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Abstract: For two given graphs G; and G5, the Ramsey num-
ber R(G1, G2) is the smallest integer n such that for any graph
G of order n, either G contains G; or the complement of G
contains Gs. Let P, denote a path of order n and W,,, a wheel
of order m+ 1. Chen et al. determined all values of R(P,, Wp,)
for n > m — 1. In this paper, we establish the best possible
upper bound and determine some exact values for R(P,, W,,)
withn <m -2,
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1. Introduction

All graphs considered in this paper are finite simnple graph without loops.
For two given graphs G, and G5, the Ramsey number R(G1,Gz) is the
smallest integer n such that for any graph G of order n, either G contains
G, or G contains G, where G is the complement of G. For § C V(G),
G|S] denotes the subgraph induced by S in G. The neighborhood N(v) of a
vertex v is the set of vertices adjacent to v in G and N[v] = N(v)U{v}. The
minimum degree, components number and connectivity of G are denoted by
0(G), w(G) and x(G), respectively. C,, and P, denote a cycle and a path of
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order n, respectively. A path or cycle of G is hamiltonian if it includes all
vertices of G. A complete graph of order n is denoted by K,,. A complete
bipartite graph of order m+n is denoted by Kyn,n. A Wheel W, = {z}+C,
is a graph of n+ 1 vertices, namely, a vertex z, called the hub of the wheel,
adjacent to all vertices of C,,. mK, denotes the union of m vertex-disjoint
copies of K,,. The orders of the longest cycle and path of G are denoted
by ¢(G) and p(G), respectively. We use I} to denote an independent set
of order k. A graph on n vertices is pancyclic if it contains cycles of every
length [,3 <1l < n.

In [4], Faudree et al. considered the Ramsey numbers for all path-cycle
pairs and obtained the following.

Theorem 1 (Faudree et al. [4]). R(Pn,Crm) =m+ |n/2] — 1 for even m
and 2 < n < m. R(P,,Cn) =maz{m+ |n/2] —1,2n — 1} for odd m and
2<n<m.

In 5], Surahmat et al. obtained the Ramsey numbers of a path versus
W4 or W5.

Theorem 2 (Surahmat et al. [5]). R(P,,W;) =3n—2 for n > 4 and
R(P,,W3)=2n—1for n > 3.

In [2], Chen et al. obtained the Ramsey numbers R(P,,W,,) for n >
m—1.

Theorem 3 (Chen et al. [2]). R(Pn,Wpn) = 3n — 2 for odd m and
n>m-—12>2and R(P,,W,)=2n—1forevenmandn>m—12>3.

In this paper, we consider the Ramsey numbers R(P,,, W,,) for4 <n <
m — 2. In the following, we always let m = k(n — 1) + r, where k > 1 and
0 < r £ n -2 are integers.

The main results of this paper are the following.
Theorem 4. If m is odd and n+2 < m < 2n—1, then R(P,, W,,) = 3n—2.

Theorem 5. Let n > 4. If m is even and n < m — 2 or m is odd and
n £ (m —1)/2, then R(P,,W,,) < n+m — u, where p =1 if r = 1 and
L = 2 otherwise.

The proofs of Theorems 4 and 5 will be given in Section 3. We now use
Theorem 5 to determine some values of the Ramsey numbers R(P,, W,,)
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fora<n<m-2.

If m is even and m/2 < n < m — 2, then n+2 < m < 2n which implies
T # 1. Thus by Theorem 5 we have R(P,,W,,) < n+m — 2. On the other
hand, the graph G = K,,_; U 2K,,/2—1 shows R(P,, W) > n+m — 2.
Thus we have the following.

Corollary 1. If m is even and m/2 < n < m — 2, then R(P,,W,,,) =
n+m-—2.

By Theorems 3 and 4, and Corollary 1, the Ramsey numbers R(P,,, W,,)
for n > [m/2] are determined.

If n < [m/2] —1 and r = 0, then k > 2. Noting that the graph
G =(k-1)K,_1U2K,_2 shows R(P,,Wy,,) > n+m — 2, by Theorem 5
we have the following.

