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Abstract

We use k-trees to generalize the sequence of Motzkin numbers and show that Bax-
ter’s generalization of Temperley-Lieb operators is a special case of our generalization
of Motzkin numbers. We also obtain a recursive summation formula for the terms
of 3-Motzkin numbers and investigate some asymptotic properties of the terms of k-
Motzkin numbers.
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1 Introduction

Th. Motzkin in his paper (9] entitled “Relations between hypersurfaces and combi-
natorial formula for partitions of polygon” looked at the number of divisions without
crossings of n! points on a circle into n I-tuples and partitions of a convex n-gon by non-
intersecting diagonals into polygons of I sides, where [ is not restricted to a single value.
In the former case, for | = 1 or 2 one obtains the sequence M, whose first few entries
are 1,1,2,4,9,21,51,--.. Donaghey and Shapiro [5] refer to this sequence of numbers
as Motzkin numbers and provided a survey of combinatorial settings enumerated by the
Motzkin numbers along with algebraic relations between Motzkin and Catalan num-
bers. Problem 6.38 in Richard Stanley’s book [11] lists thirteen combinatorial objects
enumerated by the Motzkin numbers.

There has been a renewed interest in Motzkin numbers in recent years [1, 2, 3, 8, 15)
and our attempt to provide a generalization of the Motzkin numbers in this paper is
partly motivated by these developments. One of the combinatorial settings enumerated
by the Motzkin numbers [4, 5, 11] is the rooted ordered trees in which every vertex
has outdegree of at most 2. We use this interpretation of the Motzkin numbers to
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obtain k-Motzkin numbers (k > 2) using k-trees, which we introduced in [7} as a
generalization of ordered trees. Our generalization seems to have many applications
and an evidence of this is the ease with which we obtained Baxter’s generalization of
Temperley-Lieb operators [13] as its special case. Detailed discussion of this observation
and our interpretation of Tempereley-Lieb operators as partitions of [2n] with crossings
is given in Section 3.

2 Generalized Motkin Numbers

A k-tree {7] is constructed from a single distinguished k-cycle by repeatedly gluing
other k-cycles to existing ones along an edge. More than one cycle can be glued to a
non-terminal or internal edge.

For example, if we use three 3-cycles, we get the following twelve 3-trees:
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Figure 1: The twelve 3-trees consisting of three 3-cycles.

Note: k-trees generalize ordered trees (rooted plane trees) in the sense that ordered
trees are 2-trees in which every edge between two vertices is drawn as a 2-cycle.

If K is any nonempty subset of {2,3,4,---}, then a K-tree is obtained in a similar
way using k-cycles with k € K. We have shown in (7] that the number of K-trees
consisting of n; ki-cycles, i =1,2,.--,m s

ot = st () G o) S

wheren=n; +n2+...+npm.
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If all the cycles used in the construction are of the same size, say k, (1) reduces to

. k‘n+1)_ 1 kn
"Tkn+l\ n /) (k-1)n+1\n

and these sequences of numbers are known as Fuss-Catalan numbers (6] or generalized
Catalan numbers [7, 11]. Let M* be the number of k-trees consisting of n k-cycles
in which every edge has out degree of at most two. We refer to these sequences of
numbers as k-Motzkin numbers or generalized Motzkin numbers.

Figure 2: Recursive construction of k-Motzkin trees.

It is easy to see from Figure 2 that the generating function of k-Motzkin numbers

oc

M(z) =Y ME"
n=0
satisfies a functional equation
M(z) = 14 z2M*"1(z) + 22M25-1(2). (2)
Writing
u(z) = zMF1(2)
we see that
M(2) = 1+ u(z) +u?(2)
and
u(2) = 2(1 + u + w251,
Now, letting

f(u) =1+u+u? and ¢(u) = f(u)*!
and applying the Lagrange Inversion Formula (see [[14], p.167]), we obtain:
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The following table shows generalized Motzkin numbers for various values of k and n.
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k/mnO]1]2] 3 4 5 6 7
2 112 4 9 21 51 127
3f1j1[3|11] 46| 207 979 4797
41111421127 ] 833 | 5763 | 41401
5[1[1]5]34]268 | 2299 | 20838 | 196326
6 1|1[6]|50]| 485 | 5130 | 57391 | 667777

