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Abstract

Topological indices of nanotubes are numerical descriptors that are derived
from graph of chemical compounds. Such indices based on the distances in
graph are widely used for establishing relationships between the structure of
nanotubes and their physico-chemical properties. The Szeged index is obtained
as a bond additive quantity where bond contributions are given as the product of
the number of atoms closer to each of the two end points of each bond. In this

paper we find an exact expression for Szeged index of armchair polyhex

nanotube ( TUAC[ p, k]).
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1. Introduction

A graph G consists of a set of vertices V(G) and a set of edges E(G). In

chemical graphs, each vertex represented an atom of the molecule and covalent
bonds between atoms are represented by edges between the corresponding
vertices. This shape derived form a chemical compound is often called its
molecular graph, and can be a path, a tree or in general a graph.

A topological index is a single number, derived following a certain rule,
which can be used to characterize the molecule [18]. Usage of topological
indices in biology and chemistry began in 1947 when chemist Harold Wiener

[21] introduced Wiener index to demonstrate correlations between physico-
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chemical properties of organic compounds and the index of their molecular
graphs. Wiener originally defined his index () on trees and studied its use for
correlation of physico chemical properties of alkenes, alcohols, amines and their
analogous compounds. A number of successful QSAR studies have been made
based in the Wiener index and its decomposition forms [1].

In a series of papers, the Wiener index of some nanotubes are computed
[3,4,5,7,9,19,20,22,23]. Another topological index was introduced by Gutman
and called the Szeged index, abbreviated as Sz [8].

Let e be an edge of a graph G connecting the vertices # and v. Define
two sets Nl(e}G) and

N,(e I3 as M (e|G)={xeV(G)|d(u,x) <d(v,x)} and
Nz(e|G) ={xeV(G)d(x,v)<d(x,u)}. The number of elements of Nl (e |G) and
Ny(e IG) are denoted by (e |G) andn, (e IG) respectively. The Szeged index of

the graph G is defined as Sz(G)=Sz=)_ nl(eIG)nz(e|G). The Szeged

eecE(G)
index is a modification of the Wiener index to cyclic molecules. The Szeged
index was conceived by Gutman at the Attila jozsef university in Szeged. This
index received considerable attention. It has attractive mathematical
characteristics. In [12,14,15,16] Szeged index and in [2,6,10,11,13,17], another
topological index of some nanotubes are compute. In this paper, we computed
the Szeged index of TUAC[ p, k] nanotube.
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level 1
—»Jevel 2
level 3

Two dimensional lattice of TUAC([4,14] nanotube, p =4,k =14
Figure 1

According to Figure 1, we denote the number of horizontal lines in one row by

p and the number of levels by k. Throughout this paper, our notation is

standard. The notation [f | is the greatest integer function.

2 .The Szeged index of TUAC,[ p, k] nanotube
In this section, the Szeged index of T = TUAC[ p, k] nanotube is computed.
Let e be an arbitrary edge of nanotube. Suppose nl(e |G) counts the vertices of

G lying closer to one vertex than to other vertex and the meaning of nz(e|G) is

analogues. For computing the Szeged index of T, we assume two cases:

Case 1: p iseven.
Lemma 1. If e is a horizontal edge of T, then nl(eIG)nz(eIG) = pzkz.

Proof. Suppose that e is a horizontal edge of T, for example e =uv in Figure

2. In this Figure the region R has the vertices that belong to N,(e|G)and the

region R' has the vertices that belong to Nz(e]G) . So we have
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m(€|G) = n,(e|G) = pk , therefore n, (e|G)n,(e|G) = p*k*. By the symmetry of

TUAC[ p,k] nanotube for every horizontal edges the above relations is hold.

e =uv is a horizontal edge in level m = 6.
Figure 2

For simplicity, we define a = [" ";'" '] and b= [’”T"'] .

Lemma 2. Suppose p is even. If e is an oblique edge in level m(1<m <k),
then we have

DIfm<p and k—m< p then

(e |G) = p(k+m-1)+2b(5-2m+3b-p)+2a(k-m-a-2)+2k-6m+2 . )
i)If m<pand k—m> p,

then , (¢|G) = p(2k-1/2p-1)+2b(S-p+3b-2m)-4m+4 . (II)

i) If m>p and k-m<p , then
n (e|G) = p(k-m+1/2p)+2a(k-a-m-2y+2(k-m-1) . (/)

iv)If m> p and k—m> p,then nl(elG)=2p(k-m)+2. 012
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Proof. Let € be an oblique edge of T, for example e =uv in Figure 3. In this

figure , the region R has the vertices that belongs to N,(el G) and the region

R' has the vertices that belongs to N2(e|G) .

e=uv isan oblique edge in level m=6

Figure 3

Number of vertices that is closer to # than to v is as follows: If m< p and

k—-m< p,then

n(e1G)=plk —m +1)+3(4i)+
i=l

i(zp-4i)+(k —m=-2a-1)2a+2)+
i=]

(m—=2b-1)2p —4b —4) =
p(k+m-1)+2b(5-2m+3b-p)+2a(k-m-a-2)+2k-6m+2.

