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Abstract

A weakly connected dominating set W of a graph G is a dominating set
such that the subgraph consisting of V(G) and all edges incident on vertices in
W is connected. In this paper, we generalize it to [r, R]-dominating set which
means a distance r-dominating set that can be connected by adding paths with
length within R. We present an algorithm for finding [r, R]-dominating set with
performance ratio not exceeding InA, + [ %ﬂ] — 1, where A, is the maximum
number of vertices that are at distance at most r from a vertex in the graph. The
bound for size of minimum [r, R]-dominating set is also obtained.

Keywords: approximation algorithm; connected dominating set; weakly
connected dominating set; distance domination; graph theory

1 Introduction

In this paper, we introduce a new variation on domination in graphs.
The motivation for this research grew from the trend of applying weakly
connected dominating set to clustering mobile ad hoc networks recently [2] .

The proliferation of wireless communicating devices has created a wealth
of opportunities for the field of mobile computing. However, in the extreme
case of self-organizing networks, such as mobile ad hoc networks, it is chal-
lenging to guarantee efficient communications. In these infrastructure-less
networks, only nodes that are sufficiently close to each other can commu-
nicate and, as mobile nodes roam at will, the network topology changes
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arbitrarily and rapidly.

Clustering mobile nodes locally is an effective way to hierarchically or-
ganize the structure. A natural method for forming clusters is based on the
idea connected domination in graphs [3]. Unfortunately, the connectivity
requirement causes the number of clusters to be rather large. Recently,
several authors [2] suggested ways to reduce the size of this number by re-
laxing the requirement of connectedness to weakly-connectedness. In this
paper, we theoretically introduce a new variation relaxing the requirement
of connectedness of dominating set in a more general way and analyze its
relation with other domination parameters.

A dominating set of a graph G is a set of vertices D € V(G) such that
every vertex of G either belongs to D or is adjacent with a vertex of D in
G. Define the minimum cardinality of all dominating sets of G as the dom-
ination number of G and denote this by v(G). The problem of determining
~¥(G) for a given graph, G, is one of the core NP-hard problems in graph
theory (see {7]).

It’s natural to generalize the concept of classical dominating set to dis-
tance dominating set: a distance r — dominating set of a graph G is a set
of vertices D € V(G) such that every vertex of G either belongs to D or at
most 7 from a vertex in D, 4,(G) denotes the minimum cardinality of all
distance r-dominating set. Determining +.(G) is also NP-hard([1].

A connected dominating set C of a graph G is a dominating set such
that the subgraph induced by the vertices of C in G is connected. Define
the minimum cardinality of all connected dominating sets of G as the con-
nected domination number of G and denote it by v.(G). The connected
distance domination number v5(G) is defined to be the minimum cardi-
nality of all connected distance r-dominating sets of G. The problem of
determining 7¢(G) for general graphs is also NP-hard and (see [10]).

Grossman [8] introduced another NP-hard variant of the minimum dom-
inating set problem, i.e., the problem of finding a minimum weakly con-
nected dominating set. A weakly connected dominating set W of a graph
G is a dominating set such that the subgraph consisting of V(G) and all
edges incident on vertices in W is connected. Define the minimum cardinal-
ity of all weakly connected dominating sets of G as the weakly connected
domination number of G and denote this by v.,(G).

The relations among these three parameters are discussed in [6], and we
can consider 7, (G) as lying between ¥(G) and v.(G). That is: if we want
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to connect the vertices in W by adding paths with endpoints in W, the re-
quirement of path length is no more than 2, while the similar requirement
of path length for connecting C and D is 1 and 3, respectively.

We can rewrite the definition of weakly connected dominating set more
formally as follows:

Definition 1 W is a weakly connected dominating set of G if the following
conditions are satisfied:

1. W is a dominating set of G;

2. The union graph of all the paths with length no more than 2 and with
endpoints in W is connected.

For connected distance r-dominating set, what can be done to weaken
the requirement of connectedness? We give a possible approach by intro-
ducing the concept of “[r, R]-dominating set” :

Definition 2 W is an [r, R]-dominating set of G if the following conditions
are salisfied:

1. W is a distance r-dominating set of G;

2. The union graph of all the paths with length no more than R and with
endpoints in W is connected.

We use v, r(G) to denote the minimum cardinality of all [r,R]-dominating
set. Especially, 11,1(G), 71,2(G), 11,3(G) correspond to the ordinary con-
nected domination number .(G), weakly domination number v,,(G), and
classical domination number (G), respectively. Observe that it is certain
to connect the vertices in a distance r-dominating set by adding paths with
length no more than 2r + 1, we restrict R to be within 2r + 1 in this paper
without notification.

