ON THE COCIRCUITS OF A SPLITTING MATROID

ALLAN D. MILLS

ABSTRACT. The cocircuits of a splitting matroid M; ; are described
in terms of the cocircuits of the original matroid M.

1. INTRODUCTION

The matroid notation and terminology used here will follow Oxley [2].
The ground set of a matroid M will be denoted by E(M) while the collec-
tions of circuits and cocircuits of M will be denoted by C(M) and C*(M),
respectively.

Fleischner [1] introduced the idea of splitting a vertex of degree at least
three in a connected graph and used the operation to characterize Eulerian
graphs. Figure 1 shows the graph Ge 7 that is obtained from G by split-
ting away the edges 6 and 7 from the vertex v. Raghunathan, Shikare,
and Waphare (3] extended the splitting operation from graphs to binary
matroids using the following definition.

Definition 1.1. Let A = M[A] be a binary matroid with ground set
{1,2,...,n} and suppose i,j € E(M). Let A;; be the matrix obtained
from A by adjoining the row J; ; that is zero everywhere except for entries
of 1 in the columns labeled by i and j. The splitting matroid M; ; is defined
to be the vector matroid of the matrix 4; ;.

Using Definition 1.1, Raghunathan, Shikare, and Waphare (3] showed
that (M(G));,; = M(G; ;) for each graphic matroid M(G). These authors
also characterized the circuits of a splitting matroid M; ; as shown in the
next result.

Lemma 1.2. Let M be a binary matroid and suppose i,j € E(M) =
{1,2,...,'n}. Then C(Mi,j) = Co Uy where

Co={CeC(M)|i,jeC ori,j¢C}; and

C = {Cl uc, | h,C; € C(M),CiNCy=0,ie C1,7 € Cs; and there is
no C € Cy such that C C Cy U Cy}.

Shikare and Azadi (4] characterized the bases of a splitting matroid. This
paper describes the cocircuits of a splitting matroid M;; in terms of the
cocircuits of the original matroid M.
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Gs,7

FIGURE 1. Gg,7 is obtained by splitting edges 6 and 7 from
vertex v of G.

2. COCIRCUITS OF A SPLITTING MATROID

For a field F and a natural number n, the n-dimensional vector space
over F is denoted by V(n, F)). The support of a vector v = (v1,v2,...,v5)
is {¢| vi # 0} and is denoted by supp(v). Recall that the row space of an
m X n matrix A over a field F, denoted R(A), is the subspace of V(n, F)
that is spanned by the rows of A. The next lemma is a result of Tutte [5]
(or see [2, Proposition 9.2.4]) that relates the cocircuits of a vector matroid
M{[A] to the minimal supports of vectors in R(A).

Lemma 2.1. Let A be an m X n matriz over a field F and M = M[A].
Then the set of cocircuits of M coincides with the set of minimal non-empty
supports of vectors from the row space of A.

The next lemma is a basic linear algebra result and its straightforward
proof is omitted.

Lemma 2.2. Let A’ be the matriz obtained from A by adjoining the row
vector z. Then R(A’) = R(A)U{y +z|y € R(A)}.

The next lemma establishes that each cocircuit of M is either a cocircuit
of the splitting matroid M; ; or the disjoint union of 2 cocircuits of M; ;.

Lemma 2.3. Suppose M = M([A] is a binary matroid with ground set
E(M) = {1,2,...,n} and i,j € E(M). Let M;; = M[A; ;] be a splitting
matroid of M. Then for each cocircuit C* of M, the set C* is either a
cocircuit of M ; or a disjoint union of two cocircuits of M; ;.

Proof. Suppose C* is a cocircuit of M. It follows from Lemma 2.1 that C*
is a minimal non-empty support of a vector v in R(A). If supp(v) is also
minimal in the collection of non-empty supports of vectors in R(A;,;), then
C* is a cocircuit of both M and M, ;.