If m<p and k=m> p, then
(p-2)
2 b
n(e|G)=p(2k —2m—p+2)+ 3 (4)+3 (2p-4i)+
=1 i=)

(m—2b-1)2p-4b-4)
= p(2k-1/2p-1)+2b(5-p+3b-2m)-4m+4.

If m>p and k=m< p, then
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22
a 2
nl(el G)=plk-m+1)+) (4)+ ) (2p-4i)+(k-m-2a-1)2a+2)+2 =
i=l 1=l
p(k-m+1/2p)+2a(k-a-m-2)+2(k-m-1).
Andif m> p and k—m> p, then

T )
m(elG)= p2k—2m—p+2)+ 3 (4)+ Y @p-4i)+2=2p(kem)+2 .

=l isl
By the symmetry of TUAC[p,k] nanotube for every oblique edge this
relations is hold. |
Remark 3. According to Figure 3, let ¢ be an oblique edge in level
m(1 <m<k),then
n(e|G)=2pk-n(e|G).
Theorem 4. If p is even, then the Szeged index of TUAC[ p, k] nanotube is
given as follows:
1.k iseven
i) If £ < p, then we have
Sz(T)=p* (2k> -k*-k+2)+p’ (k*-2k)+p(-1/6k*+1/3pk* +1/3k* -1/3k?-2/3K).
ii) If p<k<2p, then we have
Sz(T)=p*(91/12-31/3k)+p* (14/3k?-22/3k-10/3)+p* (2k* +1/2k* +4/3k-4/3)+

p*(11/3k*-4k*-2/3k*
-4/3k+2/15)y+p(-1/30k*-7/12k* +7/3k*-5/3k*-4/5k)+3 1/5p°.

iii) If £ >2p, then we have
Sz(T) = p(1/4k*-1/5k° +2/3k> -22/15k)+p? (+1/3k* +2/3k* +2/3k* -14/3k+22/15)+
p* (-2k’ +5/2k?-8/3k+8/3)+p* (10k?-6k-2/3)+p* (91/12-31/3k)+31/5p°.

2.k isodd.
i) If k<p R then we have

SZ(T)=p(-1/6k* +1/3k*-2/3k*-4/3k* +5/6k+1+p’ 2k -2)+p’ (2k>k*-k+1).

ii) If p<k<2p, then we have
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Sz(T') = p* (k> +1/2k* +13/3k+13/6)+p* (+14/3k?-22/3k-7/3)+
p(-1/30k°-1/12k* +1/3K* +5/6k2-3/10k-3/4)
+p?(-2/3k* +5/3K*-3k?-13/3k+17/15)+91/12p° +31/5p°.

iii) If £ >2p, then we have

Sz(T) = p’ (2K +5/2k*-11/3k+1/6)+p* (+10k>-6k-+1/3)+31/5p® +p(-1/5k° +1/4k* -
1/3k*-1/2k* +8/15k+1/4)+p*(1/3k* +2/3k* +5/3k*-8/3k+22/15)+p* (-31/3k+91/12).

Proof. At first, suppose A and B are the sets of all horizontal and oblique edges
of T, respectively. Then we have

STy =Y n(e| Gn,(e| G)+ Y.n(e| GIny(e| G). *)

ecA ecB

The number of horizontal edges are pk . Thus we have

> n(elGn(e|G) = p*k*.p= p°k*.

eed

The number of oblique edges are 2 pk .
Let k be even.

Now for k< p, we have :

k-1
2. mEe|G)ny(e|G) =2P-{Z]{(’)(2Pk -} =

eeB m=

2p{(-1/12k* +1/6k*+1/6k*-1/6k*-1/3k)+
p’(k*-k*-12k+1)+p(1/2k*-k)}.