Corollary 2. If n < [m/2] — 1 and r = 0, then R(P,,,Wy,) =n+m —2.

Let G = (k+ 1)Kp—1. If r = 1 or 2, then it is easy to see that
|G] = n+m —r — 1 and neither G contains a P, nor G contains a W,,.
This shows that R(P,,W,,) > n+ m — r. Thus by Theorem 5 we obtain
the following.

Corollary 3. If n < [m/2] —1and r = 1,2, then R(P,,Wp,) =n+m—r.

Ifr >3and k+r >n—1, thensincen+m-3 = (k+1)(n—1)+(r—2),
we have (k+ 1) + (r — 2) > n — 2 which implies there are two non-negative
integers k; and k; such that k1 +k2 = k+2 and n+m -3 = ky(n—1)+kz(n—
2). Thus, the graph G = k1 Kn—1 Uk2 K2 shows R(Pp,Wy,) > n+m—2.
"Thus by Theorem 5 we get the following.

Corollary 4. If n < [m/2]—1,r > 3and k+r > n—1, then R(Pp, Wy,) =
n+m-—2.

Combining Theorems 3, 4 and 5, and Corollary 3, we have the following.

Theorem 6. Let m > 3be odd. If n > (m+1)/2, then R(P,, Wy,) = 3n—2
and if n < (m —1)/2, then R(P,,Wr) < n+m—1 and R(P,,Wy,) =
n+m—1if and only if r = 1.

Combining Theorems 3 and 5, and Corollaries 1 and 3, we have the
following.
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Theorem 7. Let m > 4 be even. If n > m — 1, then R(P,,,Wy,) =2n -1,
ifm/2 <n<m-2, then R(P,,W,,) =n+m—2andifn <m/2-1, then
R(Pp,Wp)<n+m—1and R(P,,Wp,)=n+m~-1ifand only if r = 1.

2. Lemmas

Lemma 1 (Dirac [3]). Let G be a 2-connected graph of order n > 3 with
d(G) = 6. Then ¢(G) > min{24,n}.

Lemma 2 (Dirac [3]). Let G be a connected graph of order n > 3 with
d(G) = 4. Then p(G) > min{26 + 1,n}.

Lemma 3 (Bondy [1]). Let G be a graph of order n. If §(G) = n/2, then
either G is pancyclic or n is even and G = K, /3 n/2-

Lemma 4 (Chen et al. [2]). Let G be a graph with |G| > R(P,,Cn) + 1.
If there is a vertex v € V(G) such that [N[v]| < |G| — R(P,,Cr) and G
contains no P,, then G contains a Wi,.

Lemma 5. Let n > 4 be even and G a connected graph of order n* > n. If
p(G) £n—1and §(G) 2 n/2—-1,then G = K1 +(n* —1)/(n/2-1)K, 2,
or G = Go + I,-_, /241, Where Gy is a graph of order n/2 - 1.

Proof. If G is 2-connected, then by Lemma 1, ¢(G) 2 n ~ 2. Since p(G) <
n —1, we have ¢(G) = n—2. And if C = Cp_5, then G — V(C) contains no
edges. Thus since §(G) > n/2 — 1, we have G = Go + I,- _p /241, Where Go
is a graph of order n/2 — 1. If k(G) = 1, we let vp be a cut-vertex of G and
H any component of G —vy. Since §(G) > n/2—1, we have 6(H) > n/2-2
and then |H| 2 n/2 — 1. Let P = vgv; ---v; be a longest path such that
P —{v} C H. Since §(G) > n/2—1 and p(G) < n—1, we have |P| =n/2.
Thus we have N[y = P, which implies N[v;] = P for all 1 < i <[ and
hence H = Kp/2_1. Therefore, G = Ky + (n* —=1)/(n/2 = 1)Kp/2-1. |

Lemma 6. Let n; (1 <4 < k) be positive integers, A = {n; |1 < i < k}
and (A;, A;) be a partition of A such that |a; — az| is as small as possible,
where a; = Zn.-GAg n; and | = 1,2. If n; < m, then |a; — az] < m and the
equality holds if and only if ny = - = ny = m and k is odd.