The remaining of this paper is organized as follows. In Section 2, we
present our algorithm for approximating [, R]-dominating sets and analyze
its performance. Section 3 shows relations between v, p(G) and some other
domination related parameters. We also establish lower and upper bounds
on v, r(G) in this section. Finally we conclude this paper in Section 4.
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2 Algorithmic results

Since the problem of determining +.(G) is NP-hard, the computing of
7r,r(G) is also NP-hard. In this section, we present a two-phased algorithm
for finding [r,R]-dominating set.

Our algorithm is based on Algorithm 2 of Guha and Khuller [9].First
we find a distance r-dominating set, then we add chains of vertices to let
it satisfy the connectedness requirement.

At the initial state of the first phase all nodes are colored white. Then
we pick a node at each step and color it black, coloring gray all the white
nodes which are at distance at most 7 of the very chosen node. A piece is
defined as a white node or a black connected component(a connected com-
ponent whose vertices are all colored black). At each step we pick a node
to color black that gives the maximum(nonzero)reduction in the number of
pieces.

By using the similar method described in [9] we will prove that at the
end of this phase if no vertex gives a nonzero reduction to the number of
pieces, then there are no white nodes left.

In the second phase we have a collection of black connected components
that we need to connect. Recursively connect pairs of black components
by choosing a chain of vertices, until there is one black connected compo-
nent. Our final solution is the set of black vertices that form the connected
component.

Lemma 1 At the end of the first phase there are no white vertices left.

Proof. Suppose there is a white vertex v at the end of the first phase. If
v has a white vertex as its neighbor, then coloring v black will reduce the
number of white vertices by two, and increase the number of black compo-
nents by one, thus picking v will reduce the number of pieces. Otherwise,
v has a grey neighbor, then there is a black vertex at distance exactly r
from v, and one neighbor, for example u, of this black vertex will be at dis-
tance exactly 7 — 1 from v, color u black, then the number of white vertices
reduces by one without increasing the number of black components. The
result follows. o

Lemma 2 At the end of the first phase if there is more than one black
component, then there is always a pair of black components that can be
connected by choosing a chain of at most [2—71'*{—1] — 1 vertices.
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Proof. Consider the shortest path connecting two black components.
Then the length of this path must be within 27 + 1, and it may be greater
than R, in order to satisfy the requirement of “[r, R]-domination”, at most
[2—’Rﬂ] — 1 vertices should be added to the ultimate vertex set. a

For the convenience of analysis, we use N,(z) denote {y € V(G) :
de(z,y) £ r,z # y}, where dg(z,y) means the distance of z and y in
graph G. The maximum r-degree of G, A,(G), is defined as max{|N,(z)] :
z € V(G)}. We have the following:

Theorem 1 If R < 2r + 1, then the performance ratio of the above algo-
rithm is ot most In A, + [2—’}}"—1] —1.

Proof. Define OPT as the optimal [r, R]-dominating set of the given
graph and let v be an arbitrary vertex, besides itself, v dominates at at
most A, + 1 vertices. Each time we include a vertex which are at distance
at most R from a chosen vertex into OPT, at most A, new distinct vertices
are dominated. Then n < (A, +1) + A, - (JOPT| — 1), so we get |OPT| >
(n—-1)/A,.

Let a; be the number of pieces left after the ¢th iteration, and ap = n.
Consider the ith iteration. The optimal solution can connect a; pieces and
decrease the number of pieces by a; — 1. Hence in the following iteration,
the greedy procedure is guaranteed to pick a node which can reduce the
number of pieces by at least [a; — 1/|OPT|]. This gives us the recurrence
relation

1 )+ 1
[oPT|’ T ToPT|’

ai+1 < a; — [(a; — 1)/|OPT|] £ ai(1—

Solving it, we get
a; < ap(l — ]b—}-,ﬁ)i + w%[ E;;(I)(l - |o_;1r_r[)j
= (a0 —1)(1 - oppy)' + 1.
Let ¢ = |OPT| - In {57, we have

a; < (a0 = 1)(1 — [oppy)' +1
(@0 — 1)(1 — TG%T)IOPTI In fery +1
(a0 — 1)(3)OPTI B 1 4

(a0 — 1) 15 +1

|OPT| + 1.

IA Il
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After |OPT|-In I%DT;TII iterations, the number of pieces left is less than

|OPT|+1. Suppose we stop after choosing ay more nodes, then the number
of pieces left to connect is at most |OPT'|+1—a;. We connect the remaining
pieces by adding |OPT| + 1 —ay ~ 1 chains of at most [2#1] — 1 vertices
in the second phase( Lemma 2).

The total number of nodes chosen is at most

|OPT|-In &5f + ag + ([2#2] - 1)(|OPT| + 1 — a5 - 1)
< (nA.+[Z#1] 1) [OPT| - ([251] -2) -a

Since R < 2r + 1, then [2531] — 2 > 0, and the conclusion follows. O

Remark. When R = 2r + 1, the problem is equal to find distance r-
dominating set, from basics of Set Cover we know that there is an algo-
rithm with performance ratio within H(A, + 1), where H(-) is harmonic
function.

