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Abstract. We define extended orthogonal sets of d-cubes and
show that they are equivalent to a class of orthogonal arrays, to
geometric nets and a class of codes. As a corollary an upper bound
for maximal number of d-cubes in an orthogonal set is obtained.

1. INTRODUCTION

Latin squares can be generalized to higher dimensions in several ways.
These generalizations are applied to a number of structures related to latin
squares and for each such structure the most appropriate definition is chosen.
Here we shall consider the so called permutation d-cubes. Adxdx---xd
array with d° points based on a nonempty finite set S of s elements is called
a d-dimensional cube (d-cube) of order s. If d-cube is such that it is based
on s symbols and every column (that is, every sequence of elements parallel
to an edge of the cube) contains a permutation of the s symbols, then it is
a permutation d-cube of order s.

Permutation d-cubes of order s are a special case of d-dimensional hyper-
cubes of order s and type j, where j = d —1 ([8], p.43).

The sequence T, Tm41,-..,2Zn We denote by z%,. When m > n, then z7,
will be considered empty.

A d-ary groupoid (d-groupoid) defined on a set S is a pair (S, f), where
f:8458.

A d-groupoid (S, f) is called a d-quasigroup if the equation

f@i Tt z,af,)=b
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has a unique solution z for every af,b € S and every i € {1,...,d} = Ng.

We shall be considering mostly sets of d-groupoids (or d-quasigroups)
{(S, f1),--.,(S, fn)} defined on the same finite set S, and in that case, to
simplify the notation, we shall omit the set S and write only "a set of d-
groupoids (or d-operations) {fi,..., fo}", where it is understood that all
d-operations are defined on the same finite set S.

By pi1,-...,pq we shall always denote so called projections, that is, d-
groupoids defined by

pi(z‘f)=$i, i=1,--.,d,

As it is well known latin squares can be interpreted as finite binary quasi-
groups and permutation d-cubes, which are a generalization of latin squares,
can be considered as finite d-quasigroups. Treating d-cubes and permutation
d-cubes as algebraic structures can be in some cases more convenient and in
the sequel we shall often consider d-cubes as d-groupoids and permutation
d-cubes as d-quasigroups.

2. EXTENDED ORTHOGONALITY

The orthogonality of latin squares can also be generalized to higher di-
mensions in several different ways. Here we shall use the following definition
of orthogonality of d-groupoids.

Definition 1. A set {f1,...,fa} of d-groupoids defined on S is orthogonal
if for every a% € S there exist a unique b4 € S such that

fit)=a;, i=1,...,d

A set of k d-groupoids, k > d, is orthogonal if every subset of d d-groupoids
is orthogonal.

Definition 2. A set {fi,..., fx} of k d-groupoids defined on S, 1 < k < d,
is extended orthogonal (EO) if for every i € Ng, every injection ¢; from
Ng_; into Ny, every injection o; from N; into N and every a‘i,b‘f‘i €S,
there exist a unique z¢ € S such that

fo’.’(l)(zf) = ay,
w g e
fa.'(i)(xl) = Gi,
where Ty,(1) = b1, .., ZTyy(d-i) = ba—i, (Wheni=d, p; is empty).
A set of k d-groupoids, k > d, is EO if every subset of d d-groupoids is
EO.

In another words, if in (1) we fix any d — ¢ variables by arbitrary elements

from S, system (1) has a unique solution in the remaining variables and this
is valid for every ¢ € N;.
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When this definition is given in terms of d-cubes, we see that a set of k d-
cubes, 1 < k < d, is EO if for every 1 € Ni, when 7 d-cubes are superimposed
and d — i coordinates fixed, then in the corresponding array every i-tuple of
elements appears exactly once.

From the preceding definitions it follows that if ¥ = {f1,...,fx} is an
EO set of d-groupoids, then every subset of ¥ is also EO. Also, it is easily
seen that all d-groupoids in an EQ set are necessarily d-quasigroups, that
is, permutation d-cubes.

For d = k = 2, the preceding definition becomes the usual definition of
orthogonal latin squares and for d = 2, k > d, we get a set of k¥ mutually
orthogonal latin squares.

Theorem 1. A set T; = {f1,..., fx} of d-groupoids is EO if and only if the
set 3 = {p1,...,Pd, f1-.., fx} is an orthogonal set of d-groupoids, where
P1, - - - , Pd are.projections.

PROOF. Let &) = {fi,...,fx} be an EO set defined on S. We shall
prove that any subset of d d-groupoids from X is orthogonal. Without loss
of generality we can take the subset {pi1,...,Pm, fi...,fdi—m} and consider
the system of equations

..... d_
2 pm(xl) = Cm;
( ) fl(ztli) = Gm+1,

...............

fd—m(zf) = a4,

where af € S.
Since X; is EO, the system of equations

fi(aT", x:in+1) = Qm4ly-c ey fd—m(ainsa’:in+l) = a4,

has a unique solution T;41 = b1, - - -, Td = by, hence (2) has also a unique
solution.