Proof. If k = 1, then the conclusion holds trivially. If £ > 2, we assume
ng <n;foralll <i< k-1 If ngp =m, then |a; — az] = 0 if k is even
and |a; —ag| = m if k is odd, and hence the conclusion holds. Assume now
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nr < m. Let B = A — {nx} and (B1, B;) be a partition of B such that
|by — bo| is as small as possible, where b; = Zn .cp, i and I = 1,2. Assume
b1 2 be. By induction hypothesis, we have b; — by < m. Now, set C; = By,
Cy=ByU{n,}and ¢ = zn.-ec. ni, { = 1,2. Since 1 < ng < m, it is easy
to see that |c; — ca| = |(b1 — b2) — ng| < |m — ng| < m. Thus, by the choice
of (A1, Az), we can see the conclusion holds. |

3. Proofs of Theorems

Proof of Theorem 4. Let G be a graph of order 3n — 2. Suppose to the
contrary neither G contains a P, nor G contains a W,,,. If m < [3n/2], then
by Theorem 1, R(P,,C,,) = 2n—1. By Lemma 4 we have §(G) > n—1. By
Lemma 2, we have p(G) > n, a contradiction. If [3n/2]+1<m <2n -1,
then by Theorem 1, R(P,,Cp,) = m+|n/2] - 1. Since 3n -2 >m+n -1,
by Lemma 4 we have §(G) > n/2. Let Hy,...,H,; be the components of
G with |Hy| > |Ha| > --- > |H,). If |H1| > n, then by Lemma 2 we have
p(H1) > n, a contradiction. Thus we have |H,| < n—1. Since |G| = 3n—2,
we have t > 4 and |H;| < n —2. Let Go = G — H;. It is easy to see that
|Go| = 3n — 2 — |H,| and §(Gp) = |Go| — (n — 1) = 2n — 1 — |H,|. Since
|H:| < n—2, we have 6(Gyp) > |Go|/2. By Lemma 3, Gy is pancyclic. Since
|Gol > m + 1, Gy contains a C,, and hence G contains a W,,, with a hub
z € V(H,), also a contradiction. Thus we have R(P,,W,,) <3n—2. On
the other hand, the graph 3K,_, shows R(P,,Wp,) = 3n ~ 2 and hence
R(P,,W,)=3n-2. |

Proof of Theorem 5. Let G be a graph of order n+m — u, where p = 1 if
r =1 and g = 2 otherwise. Suppose H,, Ha, ..., H; are the components of
G with |H,| > |Hz| > -+ > |H|. Obviously, |G| = R(P,,Cn)+1. Suppose
to the contrary neither G contains a P, nor G contains a W,,. By Lemma
4, we have |[N[v]| > |G| — R(P,,Cr) + 1 for any vertex v € V(G), which
implies 6(G) > |G| — R(Py,Cm).- By Theorem 1, 6(G) > [n/2] +1—u

Claim 1. |H,| 2 n.

