Stability Number and f-factor in $K_{1,n}$ -free Graphs *

Jiansheng Cai^a Guizhen Liu^b †

^a School of Mathematics and Information Sciences
Weifang University, Weifang 261061, P.R.China.

^b School of Mathematics and System Sciences
Shandong University, Jinan 250100, P. R. China.

Abstract

Let G be a graph with vertex set V(G) and let f be a nonnegative integer-valued function defined on V(G). A spanning subgraph F of G is called an f-factor if $d_F(x) = f(x)$ for every $x \in V(F)$. In this paper we present some sufficient conditions for the existence of f-factors and connected (f-2,f)-factors in $K_{1,n}$ -free graphs. The conditions involve the minimum degree, the stability number and the connectivity of graph G.

Key words: f-factor; connected (f-2, f)-factor; $K_{1,n}$ -free graph AMS(2000) subject classification: 05C70

1 Introduction

The graphs considered in this paper will be simple graphs. Let G be a graph with vertex set V(G) and edge set E(G). Denote by $d_G(x)$ the degree of a vertex x in G. Let g and f be two integer-valued functions defined on V(G) such that $0 \le g(x) \le f(x)$ for all $x \in V(G)$. Then a (g,f)-factor of G is a spanning subgraph F of G satisfying $g(x) \le d_F(x) \le f(x)$ for all $x \in V(G)$. If g(x) = f(x) for all $x \in V(G)$, then a (g,f)-factor is called an f-factor. Let g(x) = g(x) and g(x) = g(x) for all g(x) = g(x)

^{*}This work is supported by the National Natural Science Foundation(60673047)

[†]The corresponding author: Guizhen Liu, mailaddress: School of Mathematics and System Sciences, Shandong University, Jinan 250100, P.R.China. E-mail: gzliu@sdu.edu.cn

If a=b=k, then an [a,b]-factor is called a k-factor. Denote by $\alpha(G)$ the stability number of a graph G, by $\delta(G)$ and $\Delta(G)$ the minimum and maximum degree of a vertex in G, respectively. For $A\subseteq V(G)$, denote by $N_G(A)$ the set of neighbors in G of vertices in A and denote by $\kappa(G)$ the connectivity of graph G. If A and B are disjoint subsets of V(G), then $e_G(A,B)$ denotes the number of edges that join a vertex in A and a vertex in B. If $A=\{x\}$, then $e_G(x,B)$ denotes the number of edges that join x and a vertex in B. The number of connected components of G is denoted by $\omega(G)$. Let $S,T\subseteq V(G)$ and $S\cap T=\emptyset$. If C is a component of $G-(S\cup T)$ such that $\sum_{x\in V(G)} f(x)+e_G(C,T)\equiv 1\pmod{2}$, then we say that C is

an odd component of $G-(S\bigcup T)$ and we denote by h(S,T) the number of odd components of $G-(S\bigcup T)$. For a subset S of V(G), we denote by G-S the subgraph obtained from G by deleting the vertices in S together with edges incident with vertices in S. In the following we write $f(W)=\sum_{x\in W}f(x)$ and $f(\emptyset)=0$ for any $W\subseteq V(G)$. In particular, we set $d_{G-S}(T)=\sum_{x\in T}d_{G-S}(x)$ for $S,T\subseteq V(G)$ and $S\cap T=\emptyset$. We also set $N_G[A]=N_G(A)\bigcup A$. Notations and definitions not given here can be found in [1].

Many authors have investigated (g, f)-factors and f-factors [4,6]. There is a well-known necessary and sufficient condition for a graph G to have an f-factor which was given by Tutte.

Theorem A. [6] (1) A graph G has an f-factor if and only if

$$\delta(S,T) = f(S) + d_{G-S}(T) - f(T) - h(S,T) \ge 0$$

for any disjoint subsets S and T of V(G), where h(S,T) denotes the number of odd components C of $G - (S \cup T)$.

(2)
$$\delta(S,T) \equiv f(V(G)) \pmod{2}$$
.