When p<k<2pwehave:

-p-l

k P
S me|Gny(e|G)=2p.{ 3. {UNQpk ~UN)+ D, (N2pk -(1)+

m=) m=k-p

S ryepk -y -

m=p+l
2p{(-1/60k*-5/6k*+7/6k’ -2/5k+
p(-1/3k* +11/6k* -2k*-2/3k+1/15)-11/3p°k+
p? (+k*-1/4k*+2/3k-2/3)
+p*(7/3k2-5/3)+p* (91/24-31/6k)+31/10p°}.
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Andif k>2p, then we have :

k-p-1 )
2. m(e|Gne1G)=2p.{ i {UNQ@pk -N)+ Y, UV X2pk -V )+
eeC

m=] m=k-p

k-l
2 (N 2pk -(H)}} =

m=p+]

2p{(-1/10k>+1/8k* +1/3k>-11/15K)+p(+1/6k* +1/3k> +1/3k*-7/3k+11/15)+
p’ (-k* +3/4k*-4/3k+4/3)
+p* (+5k2-3k-1/3)p* (-31/6k+91/24)+31/10p°}.

Suppose & is odd, in this case for £ < p we have:
Y m(e|G)n, (e |G)=2p{-1/12K*+1/6k* -1/3K>-2/3k* +1/2+5/12k+p(k > -1 )+
pf(1/2-1/2k-k2+k3)}.
When p<k<2pwehave:
Y n,(e|G)n,(e |G) =2p{-1/60k*-1/24k* +1/6k* +5/12k*-3/20k-3/8+
eeC

p(-1/3k* +5/6k*-3/2k*-13/6k+17/30)
+p2(k*-1/4k 2 +13/6k+13/12)+p* (7/3k-11/3k-7/6)+p* (-31/6k+91/24)+31/10p*}.

And if k>2p , then we have :
Z n(e|Gn,e|G)= 2p{-3/40k’-1/12k’ +19/120k+
eeC

p(+1/8k* +1/3K* +5/4k*-4/3k+11/120)

p’ (-5/4K’ +k*-11/4k+1/3) + p* (19/4k>-3k+19/12)+p*(-31/8k+11/3)+93/40p°} .
Soif p is even, then by using the above relations in (*) theresultishold. [l
Case 2. p is odd.

Lemma 5. If e is an oblique edge in level m(1 < m <k), then we have :
i) If m<p and k-m<p then
" (e |G) = p(k+m-1)+2b(5-2m+3b-p)+2a(k-m-a-2)+2k-6m+2 .
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ii) If m<p and k=-m>p , then
n (e |G) = p(2k-1/2p-1)+2b(5-p+3b-2m)-4m+7/2 .

iii) If m>p and k-m<p , then
" (e|G) = p(k-m+1/2p)-3/2+2a(k-a-m-2)+2(k-m) .

iv)If m>p and k—m> p, then nl(e|G) =2p(k-m).

Proof. The proof is similar to the proof of lemma 2. |

Theorem 6. If p is odd , then Szeged index of TUAC[ p, k] nanotube is given
as follows:

1.k iseven.

i)If £ < p , then we have
SZ(T)=p’ (2k> -k>-k+2)+p(-1/6k* +1/3k* +1/3k>-1/3k?-2/3k)+p* (k*-2k).
ii) If p<k<2p, then we have:

Sz(T)=p’ 2k’ +1/2k* -26/3k-4 1/6)+p(-1/30k* -7/12k* +2/3k’ +11/6k*-17/15k-7/4)+
p*(-2/3k* +11/3K* +
2k?-10/3k-128/15)+p* (14/3k*-22/3k+4/3)+p* (91/12-31/3k)+31/5p°.

iii) If £ >2p, then we have :

Sz (T ) = p* (-2k* +5/2k* -26/3k+7/6)+p(-1/5Kk* +1/4k* +1/2k* -4/5k+1/4)+
p>(1/3k*+2/3k’
+8/3k?-8/3k-6/5)+p* (10k?-6k+4)+p* (91/12-31/3k)+31/5p°.

2.k isodd.
i) If £ < p, then we have

Sz(T)=p’ (2k> -k k+1)+p(-1/6k* +1/3k* -2/3k* -4/3k> +5/6k+1)+2p* (k*-1).
ii) If p<k<2p, then we have:

SHT)=p’ (+2K*-17/3k+1/2k-10/3)+p(-1/30k*-1/12k* -4/3k>-2/3k* +41/30k)+
p*(2/3k* +5/3k*
+3k?+11/3k-8/15)+p* (14/3k2-22/3k+7/3)+p* (91/12-31/3K)+3 1/5p°.
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iii) If ¥ >2p, then we have :

Sz (T') = p* (-2k* +5/2k*-29/3k-4/3)+p(-1/5k* +1/4k* -k* +1/5k)+
p>(1/3k*+2/3k* +11/3k*
-2/3k-1/5)y+p* (10k?-6k+5)+p*(91/12-31/3k)+31/5p°.

Proof. The proof is similar to the proof of Theorem 4. [
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