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Abstract

In this article, defining the matrix extensions of the Fibonacci and
Lucas numbers we start a new approach to derive formulas for some integer
numbers which have appeared , often surprisingly, as answers to intricate
problems, in conventional and in recreational Mathematics. Our approach
provides a new way of looking at integer sequences from the perspective
of matrix algebra, showing how several of these integer sequences relate

to each other.
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1 Introduction

In the present days there is a huge interest of modern science in the application
of the generalized Fibonacci and Lucas numbers. Many scholars studied these
numbers and their numerous properties. We can start from the generalized
k-Fibonacci numbers introduced by Falcén and Plaza [10) such that:

Definition 1 ([10])For any integer number k > 1, the k-Fibonacci sequence,
say {Fy n} neN 15 defined recurrently by

Fyny1 =kFen+ Fyn_y forn>1

with initial conditions
Fk,O = 0; Fk,1 =1.
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This sequence generalizes, between others, both the classic Fibonacci se-
quence and the Pell sequence. In [10], Falc6n and Plaza showed the relation
between the 4-triangle longest-edge (4TLE) partition and the k-Fibonacci num-
bers, as another example of the relation between geometry and numbers, and
many properties of these numbers are deduced directly from elementary matrix
algebra. In [11], many properties of these numbers are deduced and related
with the so-called Pascal 2-triangle. In [12], the 3-dimensional k-Fibonacci spi-
rals are studied from a geometric point of view. These curves appear naturally
from studying the k-th Fibonacci numbers {Fin }oo., and the related hyperbolic
k-Fibonacci functions.

Definition 2 For any integer numbers s > 0 and t # 0 with s2 + 4t > 0; the
(s,t)th Fibonacci sequence, say {Fn (s,t)},en 15 defined recurrently by

Fry1(8,8) = 8Fy (5,8) + tFp_1 (8,t) forn>1, (1)
with Fy (s,t) =0, Fi(s,t)=1.

In [19], it has been studied the relations between the Bell matrix and the
Fibonacci matrix, which provide a unified approach to some lower triangular
matrices, such as the Stirling matrices of both kinds, the Lah matrix, and the
generalized Pascal matrix. To make the results more general, the discussion is
also extended to the (s, t)th Fibonacci numbers and the corresponding matrix.
Moreover, based on the matrix representations, various identities are derived.

Definition 3 For any integer numbers s > 0 and t # 0 with s + 4t > 0; the
(s,t)th Lucas sequence, say {Ly (8,t)},cn is defined recurrently by

Lpnyi(s,t) =58Ly(s,t) +tLa_y1(s,t) forn>1, (2)
with Lo (s,t) =2, Ly (s,t)=s.

The following table summarizes special cases of F, (s,t) and Ly, (s,t) :

(s,t) F, Ly
(1,1)  Fibonacci numbers  Lucas numbers
(2,1)  Pell numbers Pell-Lucas numbers

1,2) Jacobsthal numbers Jacobsthal-Lucas numbers
(3,—2) Mersenne numbers  Fermat numbers

Jacobsthal and Jacobsthal-Lucas numbers were investigated earlier by Ho-
radam [9]. (See also a systematic investigation by Raina and Srivastava [15],
dealing with an interesting class of numbers associated with the familiar Lucas
numbers.) and then by the recent works by Filipponi {7], Pint6r and Srivastava
(14], and Chu and Vicenti [1].

In the sequel we will write simply Fy, fr, Pny Jns Mn, Ln, ln, gn, Jn, and v,
instead of F, (s,t), Fn (1,1), Fr(2,1), Fa(1,2), Fn(3,-2), Ln (s,t), L (1,1),
L, (2,1), L, (1,2), L, (3, —2) respectively.
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In this note, we define a new matrix generalization of the Fibonacci and
Lucas numbers, and using essentially a matrix approach we show some prop-
erties of this matrix sequence. Moreover, based on the matrix representations,
various identities are derived for the (s,t)th Fibonacci and Lucas numbers.

2 (s,t)-Fibonacci and Lucas matrix sequences
In [2] the (s, t)-Fibonacci matrix sequence {F,}.., were defined such that:

Definition 4 ([2])For any integer numbers s > 0 and t # 0 with s + 4t > 0;
the (s,t)th Fibonacci matriz sequence, say {Fy (3,t)},cn 8 defined recurrently

by
Frt1(8,t) = 8Fp (3,1) + tFn_y(s,t) forn>1, 3)

with Fo (s,t) =1, Fy(s,t) = ( : é ), where I is the 2 X 2 unit matriz.