Mekkia Kouider and Zbigniew Lonc investigated the relationship between stability number and the existence of an [a,b]-factor. In the following we always assume that a and b are integers and $a \le b$.

Theorem B. [3] Let $b \ge a+1$ and let G be a graph with the minimum degree δ , if

$$\alpha(G) \leq \begin{cases} \frac{4b(\delta - a + 1)}{(a + 1)^2} & \text{for a odd,} \\ \frac{4b(\delta - a + 1)}{a(a + 2)} & \text{for a even,} \end{cases}$$

Then G has an [a,b]-factor.

Studying connected factors was initiated by *M.Kano* [3]. This topic is related to the Hamiltonian cycle problem because a connected 2-factor is obviously a Hamiltonian cycle. The following result is also essential to the proof of our main theorem.

Theorem C. [2] Let G be a simple graph with $|V(G)| \ge 3$, if $\kappa(G) \ge \alpha(G)$, then G has a Hamiltonian cycle. In particular, G has a 2-factor.

In this paper, we will give a sufficient condition for the existence of an f-factor in a $K_{1,n}$ -free graph in terms of its stability number and minimum degree δ , where $a \leq f(x) \leq b$ for every vertex $x \in V(G)$. The following theorems are our main results.

Theorem 1. Let G be a connected $K_{1,n}$ -free graph and let f be a nonnegative integer-valued function defined on V(G) such that $1 \le n-1 \le a \le f(x) \le b$ for every $x \in V(G)$. If f(V(G)) is even, $\delta(G) \ge b+n-1$, and $\alpha(G) \le \frac{4a(\delta-b-n+1)}{(b+1)^2(n-1)}$, then G has an f-factor.

This Theorem can be regarded as a partial generalization of Theorem 1 of [5] in $K_{1,n}$ -free graphs.

Theorem 2. Let G be a connected $K_{1,n}$ -free graph with $|V(G)| \ge 3$ and let f be a nonnegative integer-valued function defined on V(G) such that $1 \le n-1 \le a \le f(x)-2 \le b$ for every $x \in V(G)$. If f(V(G)) is even, $\delta(G) \ge b+n-1$, and $\alpha(G) \le \min\{\kappa(G), \frac{4a(\delta-b-n+1)}{(b+1)^2(n-1)}\}$, then G has a connected (f-2, f)-factor.

2 Proof of Theorem 1

Let G be a graph satisfying the hypothesis of Theorem 1, we prove the theorem by contradiction. Suppose that G has no f-factors. Then $\delta(S,T)<0$ for some disjoint subsets S and T of V(G) by Theorem A. We take S and T such that $\delta(S,T)$ is minimum and $|S\bigcup T|$ is as large as possible. Then we know that $\delta(S,T)<0$. At first, we prove the following lemma.

Lemma 1. Choose S and T as the above. Then the order of each component C of $G - (S \cup T)$ is greater than 1.

Proof. We suppose that there exists a component C satisfying |C| = 1. Let $V(C) = \{v\}$. If $e_G(v,T) > f(v)$, then set $S' = S \bigcup \{v\}$. We obtain

$$\delta(S',T) = f(S') + d_{G-S'}(T) - f(T) - h(S',T)
\leq f(S) + f(v) + d_{G-S}(T) - e_G(v,T) - f(T) - (h(S,T)-1)
= \delta(S,T) + f(v) + 1 - e_G(v,T)
\leq \delta(S,T).$$

This is a contradiction to the maximality of $|S \bigcup T|$. If $e_G(v,T) \le f(v)$, then set $T' = T \bigcup \{v\}$. We get

$$\delta(S, T') = f(S) + d_{G-S}(T') - f(T') - h(S, T')$$

$$\leq f(S) + d_{G-S}(T) + e_G(v, T) - f(T) - f(v) - (h(S, T) - 1)$$

$$= \delta(S, T) + e_G(v, T) - f(v) + 1$$

$$\leq \delta(S, T) + 1.$$

Since $\delta(S,T') \equiv \delta(S,T) \pmod{2}$, we have $\delta(S,T') \leq \delta(S,T)$. Again this is a contradiction to the maximality of $|S \cup T|$. Therefore, the order of each component C of $G - (S \cup T)$ is greater than 1.