Proof. If |H,| £ n —1, then sincem > n+2, we have ¢t > 3. If r = 1, then
since |G| =n+m—-1=(k+1)(n—1)+1, we have |H;| <n—-2. Ifr#1,
then since |G| = n+m—~2 = (k+1)(n—1)+(r—1), we have |H;| < n—2. Set
G’ = G - H,. Obviously, |G’| > m and §(G") > |G’| — |H,|. If m is odd and
n < (m —1)/2, then 6(G’) > |G’|/2. By Lemma 3, G’ is pancyclic. Since
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|G’| > m, G’ contains a Cy, and hence G contains a W,, a contradiction.
Now, assume m be even and n < m — 2. Note that |H;| < n -2, |G| =
m+n—p—|Hl| and §(G') > |G'| — [Hi| = m+n - p— |H| - |Hi|.
If k > 2or (k=1 and |Hy| < m/2—1), then we have §(G") > |G'|/2,
which implies G’ contains a Cy, by Lemma 3 and hence G contains a Wi,
a contradiction. Hence we may assume k£ = 1 and |H,| > m/2. If t = 3,
then since |G| > n+ m — 2 and |H;| < n — 1, we have |Hz| = m/2. Thus,
G[V(H,) U V(H;)] contains a complete bipartite graph between V(H,)
and V(H;) and therefore contains a Cy,. So G contains a W,,, with the
hub z € V(H,), a contradiction. If ¢ > 4, then [H;| < (n + m — u)/4. Let
UIZ3V(H;) = U. Then we have |U| > (n+m—p)—[(n+m—p)/4+(n-1)] =
(3m—n+4-3u)/4 > (3m—n—2)/4. Since m > n+2, we have |U| > m/2.
Thus, G — V(H;) contains a complete bipartite graph between V(H;) and
U, which implies G — V(H,) contains a Cy,. So G contains a W,, with the
hub z € V(H,), also a contradiction. |

If p=1or (u =2 and n is odd), then é(H;) > §(G) > (n —1)/2. Thus by
Lemma 2 and Claim 1, we have p(H;) > n, a contradiction. Hence we may
assume n is even and p = 2. In this case, §(G) > n/2 — 1. Let |H;| = n;
for 1 <i <t. Define

A={H;|n; 2nand H;=K; +(n; —1)/(n/2 - I)Kn/g_l} and
B = {H; | n; 2n>6and H; = G;+I,_n/241, Where |G| =n/2-1}.

Since G contains no P,, by Lemma 5 and Claim 1 we have AU B # 0
and if n; > n, then H; € Aor H; € B. If H; € A, we let H; = {v;} +
(n; = 1)/(n/2 = 1)K, /51 and H;; the components of H; — {v;}, where
1<j<(n-1)/(n/2~1). If H; € B, we let H; = G; + I(i), where
I(i) = Im—n/2+l-

Now, let H; € AU B be a given component of G, u € H;; if H; € A
and u € I(Z) if H; € B. Set Gy = Unjgn_lHj, Gs = H; UGy — N[u] and
GL = Unjzn and j;ﬁHj-

Claim 2. If H; € A, then p(Gs) = |Gs|. Furthermore, if |AU B| = 1, then
G contains a Cy,.

Proof. Let Gy = Go U (Uj»4Hij). If Gy = 0, then obviously p(Gs) =
[Gs]. If |JAU B| = 1, then |G| = 3n/2 — 2 which implies m = n/2, a
contradiction. Hence we may assume Gps # 0. By Lemma 6, there are
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"wr» Gy such that Gy = Gy, UG, andO < IG | - 1G%| < n—1. Choose
Vu C V(G ) such that [Vas| = |Gyl " | and |E(G[Va])| is as large
as possible. Set F = G[V(H;2) U V( ,3) U Vum). Let v € Hip and w € H;3.
If Vor # 0 and |Vag| < n — 3, then since |Hjp| = |Hiz| = n/2 — 1, and
V(Hiz), V(H;3) and Vi induce a complete 3-partite graph in G, we can
see

F contains a (v, w)-path P, for 2 <[ < |F|. (1)

If [Vag| =1 — 2, we let € Vig. If [Var| = n — 1 and |E(G[Va])| = 1, then
since n > 4, there is some vertex z € Vas such that |E(G[Vy — {z}])| > 1.
Thus, since Var — {z} # 0, we can see

F — {z} contains a (v, w)-path P, for 2 <! < |F| - 1. (2)

We now show that p(Gs) = |Gs|. If Vas = 0, then it is easy to see that
both Gps and F are hamiltonian, which implies p(Gs) = |Gg|. If V)y # 0
and |Vjy| < n — 3, then since Gy — Vy = @ or Gps — Vi is hamiltonian,
by (1) we have p(Gs) = |Gs|- If [Vm| = n—2or |[Vy| = n—1 and
|E(G[VMm])! > 1, then since Gps — {Vamr — {z}} is hamiltonian, by (2) we
have p(Gs) = |Gs|. If |Vm| = n — 1 and |E(G[Vx])| = 0, then we have
GMm =Gy = Kn_y and Gs = 2K, /_1 U Ky,_;. Obviously, p(Gs) = |Gs|-