Now assume that supp(v) is not minimal in the collection of non-empty
supports of vectors in R(A; ;). Then there is a vector u in R(A; ;) so that
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supp(u) C supp(v) and supp(u) is minimal in the collection of non-empty
supports of vectors in R(A; ;). Let C} be the cocircuit of M;; corre-
sponding to supp(u). Evidently supp(u+ v) C supp(v). If supp(u+ v)
is minimal in the collection of non-empty supports of vectors in R(4;;),
then M;; has a cocircuit C; = supp(u+v) = C* — C;. Thus C* is
the disjoint union of C7 and C3. If supp(u+ v) is not minimal, then
there is a vector w in R(A;,;) having minimal support and supp(w) C
supp(u + v). Since u and w are elements of R(A4; ;), Lemma 2.2 implies
that u = x+4; ; and w =y + d; ; where x,y € R(A) and §;; is the vec-
tor whose only non-zero entries are ones appearing in coordinates 7 and j.
Thus u+w = (x+4d;;) + (y + d;j) = x+Yy. Therefore u+w € R(A).
However supp(u + w) C supp(v) contradicting the minimality of supp(v)
in the collection of non-empty supports of vectors in R(A). As a result of
this contradiction we conclude that supp(u + v) is minimal in the collection
of non-empty supports of vectors in R(4; ;) and the lemma holds. O

It follows from Lemma 1.2 that if each circuit of M contains both i and
7, or neither, then C(Mi,j) = C(M) and Mi,j = M. The fact that Mi,j # M
only if there is a circuit of M containing exactly one of 7 and j is the basis
of the next two results.

Proposition 2.4. If {1, j} is a cocircuit of M or if {i} and {j} are cocir-
cuits of M, then M = M; ;.

Proof. In both cases there is no circuit of M containing exactly one of ¢
and j. Hence M = M; ;. O

Proposition 2.5. If ezactly one of the sets {i} and {j} is a cocircuit of
M, then both {i} and {j} are cocircuits of M; ;.

Proof. Suppose {i} is a cocircuit of M and {;} is not. Then j is in a circuit
of M that does not contain i. Since ¢ is in no circuits of M, it follows from
Lemma 1.2 that i is in no circuits of M; ;. Thus j is in no circuits of M; ;
and we conclude that {j} is a cocircuit of M; ;. O

The next result characterizes the cocircuits of M; ; if exactly one of the
sets {¢} and {j} is a cocircuit of M.

Theorem 2.6. Suppose M = M|[A] is a binary matroid with ground set

E(M) = {1,2,...,n} and i,j € E(M). Let M;; = M[A; ] be a splitting

matroid of M. If {i} is a cocircuit of M and {j} is not, then C*(M; ;)

consists of {i}, {7}, and the sets in the following collections of sets:

a) {C* —{j} | C* is a cocircuit of M containing {j} as a proper subset},

b) {C* € C*(M)| j & C* and C* is the only cocircuit of M contained in
C*u{s}}.
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Proof. We first show that each of the sets described in the result is a cocir-
cuit of M; ;. It follows from Proposition 2.5 that {i} and {j} are cocircuits
of M; ;. Since {j} is a cocircuit of M; j, Lemma 2.3 establishes that for
each cocircuit of M containing {j} as a proper subset, the set C* —{j} isa
cocircuit of M; ;. Now suppose C* is a cocircuit of M that does not contain
Jj and C* is the only cocircuit of M contained in C* U {j}. If C* is not a
cocircuit of M; ;, then Lemma 2.3 implies that C* = C} U C; where C}
and CJ are cocircuits of M; ;. Suppose w1 € R(A; ;) and supp(w1) = Cj.
Since wy ¢ R(A), Lemma 2.2 implies that w; = u; + J; ; for some vec-
tor u; in R(A). Now j € supp(u;), for otherwise j € C*; a contradiction.
Lemma 2.1 implies that either supp(u,) is a cocircuit of M or a proper sub-
set of supp(uy) is a cocircuit of M. In either case it follows that C* U {5}
contains a cocircuit of M other than C*; a contradiction.