3 Bounds

For the reason that an [r;, R]-dominating set is also an [r2, R]-dominating
set if 7y < 7o, then it is easy to have the following theorem :

Theorem 2 If ry < 7o, then vry,r £ Yry.R-

In [4] and (6], it’s showed that:
TS S$3r-2,
TS 271,

Yw € Ye S 27w — 1.
If we rewrite them in words of [r, R]-domination number, that is

M3<711 <332,

N3<Mn2<2Mn3—1,
71,2 <My <2712 - L

More generally, we have the following :

Theorem 3 If Ry < R, then

R
Yr.Rq < Yr,Ry < IV"RS'?'\‘ (77'.R2 - 1) +1.
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Proof. The first inequality follows trivially. To establish the second,
let D) be an [r, Ry]-dominating set of cardinality v, gr,. If we want to
connect the vertices in D; by adding paths with endpoints in Dy, the re-
quired length of the paths is no more than R;. More precisely, if the
length is less than Rj, the result is obtained. Otherwise, if the length
is greater than R;, similar to lemma 2 we know that we need to in-

clude [£2| — 1 more vertices to each of these paths to shorten the path

”
length to R;. Since the number of these paths is within 7. g, — 1, then
e < (1= D(mrs = 1) +mme = [ ] (e = 1) + 1. 0

Theorem 4 Let r, Ry, Ry, co be positive integers with Ry < Ry, £ nonneg-
ative integer with T < [—gll {ca — 1)+ 1 — ¢cp. Then there ezists a tree T
with v, (T) = c2 and v g, (T) = c2 + z.

Proof. For convenience, define a structure T'(r, m) with positive integers
r,m : let C; be a chain with vertices v;1,v;2,...,v,—1 for i = 1,...,m,

connect these chains by joining vy,1,v2,1, ..; Um,1 to & new vertex vo. Thus,
the resulting tree is of type T'(r, m) and its central vertex is vp.

We write z in the form of 2 = a~(|§f] —1)+bwith0<b< [%ﬂ -1,
and the tree T is constructed as follows.

u Uz Uq Ua+l Ua4+2 Uasd Ucy—1  Ucy
¢ — - + + o . > ——O———@ - - - + + o+ - *—e
~~ S~ S~ S~ ~
23 Ry (b+1)R: Ry R,

Figure 1: v g, (T)=c2+ 2

Fix m > 1, and let T; = T'(r, m), for i = 1, ..., ¢z, with the central vertex
of T; denoted by u;. For 1 < j < a, connect u;, u;41 by adding a path with
length Ry and the endpoints of which are uj,u;4,. For j = a + 1, connect
uj,%;41 by adding a path with length (b+1)R; and the endpoints of which
are uj,uj4+1- For a4+ 1 < j < ¢, connect u;, %511 by adding a path with
length R; and the endpoints of which are u;, ;4.

Obviously {u1,ug, ..., ¢, } is a minimum [r, Rp}-dominating set of T', the
[r, Ry]-domination number of T is c; + a - (I-%f.l -1)+ (I—g’—'%&-l -1)=

c2+a-(l-%f-|—l)+b=cz+:c. O
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Let £ = [%1 (2 — 1) + 1 — ¢2, we can see that the upper bound of
Theorem 3 is tight.

We now turn our attention to upper bound of 4, g and examine its
relation with the order of graphs. For ordinary distance domination, it’s
proved in [11] that:

Lemma 3 Forr > 1, if G is a graph of order n > r+1, then v,.(G) < %=
We generalize it to [r, R]-domination:

Theorem 5 For r,R > 1, if G is a graph of order n > v + 1, R, then
¥r(G) < TR—T;QT Furthermore, v, r(G) < n/2 when R =2.

Proof. If R > 3, since a |(R - 1)/2] dommatmg set is also an [r, R)-
dominating set, therefore v, p < Y(r-1)/2) = 1) Al +1 rR ik

If R < 3, ,r(G) < n is obvious. It’s proved in [6] that v, < n/2, that is
M2 = Yo < n/2, from Theorem 2, we have ¥,,2(G) < 71,2 < n/2. Thus,

the result is obtained. 0

For specified graph, this upper bound may be improved.

4 Conclusion

In this paper, we generalize the concept of ordinary weakly connected
dominating set to [r, R]-dominating set. We present a two-phased algo-
rithm for finding [r, R]-dominating set in general graph which achieves a
performance ratio of In A, + [2%22] — 1. The bound for size of minimum

W. One

line of future work is to examine parameter of v, g in random graph as in

[5]-

[r, R]-dominating set, v r , is also obtained, which is less than
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