For convenience, we set $U = G - (S \cup T)$ and denote by $\omega(U)$ the number of components of $G - (S \cup T)$

Since $\delta(S,T)=f(S)+d_{G-S}(T)-f(T)-h(S,T)\geq a\mid S\mid -b\mid T\mid +d_{G-S}(T)-h(S,T)$, to prove Theorem 1, we need only to prove that $a\mid S\mid -b\mid T\mid +d_{G-S}(T)-h(S,T)\geq 0$. Then we get a contradiction.

For $A \subseteq T$, let $\gamma(A)$ denote the number of components C of $G - (S \bigcup T)$ satisfying $e_G(C, A) > 0$. If $A = \{x\}$, denote $\gamma(A)$ by $\gamma(x)$.

First we claim that $T \neq \emptyset$. Otherwise $T = \emptyset$. If $T = S = \emptyset$, since G is connected and $\delta(S,T) < 0$, we know that h(S,T) = 1. Therefore f(V(G)) is odd according to Theorem A. This contradicts the assumption that f(V(G)) is even. If $S \neq \emptyset$, since G is a connected $K_{1,n}$ -free graph, $h(S,T) \leq (n-1) \mid S \mid$. Then $\delta(S,T) \geq a \mid S \mid -h(S,T) \geq 0$, which is a contradiction to our assumption that G has no f-factor. Therefore $T \neq \emptyset$. We take $x_1 \in T$ such that x_1 is the vertex with the least degree in T. Let $N_1 = N_G[x_1] \cap T$ and $T_1 = T$. For $i \geq 2$, if $T - \bigcup_{j < i} N_j \neq \emptyset$, let

 $T_i = T - \bigcup_{j < i} N_j$. Then take $x_i \in T_i$ such that x_i is the vertex with the least degree in T_i , and set $N_i = N_G[x_i] \cap T_i$. We continue this procedures until

we reach the situation in which $T_i = \emptyset$ for some i, say for i = k + 1. Then from the above definition we know that x_1, x_2, \dots, x_k is an independent set of G. Since $T \neq \emptyset$, we have $k \geq 1$.

At first we prove that the following two claims hold.

Claim 1. $d_{G-S}(x) \leq b+n-1$ for any $x \in T$.

For any $x_0 \in T$, let $T' = T - \{x_0\}$. From the minimum of $\delta(S,T)$ we can see that $\delta(S,T') \geq \delta(S,T)$. Since G is $K_{1,n}$ -free graph, x_0 connects at most n-1 components of $G-(S \bigcup T)$. Then $h(S,T') \geq h(S,T)-(n-1)$. Therefore

$$\begin{array}{ll} \delta(S,T) & \leq & \delta(S,T') = f(S) - f(T') + d_{G-S}(T') - h(S,T') \\ & \leq & f(S) - f(T) + d_{G-S}(T) - d_{G-S}(x_0) + f(x_0) - h(S,T) + n - 1 \\ & = & \delta(S,T) - d_{G-S}(x_0) + f(x_0) + n - 1. \end{array}$$

Thus

$$d_{G-S}(x_0) \leq b+n-1.$$

Claim 2.
$$|S| \ge \frac{1}{n-1} \sum_{i=1}^{k} e(x_i, S) + \frac{1}{a} (\omega(U) - \gamma(T)).$$

Let $l = \omega(U) - \gamma(T)$, then there exist l components C_1, C_2, \dots, C_l of $G - (S \cup T)$ such that $e_G(C_i, T) = 0$ $(1 \le i \le l)$.