We now show that each cocircuit of M; ; other than {i} and {j} belongs
to one of the sets listed in the result. Assume C* is a cocircuit of M; ;
other than {i} or {j} and C* = supp(v) for some vector v in R(A;;). If
v € R(A), then C* is a cocircuit of M not containing j. Suppose X is
a proper subset of C* and X U {j} is a cocircuit of M. Since {j} is a
cocircuit of M; ;, it follows from Lemma 2.3 that X is a cocircuit of M; ;.
However X is a proper subset of the cocircuit C* of M; ;; a contradiction.
Therefore C* is a cocircuit of M not containing j and is the only cocircuit
of M contained in C* U {j}.

We now assume that v ¢ R(A). Then Lemma 2.2 implies that v = u +
d;,; for some vector u in R(A). If ¢ € supp(u), then i € supp(v). However
{i} is a cocircuit of M; ; and supp(v) is a cocircuit of M; ; other than {i}
or {j}. Thus ¢ € supp(v); a contradiction. We conclude that i € supp(u).
Similarly, if 7 &€ supp(u), then j € supp(v) which leads to a contradiction.
Hence i and j are elements of supp(u). Since {i} is a cocircuit of M, there
exists a vector z in R(A) such that supp(z) = {i}. Hence u+2z € R(A).
Note that supp(u + z) is a proper subset of supp(u). Now supp(u + z) or
a proper subset of it is a cocircuit of M. Hence there exists a vector w in
R(A) so that supp(w) is a cocircuit D* of M and supp(w) is a proper subset
of supp(u) not containing ¢. If j ¢ supp(w), then supp(w) C supp(v). If
supp(w) = supp(v), then v=w € R(A); a contradiction. If supp(w) is
a proper subset of supp(v), then it follows from Lemma 2.3 that a proper
subset of supp(v) is a cocircuit of M; ;. This contradicts the assumption
that supp(v) is a cocircuit of M; ;. We conclude that j € supp(w). Let
y be the vector in M; ; with supp(y) = {j}. If supp(y + w) is a proper
subset of supp(v), then supp(v) is not minimal in R(A; ;); a contradiction.
Hence supp(y + w) = supp(v). Thus v =y +w. Therefore supp(v) =
D* — {j} for a cocircuit D* of M containing j. Thus each cocircuit of
M; ; is described by one of the sets listed in the result and the theorem
holds. O
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FIGURE 2. G, 7 is obtained by splitting edges 6 and 7 from
vertex v of G.

Proposition 2.4 and Theorem 2.6 characterize the cocircuits of a splitting
matroid M; ; in terms of the cocircuits of M whenever the set {, 7} contains
a cocircuit of M. The next three results describe the cocircuits of M; ;
whenever {1, j} does not contain a cocircuit of M. We define a Type I set
of M to be a set C* — {4, j} where C* is a cocircuit of M that has {i,j} as
a proper subset. Table 1 displays the Type I sets and cocircuits of M along
with the cocircuits of Me 7 for the graphic matroids M and Mg 7 shown in
Figure 2.

TABLE 1

Cocircuits of M Type I sets of M Cocircuits of Mg 7

{1,2} {4} {1,2}
{3,4,5} {3,5} {4}
{4,6,7) (3,5)

{3,6,7,5} {6,7}
{2,3,7,8} {1,3,7,8}
{1,3,7,8} {1,3,6,8}
{1,5,6,8} {2,3,7,8}
{2,5,6,8} {2,3,6,8}
{1,3,4,6,8} {1,5,6,8}
{2,3,4,6,8} {1,5,7,8}
{2,4,5,7,8} {2,5,7,8}
{1,4,5,7,8} {2,5,6,8}