And then it was showed some properties for the sum of the terms of this
sequence, obtained by summing up the first n terms F,, and related with the
(s, t)th Fibonacci numbers. Also, in that paper the generating functions for the
(s, t)-Fibonacci matrix sequences have been given.

Lemma 5 ([2])For any integer n > 1 holds:
_f Fay1
A= (A ) @
Lemma 6 ([2)) Frnyn = FnFn for any integers m,n > 0.

In Definitions 5, a new matrix generalization of the Lucas numbers is intro-
duced. It should be noted that the recurrence formula of this sequence depends
on two integral parameters.

Definition 7 For any integer numbers s > 0 and t # 0 with s2 + 4t > 0; the
(s,t)th Lucas matriz sequence, say {Ln (8,t)},cn 5 defined recurrently by

Lnt1(8,t) =8L, (s,t) +tLny (s,t) forn>1, (5)

2
withﬁo(s,t)—_-(;t __2 ), [,1(3,t)=(8 ;2t Zst)

s

From the recurrence relation in (5), we obtain, for n > 0,

L, = Ln+1 Ln
i tLy, tLp.y /@
In the sequel we will write simply F,, and L, instead of F, (s,t) and L, (s, 1),

respectively.
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2.1 Explicit formulas for the general term of the (s,t)-
Fibonacci matrix and Fibonacci sequences

Binet’s formulas are well known in the Fibonacci and Lucas numbers theory
[8]. In our case, Binet’s formula allows us to express the (s,t)-Fibonacci and
Lucas matrix sequences and the (s, t)-Fibonacci and Lucas numbers in function
of the roots @ and § of the following characteristic equation, associated to the
recurrence relation (1):
2 _
- =sz+1t. (6)

Theorem 8 For any integer n > 1 holds:

an+l_ﬂn+l a"—-g"
n = < et A ) (7

t< o7

Proof. A standart eigenvalue/eigenvector calculation tells us that F, has eigen-

values
s+ VsZ+ 4t s—s2+4t
a=-—2—— and ﬂ=—2—,

) e (1)

B<0<aand |B|<]al,

with corresponding eigenvectors

o

Note that, since 0 < s, then

=R

a+ B =sand aff = -t,

a—fB=1/s2+4t.

Thus, F, is diagonalizable, and we can use the facts about diagonalizable ma-

trices to obtain
-1
2 8Y(a0)(¢ ¢
1 1 0 8 1 1
t (2 8\(a0)(1 &
a—-p\1 1 0 8 -1 ¢ )

From Lemma 6 the result is obtained. ®
From (7), we get the Binet’s form for (s, t)- Fibonacci matrix sequence such

F1

that F\— BF, F 7
_ 1~ 0 n_ 1— a0 n
Fo= (BB or - (B52) om0, ®
B o™ — ﬂﬂ a1~ ﬂ'l"'l
Fom i (G2 ) vim (FoTg ) 2t ©)
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2.1.1 The limit of the quotient of two consecutive (s,t)-Fibonacci
terms and its application

An useful property in these sequences is that the limit of the quotient of two
consecutive terms is equal to the positive root of the corresponding characteristic
equation.

Corollary 9 The nth (s,t)-Fibonacci number is given by

a® — g"
Fo=——p (10)

where o and B are the roots of the characteristic equation (6), end a > §.

Proof. From Lemma 5 and Theorem 8, since the term a;5 is at the same time
F, we get the result. m

Particular cases are:

e If s =t =1, for the classic Fibonacci sequence, we obtain:

e
" V5

e If s =2 and ¢t = 1, for the classic Pell sequence we have:

()
Pn = 22 .

o If s=1 and ¢t = 2, for the classic Jacobsthal sequence we get:

o
=y

e If s =3 and ¢t = —2, for the Mersenne sequence we obtain:
m, =2"—1.

Proposition 10

lim P =q (11)

Proof. By using Eq. (10)

- (&)

. F . a™—pg" .
lim —"— = lim b — =alim ——4—,
n—oF,_ | n—oogn-l_pg" n—eoy _ (é) o
a B

and taking into account that nlirgo (g)n = 0 since |8| < a, Eq.(11) is obtained.
[ ]
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The metallic ratios or metallic means, following the nomenclature introduced
in [16] and [17] are the positive solution of the characteristic equation 72 =
sr +t. In [6)], it has been given various infinite sums connected to the theory of
Fibonacci and Lucas numbers, and showed how they can be used to construct
the dimensionalities of heterotic superstrings as well as the £(>) theory [4, 5].