If $S = \emptyset$, since G is connected, l = 0. Then the claim clearly holds. If $S \neq \emptyset$, since G is connected, $e_G(C_j, S) > 0$, $(1 \leq j \leq l)$. Therefore for any j, we can choose a vertex $z_j \in C_j$ such that $e_G(z_j, S) > 0$. Let $Z = \{x_1, x_2 \cdots, x_k, z_1, z_2, \cdots, z_l\}$. Since Z is an independent set of G and G is a $K_{1,n}$ -free graph, For any vertex $v \in S$ there exist at most (n-1) vertices in Z adjacent to v. Thus,

$$(n-1) \mid S \mid \geq e(Z,S) = \sum_{i=1}^{k} e(x_i,S) + \sum_{j=1}^{l} e(z_j,S) \geq \sum_{i=1}^{k} e(x_i,S) + l,$$

and $a \ge n - 1$, we have

$$|S| \ge \frac{1}{n-1} \sum_{i=1}^{k} e(x_i, S) + \frac{1}{a} (\omega(U) - \gamma(T)).$$

Let $|N_i| = n_i$. From the definition of N_i , we can get the following properties.

$$\alpha(G[T]) \ge k,$$

$$|T| = \sum_{1 \le i \le k} n_i,$$
(1)

$$\sum_{1 \leq i \leq k} \left(\sum_{x \in N_i} d_{T_i}(x) \right) \geq \sum_{1 \leq i \leq k} (n_i^2 - n_i). \tag{2}$$

It is easy to see that

$$d_{G-S}(T) \ge \sum_{1 \le i \le k} (n_i^2 - n_i) + \sum_{1 \le i < j \le k} e_G(N_i, N_j) + e_G(T, U).$$
 (3)

Let $\kappa(G-S)=t$, we have

$$e_G(N_i, \bigcup_{j \neq i} N_j) + e_G(N_i, U) \ge t$$

for each $N_i(1 \le i \le k)$. Summing up these inequalities for all $i(1 \le i \le k)$, we have

$$\sum_{1 \le i \le k} (e_G(N_i, \bigcup_{j \ne i} N_j) + e_G(N_i, U)) = 2 \sum_{1 \le i < j \le k} e_G(N_i, N_j) + e_G(T, U) \ge kt.$$
(4)

By the results of (3) and (4), the following inequality can be obtained.

$$d_{G-S}(T) \ge \sum_{1 \le i \le k} (n_i(n_i - 1)) + (kt + e_G(T, U))/2.$$
 (5)

From (1), (5) and obvious inequalities $n_i(n_i - b - 1) \ge -(b+1)^2/4$ and $h(S,T) \le \omega(U)$, we get

$$\begin{array}{ll} 0 > \delta(S,T) & \geq & a \mid S \mid +d_{G-S}(T) - b \mid T \mid -h(S,T) \\ \\ \geq & a \mid S \mid + \sum_{1 \leq i \leq k} (n_i(n_i - b - 1)) + (kt + e_G(T,U))/2 - \omega(U) \\ \\ > & a \mid S \mid -(b+1)^2 k/4 + (kt + e_G(T,U))/2 - \omega(U). \end{array}$$

We now estimate $e_G(T,U)$. First note that $T \neq \emptyset$. This implies that $e_G(C_i,T) \geq t$ for all components C_i of U. Moreover, by Lemma 1, for C_i that satisfy the condition $C_i \subseteq N_G(\{x_1,x_2,\cdots,x_k\})$, we have $e_G(C_i,T) \geq 1$. Let us denote by c the number of C_i that satisfy the condition $C_i \subseteq N_G(\{x_1,x_2,\cdots,x_k\})$ and by d the number of C_j that satisfy the condition $C_i \not\subseteq N_G(\{x_1,x_2,\cdots,x_k\})$, then we have

$$e_G(T,U) \geq 2c + td$$
.