Notice that {6,7}, the Type I sets of M, and the cocircuits of M that
do not contain a Type I set are cocircuits of Mg 7. In addition, for each
Type I set X containing exactly one of 7 and j, the symmetric difference
X A{i,j} is a cocircuit of M; ;. The following theorem establishes that this
relationship holds in general.
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Theorem 2.7. Suppose M = M|[A] is a binary matroid with ground set

E(M)={1,2,...,n} and i,j € E(M). Let M;; = M[A;;] be a splitting

matroid of M. If {i,j} does not contain a cocircuit of M, then {i,j} and

each non-empty set in the union of the following collections of sets is a

coctreuit of M; ;:

a) {C* - {i,j} | C* € C*(M) and C* contains {i,j} as a proper subset}

b) {C* | C* e C*(M) and C* does not contain a Type I set}

c) {C*A{i,j} | C* € C*(M) and C* contains exactly one of i and j and
does not contain a Type I set}.

Proof. Assume there is no cocircuit of M having {i, j} as a proper subset.
Suppose also that v € R(A;;) and supp(v) is a proper subset of {3, 7}.
Then either supp(v) = {i} or supp(v) = {j}. If supp(v) = {i}, then as
v € R(A), Lemma 2.2 implies that v = u+ ; ; for some vector u in R(A).
Hence supp(u) = {j} contradicting the assumption that {%,j} does not
contain a cocircuit of M. By symmetry, if supp(v) = {j}, then supp(u) =
{i}; a contradiction. Thus supp(d; ;) = {4,7} is minimal in R(A;;) and
{%,j} is a cocircuit of M; ;.

If, on the other hand, {i,j} is a proper subset of a cocircuit of M,
then it follows that supp(d; ;) = {i,7} is minimal in R(4; ;). Hence {7, j}
is a cocircuit of M;; whenever {i,j} does not contain a cocircuit of M.
Furthermore, Lemma 2.3 implies that for each cocircuit C* of M containing
{i,7} as a proper subset, if any, the set C* — {4, j} is a cocircuit of M, ;.

Now suppose C* is a cocircuit of M that does not contain a Type I
set. Lemma 2.3 implies that either C* is a cocircuit of M;; or C* is the
disjoint union of two cocircuits C} and C; of M; ;. Suppose there is a
vector v in R(A) such that supp(v) = C* and there are vectors vi and va
in R(A; ;) so that supp(vi) = C; and supp(vz) = C3. Lemma 2.2 implies
that vi = uy +6; ; and v2 = uz +4; ; for some vectors u; and uz in R(A).
Evidently supp(ux) C C;U{i, j} for each & in {1,2}. Since {i, j} € supp(v)
and supp(v) is minimal in R(A), it follows that supp(u,) Z supp(v) and
supp(uz) € supp(v). Moreover, as u; + uz = v, we see that supp(u) N
supp(uz) is a nonempty subset of E(M) — C*. In particular, supp(u;) N
supp(uz) C {%,;}. Hence |supp(ui) N supp(uz)| is either 1 or 2.

First assume that |supp(ui) N supp(uz)] = 1. Suppose i € Cf =
supp(v1). Then i & supp(ui), j € supp(ui), ¢ € supp(uz), and j €
supp(uz). Thus supp(uz) = C5 U {i,j}. Suppose that supp(uz) is not
minimal in R(A). Then there exists a vector w in R(A) so that supp(w) C
supp(uz) and supp(w) is minimal in R(A). Notice that C} — {¢} is non-
empty since {¢} is not a cocircuit of M; ;. Then j € supp(w), for if not,
supp(w) C supp(v) contradicting the minimality of supp(v) in R(A). If
i ¢ supp(w), then as i € supp(u;), we have supp(w +uy) C supp(v);
a contradiction. Similarly, if e € C3 — {i,j} and e &€ supp(w), then
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supp(w +u3) C supp(v), a contradiction. Thus supp(uz) is minimal in
R(A) and supp(uz) = C3 U{i, j} is a cocircuit of M. Hence the subset Cj
of C* is a Type I set. As a result of this contradiction to the assumption
that C* does not contain a Type I set, we conclude that i ¢ C} = supp(v1).