Our result here will be to show that the dimension of £(>) can be easily de-
rived from the relation between the (s, 1)-Fibonacci F,, and Lucas L, sequences
in the form of a continues fraction.

To show this, we need the following lemma.

Proposition 11 The (s,1)-Fibonacci F, and Lucas L, sequences satisfy the
recurrence relation Fiyp = LpFi — (—1)"Fiep forn > 1.

Proof. To prove this proposition we will use the mathematical induction
method. For n = 1, the proposition leads to Fryy = sFi + Fix_;. Hence,
the proposition is true for n = 1. Now we have the show that if the statement
holds when n = N, then it also holds when n = N + 1. This can be done as
follows. =

Assume that the statement is true for n = N, i.e.,

Fein = LyFi — (-1)NFy_p.
Then,

Fieingr = SFoen + Frgn-1

sLyFy — 8(—1)NFk_N +Ly-1F — (—I)N_le_N.H
(SLn + Ln-1) Fe + (-1)N*2 (Fe_n41 — sFx_n)

= LypFe— ()" Fe_(via)

Now, we start from the relationship
Foim =LpFy — (-1)"Fp_pm.

Setting n = km,
Foeoyym _, ()"
Fim ™ Frm/Fg—1ym

Developing the last ratio in a continued fraction, then one finds

F'(k'*'l)m =L — (—l)m
—_— =L - ———,

Fk —_ -1)™
m Ly o

"o

Letting kK — oo then from (11) one finds that

m
i DM m (s+\/s§+4)
m — =0« ——2'—- .

k—o0 km
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Setting s = 1 and m = 3, for the classical Fibonacci and Lucas numbers, the
well known expectation value of the dimension of £(>) [6] is found namely

~ )= (1 +2\/5)

m=3
= ¢
1
= 4+ p
= 4+ ——11— = 4.236067977.
4+ o

2.2 Explicit formulas for the general term of the (s,t)-
Lucas matrix and Lucas sequences

Lemma 12 For n > 0 holds:
Lny1 = L1F5. (12)

Proof. We use the second principle of finite induction on n to prove this lemma.
When n = 0, since Fy = I the result is true. Let n = 1. Then the lemma yields

Lo = L1F,
which defines the matrix £,. Now assume that £,y = £ F, for n £ N. Then

LyFnyr = LiFnFu
= Lynh
- (o w) ()
tLpy1 Ly t 0
= LnN+2
Thus it is true for every nonnegative integer n. ®

From (8), (9), and (12) we get the Binet’s form for (s,¢)- Lucas matrix
sequence such that

Lo = (%‘;ﬁ‘) o - (5%1) B n >0, (13)
or n -1 n—1
Los1 = Lo (";:g ) +tl, (a—a%) >l (14)

Corollary 13 The nth (s,t)-Lucas number is given by
L,= a®™ + ﬂn,

where a and B are the roots of the characteristic equation (6), and o > 8.
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Proof. From (12), we write
Lpyy = L1 Fy, forn > 0.
Since the terms ags of both sides are equal, the equality
L, = sF,+2tF,_
o™ — Bn an—l _ ﬁn—l
s( a—p )+2t(———__a—ﬁ )

(e22) on - (E52) 6"

a—f
(5) - (52)
a-p

is obtained. Finally, since
a’?+t=0?—af and B%+t=p4%-af,

the result

L, =

o™ 4 g"
is obtained. m

Particular cases are:
o If s =1t =1, for the classic Lucas sequence, we obtain:

Lo (LB " L[5 i
" 2 2
e If 3=2 and t = 1, for the classic Pell-Lucas sequence we have:
n n
= (1+v2) +(1-v2)

e If s =1 and t = 2, for the classic Jacobsthal-Lucas sequence we get:

fa=2"+ (-1)",
e If s =3 and t = —2, for the Fermat sequence we obtain:

Th=2"+1.
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2.3 The value for the sum of the first nth (s,t)-Fibonacci
and Lucas matrix sequences with weights z~*

Let z be a non-null real number. Next Theorem gives us the value for the sum
of the first (s,¢)th Fibonacci matrices with weights z—.

