.

The computer search showed that the projective triangles are the only
examples.

Theorem 3.6 The projective triangles are the only minimal blocking sets
of size 15 in PG(2,9) that are of Rédei-type.

3.4 The computer search for a minimal blocking set
of size 15 having no 6-secants, but at least one
5-secant

First of all, MAGMA showed that the group PT'L(2,9) has two orbits on
the 5-sets of a projective line. So, for the 5-secant L to B, there are two
possibilities for L N B.

Consider now the affine part B\ L of size 10. Here, the following result
of Gécs gives crucial information on the structure of this affine part.

Theorem 3.7 (Gdcs [10]) In PG(2,q), let B be a minimal blocking set of
size ¢ + k, and suppose there is a line L intersecting B in eractly k — 1
points. Then there is a point p ¢ B such that every line joining p to a point
of L\ B contains two points of B. Hence k > (¢ +3)/2.
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Using this result, we see that there is a point p not in B such that the
five lines joining p to the points of L \ B each contain two points of B; so
these lines contain the 10 points of B\ L.

This information was used to conduct a computer search. The computer
search showed that the only example that satisfies this condition is the
sporadic example coming from the complete 6-arc in PG(2,9).

Theorem 3.8 FEvery minimal blocking set in PG(2,9) of size 15 having at
least one 5-secant, but no 6-secant, is projectively equivalent to the minimal
blocking set arising from the complete 6-arc in PG(2,9).

4 Application

As indicated in the introduction, this classification of the minimal blocking
sets of size 15 in PG(2,9) was used in [13] to prove the non-existence of
maximal partial spreads of size 76 (deficiency 6) in PG(3,9).

Theorem 4.1 There do not exist mazimal partial spreads of size 76 in
PG(3,9).

In [14], the non-existence of maximal partial spreads of size 75 in PG(3,9)
has been proven. There exist in PG(3,q = 9) maximal partial spreads of
size g2 — ¢ + 2 = 74. So the size of the largest maximal partial spreads is
now also known in PG(3,9).

Theorem 4.2 The largest mazimal partial spreads in PG(3,q = 9) have
size q® —q+2="T74.
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