By symmetry of { and j and Cf{ and C;, we conclude that neither i
nor j is in C*. Thus we may assume that |supp(u;) N supp(uz)| = 2.
Hence supp(ui) N supp(uz) = {i,j}. Now suppose neither C; U {i, j}
nor C5 U {i,7} is a cocircuit of M. In particular, neither supp(vi) =
supp(uy) N C* nor supp(va) = supp(uz) NC* is a Type I set of M. Then
there exist vectors w; and wg with minimal supports in R(A) such that
supp(wy) C supp(u;) and supp(wz) C supp(uz). Moreover, for k in {1,2},
each wy contains at least one element of {i, j}, for if not, then supp(wy) C
supp(v); a contradiction. In addition, for &k in {1,2}, each wy contains
at least one element of C, for if not, then {%,;j} contains a cocircuit of
M; a contradiction. If wy contains both i and j, then supp(uz +wi) C
supp(v). As a result of this contradiction, we conclude that w; contains
exactly one element of {%,j}. Similarly, w2 contains exactly one element
of {i,5}. Now C} — supp(wi) # 0 for if not, then w; +u; € R(A) and
supp(w1 +u1) C {i,5}; a contradiction. Similarly, C3 — supp(wz) # 0. If
{i} = supp(w1) N supp(wz), then wy + w2 € R(A) and supp(w; + wz) is
a proper subset of ¢*; a contradiction. Hence {i} # supp(w1) N supp(wz).
Similarly {j} # supp(wi) N supp(w2). Thus supp(wi) N supp(wz) = 0.
Suppose without loss of generality that i € supp(wi) and j € supp(wa).
Then supp(u; + wy + wa2) C supp(v); a contradiction. We conclude that
Cr U{i,j} or C3 U{i,j} is a cocircuit of M contradicting the assumption
that C* does not contain a Type I set. We conclude that each cocircuit C*
of M that does not contain a Type I set is a cocircuit of M; ;.

Now assume C* is a cocircuit of M containing exactly one of i and j
and does not contain a Type I set. The argument in the previous three
paragraphs establishes that C* is a cocircuit of M; ;. Since {i,;} is also
a cocircuit of M; ;, it follows (see [2; Theorem 9.1.2]) that the symmetric
difference C*A{i, j} is a cocircuit or a disjoint union of cocircuits of M; ;.
If C* — {i} = {z}, then {i,z}, {j,z}, and {i,;j} are cocircuits of M; ;.
However if C*A{4, j} is a disjoint union of cocircuits of M; j, then {j} is a
cocircuit of M; ;; a contradiction. Hence [C* — {i}| > 2. Now, if C*A{i, 5}
is a disjoint union of the cocircuits C{ and C3 of M; j, then either C} A{i, 5}
or C3A{s,j} is a proper subset of C* containing a cocircuit of M; ;. As
a result of this contradiction we conclude that C*A{s, j} is a cocircuit of
M; ;. O

Theorem 2.7 identified three classes of cocircuits other than {i, j} of the
matroid M; ;. However, not all cocircuits of M; ; are described by these
classes. For example, the cocircuit {1,2, 3,4} of the matroid M; ; shown in
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Figure 3 is a member of none of the three classes described in Theorem 2.7.
The next result introduces another class of cocircuits of M; ; and shows
that each cocircuit of M; ; other than {%,;} belongs to one of these four
classes.

FIGURE 3. The matroids M and M; ;.