Proposition 14 For each non-vanishing real number x :

~Fe_ 1 1 2_
k§0 o = @ =) [£Fns1 + t}'n]+x2 — [zF1 + (2° — sz) Fo) .
(15)
Proof. Since . "
n & —_— an
a” = )
k§0 l-a
(analogously for ) and (z — ) (z — B) = 22 — sz — t, from (8) we have
nFe _ (Fi=BFo) & (ayk fl-afo) n [B)k
é%xk - ( a-p )g%(x) ( a-p é% z
n+l
al® - (&
(-7:1 _ﬂfo) 1- (g™ _ (7'-1 —a}'o) 1 (’)
a=p )\ =@ =5 )\ - ()
_ i ‘7:1 _ ﬂ]:O xn+1 _ an-H.
T a-p T—a«
_ .7:1 - C!}—o :B"'H - ﬂn+1 )}
] z-0
1 Fr=BFo\ ( n+1_ m1y (..
w"(xz—sx—t){( a-p )(a: o) (@~ )
_(Fr=0F0\ ( na1_ gnt1y . _
(a—ﬁ )(:z: B ) (z—a)p.
By considering (8) and a8 = —t and, after some algebra, we get the result. ®

Corollary 15 For each non-vanishing real number z :

L _ 1
=0 z* z" (22 — sz —

1
ny [zﬁn.,.z + t£"+1]+m [-'17[,2 + (222 - S.’l}) £1] .
(16)
n

Now, we will obtain a closed expression for lim {-ﬁ
n—oo k=0

Corollary 16 For each real number xz, such that x > ﬂ-@ :

n].'k Ooﬂ— 1

dm Y E =L F T mo e hatE e Rl D)
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Proof. The proof is based in the so-called Binet’s formula for the nth (s,t)
n

Fibonacci matrix sequence. Since lim (2)" =0and Jim (g) = 0, from (8)

and (15) we obtain the result. =

Particular cases are:
e If s =t =1, for the classic Fibonacci sequence, we obtain:

=] 32 T
fk+1 = > 8. d 2 —.
zé—x— k=0T 2 _gxp—1

k=0 zk
e If s =2 and ¢ = 1, for the classic Pell sequence we have:
o Pr+l _ = Pk _ z
,,go zk T 22-2z—1 and Eo kg2 -2z -1
o If s=1 and t = 2, for the classic Jacobsthal sequence we get:

X Jk+1 a? z
= and o a1

,Z__:o zk  zt-z - ;0 —z-2

o If s =3 and ¢t = —2, for the Mersenne sequence we obtain:

S Mp41 _ z? E
> zk _x2—3x+28'd,§0 2 -3z +2

k=0
Corollary 17 For each real number z, such that z > i‘@ :

£k+1 Z £k+1 - ;: [L2 + (2® — s2) £y] .

lim Z

n—oo k=

Particular cases are:
e If s =1t =1, for the classic Lucas sequence, we obtain:

2 k2 322 +z Rlgy1 +2$ _:c(2x—1)
> zk 2 -z -1’ ,‘E:O zk T x2—z— dkgo T z2-z-1

x
i
o

e If s =2 and ¢t = 1, for the classic Pell-Lucas sequence we have:
_ 2z (x —1)

2:1:(:5-!—1)
and 2 .
7 -2z -1

X Gr+2 6z2 + 2z X qr+1
k=0 T

k=0 xzk T2 — 2z — 1, k=0 Zk 2‘2
e If s =1 and ¢ = 2, for the classic Jacobsthal-Lucas sequence we get:

522 4 2z X Jk+1 z? + 4:2: Ik T (21: -1)

= and =02

> k2 —x-— ,Z:o -—z-2

X Jk+2 _

k=0 T 2?-z-2" [
e If s =3 and t = —2, for the Fermat sequence we obtain:

X Theo 5z’ —6x f: Thel _ 3:1:2 and ;%3 _ z(2z - 3)
k=0 z* -3z+2° (oo z* -3z +2 ksozk 22 -3z +2
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3 More on the (s, t)-Fibonacci and Lucas sequences

In various recent publications, the connection between the heterotic string the-
ory and the €(®) space-time theory was discussed, and the role of the classical
Fibonacci rations were briefly outlined [3,4,13].

Corollary 18 Let z > ﬂ and = zr=—. Then, for (s,t)-Fibonacci
numbers,

5 (Frea/z™ 1) = Q,

m=3

3 (Fn/a™) = 20,

m=1

§1(F /™) = 22Q.