It is easy to see from the table that for £ = 2 we obtain the regular Motzkin
numbers. The only 3-tree among the 12 3-trees in Figure 1 which has an outdegree
more than 2 is the one in which all the three 3-cycles are glued to the distinguished
edge. Hence M3 = 11 and this can also be confirmed very easily from the table.

After generating these sequences of numbers, we looked up in Sloan's Online En-
cyclopedia of Integer Sequences (OEIS) and discovered that 3-Motzkin numbers are
the same as the sequence A0B6605 in OEIS [10]. The entries of the sequence A006605
enumerate the number of modes of connections of 2n points as proposed by R. Baxter
in [13].

3 Temperley-Lieb Operators

Temperley and Lieb [12, 13] represent wave functions arising under their operator
calculus by connecting 2n points (spin variables), z;,1 < ¢ £ 2n, in n disjoint pairs
such that z,, z; are not connected for i < s < j < t whenever z;, z;,7 < j are connected.
[Connective Relation or Planarity Condition.]

If C,, is the number of such modes of connections, it is well known that

= _1_(2n) = the n'® Catalan number.
n+l\n
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In addition to taking points in disjoint pairs as described in the Planarity Condition,
R. Baxter proposed a generalization of the Temperley-Lieb operators in [13] by allowing
taking points from X, = {1,2,3,...,2n} in groups of four so that whenever ¢ and
k are connected and j and ! are connected for i < j < k < I, then s and ¢ are
connected (s < t) only if both s and t are in one of the four disjoint subsets S, S2, S,
and Sy of Xa,, where S} = {z € Xpp|z < iorz > 1}, §2 = {z € Xauli < 2 < j},
Sy={z€Xan|j<z <k} and Sy ={z € Xonlk <z <!}

If by, is the number of modes of connections of X5, which are now permissible, then

bl =lvb2=3vb3=llv-"|

and these agree with the first few entries of M3. The 11 permissible modes of connection
for n = 3 are shown below in Figure 3.
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Figure 3: The 11 permissible modes of connections for n = 3.
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Theorem 1. There is a one-to-one correspondence between permissible modes of con-
nections of Xan and 3-Motzkin numbers.

Proof. Given a 3-Motzkin tree with n 3-cycles, label the edges 1,2,---,2n (excluding
the distinguished egde) using postorder traversal as shown below in Figure 4.

Figure 4: An example of a labeled 3-tree.

Then use the following two simple rules to carry out the mapping.
Rule-1: If two cycles share a common edge, then group the edges depending on

whether they are to the left or right of the common edge and allow a crossing as shown
below in Figure 5.

1 2 3 6 7 12 13 14

Figure 5: Mappings of two cycles with a common edge.

Rule-2: If a single 3-cycle is glued to an edge, then we connect the left and right
edge labels by a chord as shown below in Figure 6.

NERVARY,
{-\: :/\11 9(\10

Figure 6: Mappings of single cycles
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Putting together the results obtained using Rules 1 and 2, we obtain Baxter’s gener-
alization of Temperley-Lieb operators such as the one shown below in Figure 7 that
corresponds to the 3-tree in Figure 4.

S SN

1 2 3 4 5 & 7 8 9 10 11 12 13 14

Figure 7: An example of Baxter's generalization of Temperley-Lieb operators.
gu

To obtain an inverse map, start with a Baxter’s generalization of Temperley-Lieb op-
erators such as the one given in Figure 7 above, and determine all the corresponding
subtrees consisting of a single cycle or two cycles as shown below in Figure 8.

J 6 31
1 2 7 12

Figure 8: Subtrees consisting of a single cycle or two cycles.