Let |JAU B| = 1. We shall show that G5 contains a Cp,. If m is odd,
then since |G| =m +n — 2 and n < (m —1)/2, we have |Gp| = 3n/2+ 1
and hence

IGm — V| 2 n/2+2. ©)

Since n > 4, we have |Gs| = |G| - |N[u}| =n+m-2-n/2=m+n/2-2 >
m. If Vjy = 0, then since F has a hamiltonian (v, w)-path and G has
a hamiltonian path, we can choose a (v,w)-path P, in F and a path P
in Gy such that |Py| + |P;| = m. Obviously, P, and P, form a C,, in
Gs. If Vi # 0 and |Viy| < n — 3, then by (1), a (v, w)-path of order m
and the edge vw gives a Cr, in Gs if Gy — Vay = 0, and a (v, w)-path
of order |F| — (n/2 — 2) together with a hamiltonian path in G — Vi
forma C,, inGsif Gayy — Vg #0. If [Vy| =n —2 or VM| =n—1 and
|E(G[Vm])| = 1, then since Gps — {Var — {z}} is hamiltonian, analogously,
we can obtain a Cr, in G5 by (2). If [Viy| = n — 1 and |E(G[Vu])| = 0,
then Gs = 2K, /31U Kp—1. By (3), m is even. Since |AU B| = 1, we have
n > 6 for otherwise n > m — 1, which contradicts n < m — 2. In this case,
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it is easy to see that Gs contains a Cy,. 1

Claim 3. If H; € B, then p(Gs) > |Gs| — (n/2 — 2). Furthermore, if
|AU B| =1, then Gs contains a C,.

Proof. Let I = I(i) — {u}. If Go = 0, then the conclusion holds. Hence
we may assume Gg # 0. Choose Gj, Gy such that Go = Gj U Gy and

[IGp] — |Ggll is as small as possible. By Lemma 6, |Gyl — [GFl| < n - 1.
Noting that I is an independent set of at least n/2 vertices in Gg, there
are G5, G such that Gg = G5 U G% and ||GY| — |G| < maz{1,||Gp| —

|G31| = ||} € n/2 — 1, which implies p(Gs) > |Gs| — (n/2 — 1) + 1, that
is, p(Gs) 2 |Gs| — (n/2 - 2).

Let |AU B| = 1. We now show that Gs contains a Cp,. Obviously,
|IGs| = |G| = IN[u)] =n+m—-2-n/2 = m+n/2 -2. Since I is
an independent set of order at least n/2, G[I] is a complete graph. If
[|G4| — |G¥]| < 1, then Gp has a hamiltonian path because Gp contains a
complete bipartite graph between V(Gp) and V(Gp). If ||Gyl — |G| =
n ~ 1, then by Lemma 6, |Gg| = w(Gp)(n — 1) and w(Gp) is odd. If
w(Go) > 3, then it is easy to see that Gy is hamiltonian. Thus, a path of
order |I| — (n/2 — 2) in G[I] and a hamiltonian path of Gy give a Cy, in
Gs. If w(Go) = 1, then since m > min{n +2,2n + 1} = n + 2, we have
] =|Gsl = |Gol =(m+n/2-2)—(n—-1)=m-n/2-12n/2+1.
Let Y C V(Gp) and |Y| = n/2 + 1. Since I is an independent set of order
at least n/2 + 1 in G, we can see that Gs[I UY] contains a hamiltonian
cycle, which implies G5 contains a C, since |I| +|Y| = m. Now we may
assume 2 < ||Gp| — |G4|| < n — 2. Without loss of generality, we assume
|Ghl — |G3| = 2. Choose Vy C V(Gp) such that |Vo| = |G| — |GGl — 1.
Obviously, 1 < |Vo| £ n — 3 and Gy — Vp has hamiltonian path. Let
v,w € I. If |Vp| € n/2 — 1, then since |I| > n/2, Gs[I U V] contains a
(v,w)-path P, for 2 <1 < |I| + |Vo| and if |Vo| > n/2, then Gs[I U Vo)
contains a (v,w)-path P, for 2 < 1 < |I| +n/2 — 1. Thus, Gs|[I U Vy)
contains a (v, w)-path of order |I U Vp| — (n/2 — 2), which together with a
hamiltonian path of Go — V, give a cycle of length |Gs| — (n/2 — 2) = m,
that is, Gs contains a Cp,.