Theorem 2.8. Suppose M = M([A] is a binary matroid with ground set

E(M) ={1,2,...,n} and i,j € E(M). Let M;; = M[A;;] be a splitting

matroid of M. If{i,j} does not contain a cocircuit of M, then each cocircuit

of M; ; other than {i,j} belongs to one of the following collections:

a) {C* —{i,j} | C* € C*(M) and C* contains {i,j} as a proper subset}

b) {C* | C* € C*(M) and C* does not contain a Type I set}

c) {C*A{i,j} | C* € C*(M) and C* contains ezactly one of i and j and
does not contain a Type I set}.

d) {(C*uD*)—-{i,j} | C*ND* =0, C* is a cocircuit of M containing i,
D* is a cocircuit of M containing j, and neither C* nor D* contains
a Type I set}.

Proof. Assume that C* is a cocircuit of M; ; other than {i,j} and C* =
supp(v) for some vector v € R(A; ;). If v € R(A), then the set C* is a
cocircuit of M. Suppose C* contains a Type I set X. Since X and C*
are cocircuits of M; j, it must be that C* = X. But then C* U {i,j} is a
cocoircuit of M that contains the cocircuit C* of M as a proper subset; a
contradiction. Thus, as described in case b), the set C* is a cocircuit of M
that does not contain a Type I set. Suppose v € R{A). Then Lemma 2.2
implies that v = u+9; ; for some vector u in R(A). We now consider three
cases.

If 7 and j are not elements of supp(u), then {%,;} is a proper subset of
supp(v). This is impossible since {%, j} and supp(v) are distinct cocircuits
of Mi,j.

Suppose |supp(u) N {i,j}| = 1. Assume i € supp(u) and j & supp(u).
Then 7 & supp(v) and j € supp(v). Now either supp(u) is a cocircuit of M
or supp(u) contains a proper subset, say supp(w), that is a cocircuit of M.
If i ¢ supp(w), then supp(w) C supp(v), a contradiction. For each element
k # i in supp(u), if £ ¢ supp(w), then supp(w + d; ;) is a proper subset
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of supp(v). However w + §; ; € R(Ai;), contradicting the minimality of
supp(v). Hence supp(u) is a cocircuit of M and Lemma 2.3 implies that
supp(u) is either a cocircuit of M; ; or a disjoint union of two cocircuits of
M; ;. However, if supp(u) is a disjoint union of two cocircuits C7 and C3 of
M; ;, then supp(v) has either C} or C3 as a proper subset; a contradiction.
We conclude that supp(u) is a cocircuit of both M and M; ;. In particular,
C* = supp(u)A{i,j} and supp(u) is a cocircuit of M containing exactly
one of 7 and j and no Type I sets. It follows that case c¢) holds.

Now suppose |supp(u) N {i,5}| = 2. Now either supp(u) is a cocircuit
of M or supp(u) has a proper subset that is a cocircuit of M. In the first
case, since supp(u) is a cocircuit of M containing {i,j} and supp(v) =
supp(u) — {i, 7}, we see that case a) holds. Now assume supp(u) contains a
proper subset, say supp(w), that is a cocircuit of M. If supp(w)N{s,j} =0,
then supp(w) € supp(v). Since w € R(A) and v € R(A) we conclude
that supp(w) must be a proper subset of supp(v). This is a contradiction
since w € R(A) C R(A:;) and supp(v) is minimal in R(A; ;). Simi-
larly, if supp(w) N {i,j} = {i,5}, then w + u € R(4) C R(A:;) and
supp(w + u) is a proper subset of supp(v); a contradiction. Finally, sup-
pose that [supp(w) N {i,j}| = 1. Then supp(w) is a cocircuit of M con-
taining exactly one of ¢ and j, say j. Now either supp(w) is a cocircuit of
M or supp(w) = C} U C3 for disjoint cocircuits C; and C5 of M; ;. If the
latter holds, then the set {j} or a proper subset of supp(v) is a cocircuit
of M; ;; a contradiction. Thus supp(w) is a cocircuit of both M and M; ;.
Similarly, supp(u + w) is a cocircuit of both M and M; ; and supp(u + w)
contains j. It follows that case d) holds. O