Frpwr  Fy
Proof. Note that
roof. Note tha k¥o+ Z ( tF, tFr

of both sides are equal, from (16) the formulas are obtained. m

If s=t=1 and z = 2, for the classic Fibonacci sequence, particular cases
are:

e The one dimensionality of the strings could be interpreted as

) and since, the terms a;s

Z (fm—2/2"7") =1]6].

m=3

o In [6] this could be interpreted the base 2 as the dimensionality <d$2)> or
the string world sheet dimensionality and find that

mi;l (Fm/2™) = 2.

e The intersection or union of two world sheets which define the topological
dimension n = 4 is then given by

5 (Fu/z™ ) = 418

3.1 Some identities for the (s,t)-Fibonacci and Lucas se-
quences using the (s,t)-Fibonacci and Lucas matrix
sequences

In this section, we shall prove some interesting properties of the (s, ¢)-Fibonacci

and Lucas sequences which may be easily deduced from the product of some

terms of (s,t)-Fibonacci and Lucas matrix sequences. The first property is
called convolution product:
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Proposition 19 For n,m € Z*,
Fu+m = Fn+1Fm + tFnFm_l. (18)

Proof. Considering the term a;2 of the product F;, x 7, which is equal to the
term a0 of the matrix F,,;, we get the result. m
Eq.(18) may be particularized in many ways. For example, if m = n we get

By = Fn+1Fn+tFnFn—1
(Fn+l + tFn...l) Fﬂ

= (Fn41 +tFn-1) (Lﬁl)

= % (Fam = 2F5 ). (19)
On the other hand, if m = n + 1 in Eq.(18) we obtain
Fan41 = F2,, +tF2. (20)
By doing m = 2n in Eq.(18) we have
Fsn = FapFon +tFaFon
= % it (F2,q —t2F2_|) + tF, (F2 +tF2_))
= 1R -Chnr, e (BB
= % (F3,, +stF3—3F2_)). (21)

Particular cases are:
o If s =t =1, for the classic Fibonacci sequence, from (18 — 21) we obtain:

fn+m = fn+1fm + fnfm—l (HonSberger formula [18])1

f2n = f§+1 - fg_n
fong1 = fip + f2,
fan = f3+1 +fa- iy,

respectively.
o If s=2 and t = 1, for the classic Pell sequence, from (18 — 21) we have:

Pn+m = Pn+1Pm + PnPm—1,

1
Pon = ) (P?H.l - p?l—l) ’

D2n41 = P?H-l +p2,
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1
Psn =3 (P3+1 +2p] —Pﬁ-x) )

respectively.
o If s =1 and ¢t = 2, for the classic Jacobsthal sequence, from (18 — 21) we
get:
jn+m = jn+1jm + 2jnjm—1
j2n = j?.+1 - 4.7?;-1:
Jon+1 = 3241 + 2F2,
. _ -3 X -2
Jan = Jny1+ 20n — 8dn_1,
respectively.

e If s = 3 and t = —2, for the Mersenne sequence, from (18 — 21) we obtain:

Mptk = Mpp1ME — 2mamy_y

1
Mon = 3 (m?z+l - 4m?,_1) ’

2 2
M2n41 = Mpyy — 2my,,

1
M3n = 3 (m3y, — 6m3 + 8m121-1) )

respectively.
Proposition 20 Forn,m € Z*,
Ln+m+1 = Ln+2Fm + th-HF -1 (22)

Proof. Since Frym = FnFm, n,m = 0, and Loy = L1 Fp, n > 0, we get
Lnym+1 = Lnt1Fm, n,m > 0. Since the terms a5 of the both sides are equal,
the formula is obtained. m

Particular cases are:

lngema1 = lngafm + a1 fn—1,

Gnt+m+1 = qn+2Pm + @n+1Pm-1,
jn+m+1 = jn+2jm + 25n+1jm—11
Tndk+l = Tnp2Mik — 2Tp g1 Mgy

Remark 21 Notice that, if in the matriz products Fp1m = FoFm and Loymer =
L +1Fm we would have considered the term ay1, as1, and agy instead of the term
a2, we would have obtained the another egquations for the (s,t)-Fibonacci and
Lucas sequences.
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4 Conclusions

In this note, the new matrix generalization of the Fibonacci and Lucas se-
quences have been introduced and studied. Many of the properties are proved
by simple matrix algebra. Using (s, t)-Fibonacci and Lucas matrix sequences,
many mathematical formulas, which allows us to express in a compact form the
(s, t)-Fibonacci and Lucas sequences, have been given.
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