"IfA#0, welet H; € A. If JAUB| = 1, Gs contains a C,,, by

Claim 2 and hence G contains a W,, with the hub u. So we may assume
|[AUB| =2 2. If [ AUB| =2, we let H; € AU B with j # i. In this case,
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Gp = H;. Let z =v; if H; € A and z € Gj if H; € B. Then by Claim
2, Gs U {z} contains a hamiltonian path P with its end vertices in Gg. If
H; € A, then G —x = mK,/2_; and it’s clear that G — z is hamiltonian.
So p(@7) = |G — o] = [GL| -1 and |P| + [p(@0)| = |Gs| + |Gz| =
n+m-—2-n/2=m+n/2 -2 > m. Then the path P and a path in G
with appropriate length give a C,, which implies G contains a W,,, with
hub u. If H; € B, then |P| +|I{(j)| =n4+m-2-n/2—-(n/2-2)=m
and so this P together with m and u form a W,, with hub « in G, a
contradiction. If |[A U B| > 3, then it is easy to check that p(GL) = |GL|.
Thus by Claim 2 we can see that a hamiltonian path in G5 and a path in
G with appropriate length form a C,,, and then G contains a W,, with
hub u, also a contradiction.

If A=0, welet H; € B and Ps a longest path in Gg. By Claim 3,
[Ps| > |Gs| — (n/2 —2). Set I = I(i) — {u}. By Claim 3 we may assume
|B| > 2. If |B| = 2, we let H; € B with j # i. Because Gs UG contains
a complete bipartite graph between V(Ps) and V(G;), and by Claim 3
we can see that |Pg| +|G;| > |Gs| — (n/2 —2) + (n/2 —1) > |Gs| +1, so
G5 UG contains a path P of order |Gs|+1 such that the end vertices of P
are in Gs. Noting that I(j) is an independent set of order at least n/2 + 1
in G and |P| + |I(j)| = |Gs| + 1+ [I(5)| = |G| - (IGi| + 1) - |Gj| + 1 =
n+m-—-2-n/2—(n/2—1)+1 = m, so this P and a hamiltonian path in I(35)
give a Cy,, which implies that G contains a W,,, with hub u, a contradiction.
If |B| > 3, then p(GL) = |GL|. Thus, since |Ps| > |Gs| — (n/2 — 2) and
|Ps|+1P(GL)| 2 |Gs|—(n/2=2)+|GL| =n+m-2-n/2-(n/2-2) =m,
the path Ps and a path in G with appropriate length give a C,, in G,
which implies that G contains a W,,, with hub u, also a contradiction. §

4. Problem

By Corollaries 2 and 3, the Ramsey numbers R(Py,, W,,) are determined
for n < [m/2] — 1 and 0 < r < 2. By Corollary 4, the Ramsey numbers
R(P,,W,,) are determined for n < [m/2] -1, r >3 and k+r >n—1.
Noting that & > 2 if n < [m/2] — 1, we can see that the Ramsey numbers
R(P,,W,,) are still unknown forn < [m/2]—-1,r >3and5 < k+r <n-2.
Motivated by the results of this paper, we have the following:

Conjecture. f4 <n < [m/2]-1,r>23and 5< k+7 <n -2, then
R(P,,Wp)<m+n-3.
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