Then, connect the distinguished edge of a subtree with highest label i to a subtree
consisting of the edge labeled i + 1. Repeat this process until you obtain a connected
k — tree containing all the n cycles as shown in Figure 9.

Figure 9: A labeled 3-tree corresponding to the example in Figure 7.
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4 A Recursive Relation for 3-Motzkin Numbers

In this section, we obtain a recursive relation to compute 3-Motzkin numbers using
Baxter’s idea of allowing one crossing in a group of four points along with non-crossing
- pairs.

Given 2n points labeled 1,2,3,---,2n, assume 1 is grouped or connected to j in a
permissible mode of connection.
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Figure 10: A case in which 1 is connected to j.

Let B; be the number of permissible modes of connections in which 1 is connected
t0j.
By symmetry, we see that

Bj = Bant2-;.
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Figure 11: A case in which 1 is connected to 2rn — j + 2.

There are two cases depending on whether j is even or odd.
Case I: If 1 is connected to j and j is even, then the chord divides the remaining 2n — 2
points into two groups each with even number of points. Since only one crossing is
allowed, no number between 2 and j — 1 crosses the chord connecting 1 and j.
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Figure 12: A case in which j is even.
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Case II: If 1 is connected to j and j is odd, there will be an odd number of points
between 1 and j. Hence, there is a point between 2 and j — 1 that connects to a
number between j + 1 and 2n crossing the chord connecting 1 and j.

M, L M, M,
I+m=j_-3 r+s=£~.j—_1
2 2

Figure 13: A case in which j is odd.

Thus, we obtain the following result:

Theorem 2. If M3 denotes the nth 9-Motzkin number and B; is the number of per-
missible modes of connections in which 1 is connected to j, then

n

=2
where
M, 252 M_z%_i 1 jeven
B; = :
(X MMp) (X M M,) @ j odd
For example,

M} = 2(By+B3)+ B,

2(MoMa + (MyM)(Mo My + MoMy)) + My M,y
2B3+1(1+1) +1

= 1L

]

]

5 Investigation of Asymptotic Properties

Wen-jin Woan [15] considered the family of paths with unit NE, E, or SE steps (Up,
Level, or Down) without restriction and obtained the following three term recurrence
relation for the regular Motzkin numbers:

(n+2)My = (2n + 1)Ma—y + 3(n — 1)Mn_s.
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It is a routine algebraic manipulation to see from Woan's relation that

6 Mn+l 4
3-n53< M, <3-7%3
and hence
m%&:&

n—oo M,

This result can also be obtained by looking at the smallest singularity of the generating
function of the Motzkin numbers [1]. Having generalized the Motzkin numbers using
k-trees, it is natural to consider the limit

Mg,

n—oo Mg k

and expect the answer to be some function of k
Here, we show that when k = 3, limp . —ﬂ*g'- exists and is an irrational number
(10+26V13) -, 6064604 - - -
We know from (2) that the generating function of M3 satisfies the functional relation

M(2) = 1+ zM?(2) + 22M*(2).

Using Zeilberger's Maple Program (SCHUTZENBERGER) (16] that converts func-
tional equations into recurrence relations we see that M satisfies a third order recur-
rence relation:
(180(2n + 3)(2n + 1)(n + 1))M3 +
(2(2n + 3)(139n2 + 327n + 128))M3,, +
(—4903n — 275n% — 2000n? — 4066)M3,, +
(3(3n +10)(n + 3)(3n + 11))M3 3 = 0.

M3

Using mathematical induction, one can show that —Mi- isincreasingand § < ¥+ < 7

for n > 8. Hence, lim,—o —ﬁi—‘- exists. Assuming that limp .o -—ﬂ§- equals some
number z, the above recurrence "relation reduces to the cubic polynomla.l equation

27z% — 2752 + 556z + 720 = 0.
This polynomial equation has three roots, namely, z = 5, z = 193%@. Since
limp—.oo %’énfl is clearly positive and greater than 5, we conclude that
M3,y _ (70 +26V13)
3 27
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