So

$$\omega(U) = c + d \ge \gamma(T),\tag{6}$$

$$\alpha(G) \ge k + d. \tag{7}$$

Since $e(x_i, S) = d_G(x_i) - d_{G-S}(x_i)$, thus according to Claim 1,

$$e(x_i, S) \ge \delta(G) - b - n + 1. \tag{8}$$

From (6), (7), (8) and Claim 2, we get

$$0 > \delta(S,T) \geq a |S| - (b+1)^2 k/4 + (kt + e_G(T,U))/2 - \omega(U)$$

$$\geq \frac{a}{n-1} \sum_{i=1}^k e(x_i,S) - (b+1)^2 k/4 - \gamma(T) + (k+d)t/2 + c$$

$$\geq \frac{a}{n-1} \sum_{i=1}^k e(x_i,S) - (b+1)^2 k/4 - d + (k+d)t/2$$

$$\geq \frac{a}{n-1} \sum_{i=1}^k e(x_i,S) - (b+1)^2 (k+d)/4 + (k+d)t/2.$$

Since $\delta(S,T)<0$, $(k+d)t/2-(b+1)^2(k+d)/4$ is negative. We replace (k+d) by $\frac{4a(\delta-b-n+1)}{(b+1)^2(n-1)}(\geq\alpha(G))$, to get

$$0 > \delta(S,T) \geq \frac{ak(\delta-b-n+1)}{n-1} - \frac{a(\delta-b-n+1)}{n-1} + \frac{2a(\delta-b-n+1)}{(b+1)^2(n-1)}t \geq 0.$$

Thus we get a contradiction and complete the proof.

In Theorem 1 if a = b, then we obtain the following result.

Corollary 1. Let G be a connected $K_{1,n}$ -free graph and let a be a nonnegative integer such that $1 \leq n-1 \leq a$. If $a \mid V(G) \mid$ is even, $\delta(G) \geq a+n-1$ and $\alpha(G) \leq \frac{4a(\delta-a-n+1)}{(a+1)^2(n-1)}$, then G has an a-factor.

3 Proof of Theorem 2

By our assumptions $\alpha(G) \leq \min\{\kappa(G), \frac{4a(\delta-b-n+1)}{(b+1)^2(n-1)}\}$, then according to Theorem 1 and Theorem C, we know that graph G has an (f-2)-factor F_1 as well as a connected 2-factor F_2 . Clearly, the union of F_1 and F_2 is a connected (f-2,f)-factor. So the proof of Theorem 2 is completed.

Remark. The condition that f(V(G)) is even in Theorem 1 is necessary. If f(V(G)) is odd, then when $S=\emptyset$ and $T=\emptyset$, we have $\delta(S,T)=-h(\emptyset,\emptyset)=-1$. Thus graph G has no f-factors. Similarly, the condition that f(V(G)) is even is also necessary in Theorem 2. But we do not know whether the condition $\alpha(G) \leq \frac{4a(\delta-b-n+1)}{(b+1)^2(n-1)}$ can be improved.

We conjecture that for general graph the result similar to Theorem 1 also holds, so we made the following conjecture.

Conjecture Let G be a connected graph and let f be a nonnegative integer-valued function defined on V(G) such that $a \leq f(x) \leq b$ for every $x \in V(G)$. If $\delta(G) \geq b$, f(V(G)) is even and $\alpha(G) \leq \frac{4a(\delta-b)}{(b+1)^2}$, then G has an f-factor.

Acknowledgments. The authors are indebted to anonymous referee for his(her) valuable comments and suggestions.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London (1976).
- [2] V. Chva'tal and P. Erdos, A note on Hamiltonian circuits, *Discrete Math.* 2(1972), 111-113.
- [3] Mekkia Kouider and Zbigniew Lonc, Stability Number and [a, b]-factors in Graphs, J. Graph Theory, 4(2004), 254-264.
- [4] G. Liu, (g,f)-factors and factorizations in graphs, Acta Math. Sinica 37(1994), 230-237.

- [5] T. Nishimura, Independence number, connectivity, and r-factors, J. Graph Theory 13(1989), 63-69.
- [6] W. T. Tutte, The factor of graphs, Can. T. Math 4(1952), 314-328.