It is possible that a set described by case d) of Theorem 2.8 is not a
cocircuit of M; ;. For example, the cocircuits {1,2,i} and {3,4,j} are
disjoint cocircuits of N containing no Type I sets. Moreover, each set
contains exactly one element of {7, j}. However the set ({1,2,:}U{3,4,j})—
{i,7} is not a cocircuit of N; ;. The next result shows that such a set
must be partitioned into cocircuits of the splitting matroid. In particular,
these cocircuits belong to one of the four classes of cocircuits described in
Theorem 2.8.

FIGURE 4. The matroids N and N ;.
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Theorem 2.9. Suppose M = M|[A] is a binary matroid with ground set
E(M) ={1,2,...,n} and i,j € E(M). Let M;; = M[A; ;] be a splitting
matroid of M and suppose {i, j} does not contain a cocircuit of M. Let C*
be a cocircuit of M containing i, and D* be a cocircuit of M containing j.
Suppose C* N D* = § and neither C* nor D* contains a Type I set. If the
set (C* U D*) —{i,5} is not a cocircuit of M; ;, then it is partitioned into
cocircuits of M; ; of the types described in Theorem 2.8.

Proof. Suppose (C* U D*) — {4,j} is not a cocircuit of M;;. Since C*
and D* are cocircuits of M which contain no Type I set, C* and D* are
cocircuits of M; ;. Then, as {3, j}, C*, and D* are cocircuits of M; ;, the
set C*A{i,j}AD* = (C* U D*) — {i,j} is partitioned into cocircuits of
M; ;. It follows from Theorem 2.8 that each of these cocircuits is of one of
the types described by cases a)- d) of the theorem.

O

Whenever the set {i,7} contains a cocircuit of a matroid M, Proposi-
tion 2.4 and Theorem 2.6 give a complete description of the cocircuits of
the splitting matroid M; ;. In addition, whenever {i, j} does not contain a
cocircuit of M, the combination of Theorems 2.7, 2.8, and 2.9 establishes
the following procedure to determine C*(M; ;) from C*(M).

Given C*(M):

1. Identify the Type I sets, if any, of M; that is, identify the sets de-
scribed by case a) of Theorem 2.8.

2. Identify the sets described by case b) or c) of Theorem 2.8.

3. Form all sets, if any, of the kind described by case d) of Theorem 2.8.

4. Determine the sets, if any, formed in Step 3 that contain none of the
sets obtained in Steps 1, 2, or 3 as a proper subset.

5. C*(M; ;) consists of {i,j} and the union of the collections of sets
developed in Steps 1, 2, and 4.

The reader can easily verify that for the matroids in Figures 3 and 4,
this procedures yields C*(M; ;) from C*(M) and C*(N;,;) from C*(N).

FIGURE 5. The matroids M and M; ;.
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If a matroid M has no cocircuits which properly contain {%, j}, then the
matroid has no Type I sets and the procedure described above becomes
simpler to implement. For example, the matroid M shown in Figure 5 has
no TypeI sets. In determining the cocircuits of M; ;, Step 1 of the procedure
contributes no sets while in Step 2, the cocircuits of M and the sets {1, 5},
{2,7}, {3,i}, and {4,4} are identified as cocircuits of M; ;. In Step 3,
the sets {1,2}, {1,3}, {1,4}, {2,3}, and {2,4} are identified as potential
cocircuits of M; ;. Since none of the previously identified cocircuits of M; ;
is a proper subset of any of {1,2}, {1, 3}, {1,4}, {2, 3}, or {2,4}, these five
sets are indeed cocircuits of M; ;. Thus the procedure correctly determines
that C*(M; ;) consists of all 2-element subsets of E(M).
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