Now, let 5 = {p1,...,P4, f1,---, fr} be an orthogonal set, i € Ny, a¢ € S,
and consider the system

()

................

ft(x‘ll) = G4,

{ fi(z9) = ag_is1,
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where z) = a1,...,%d—; = a4—;. The set {p1,...,Pd—i, f1,..., fi} is orthog-
onal which means that that the system

n (:L"li) =ai,

pa-i(zf) = ag_s,

f1(z) = ag_ip,

fi(z%) = aq,
has a unique solution z; = a1,...,%4-i = @4—i, Ta—iv1 = b1,...,2q = bi,
hence (3) has a unique solution.

The proof is analogous for any other choice of d d-operations from X,

hence {f1,..., fk} is an EO set of d-quasigroups. O

Since every binary quasigroup is orthogonal to binary projections pi,pe,
it follows that every set of binary quasigroups is orthogonal if and only if it
is extended orthogonal, but this is not the case for higher dimensions. Every
EO set is obviously an orthogonal set, but there are orthogonal set which are
not EQ. For example, the four ternary quasigroups from [3], p.181-182, make
an orthogonal set of ternary quasigroups which is not EO. Similar examples
can be found in [4],[10]. An example of EO set of ternary quasigroups is
{f1, f2, f3}, where f1, f2, f3 are defined on GF(5) by

fi(z?) = z1 + zo + 223,
fa(zf) = o1 + 235 + 3,
fa(x%) = 2z + z9 + 23.

The EO sets of d-quasigroups have two properties which orthogonal sets
of d-quasigroups do not have - by fixing some variables in an EO set of d-
quasigroups we obtain again an EO set of d;-quasigroups of smaller arities,
and extended orthogonality is preserved by direct products:

1° Let {fi,...,fx} be an extended orthogonal set of d-quasigroups
(EOSdQs) defined on a set S. If a‘f‘"‘ € S, m < d-2, and we define

Fi@™) = fi(zP,e$™), i=1,...,k,

then {fi,...,fr} will be a set of k m-quasigroups which is also EO. An
immediate consequence of this, putting m = 2 and using well known facts
about orthogonal sets of binary quasigroups, is that there are no EOSdQs
of order 2 and 6. Also, since every EO set of k d-quasigroups of order s can
produce an orthogonal set of k binary quasigroups of order s (by fixing d —2
variables), it follows that the maximal number of d-quasigroups of order s
in an EO set can not exceed s — 1.

2° Let two EOSdQs be given, {f1,...,fx}, where fi,..., fi are defined
on a set S, |S| = s, and {g1,...,9k}, where g1,...,gx are defined on a set
T, |T| = t. We define d-operations hj,...,hx on S x T by

hi((z1, yl); LX) (xdayd)) = (fl(xtli)s gi(yf)): i=1,...,k.

24



It is not difficult to see that {h;, ..., hx} is an EOSAQs of order st. Hence, for

every j, from EOSdQs {fi1,..., fik},---s{fj1,-.-, fix} of orders s1,...,s;
respectively, an EOSdQs of order s;...s; can be obtained.

This property of EOSdQs is not valid for orthogonal sets of d-quasigroups.

Now we shall show that from any orthogonal set of k d-groupoids (which
need not be d-quasigroups) an EO set of k—d d-quasigroups can be obtained.
Theorem 2. Let {fi,..., fx}, k > d, be an orthogonal set of d-groupoids
defined on a set S of order s.

If for every (t%) € S¢ we define d-operations hy, ..., ki by

hi(f1(), -, fat])) = i), i=1,... .k,
then {hqy1,...,ht} is an EOSdQs of order s.

PROOF. From the orthogonality of {fi,..., fi} it follows that hy,..., ky
are well defined.

We shall now show that for every af € S and any d distinct integers
11,...,%q € Ni the system
(4) hi] (1"11) =01,.-49 hid (xcll) = Qd,
has a unique solution.

From the definition of k;,, ..., hi,, it follows that (4) can be rewritten as

{ hil (fl(tf)s ---:fd(ttli)) = fi1 (t‘li) =a,

hig(Fi(t), .-, fa(®]) = fiu(8) = aq.
Since {f;,,..., fi;} is a set of orthogonal d-groupoids, we get that there exist
unique r¢ € S such that

fix (Tf) =ajy... ,fid(rii) = agq,

hence

hiy (f1(r), - .o fa(r])) = an,

hid(fl("'f): XX fd(rii)) = Qq,
and this is the only solution. Hence {h;,,...,h;,} is an orthogonal set of
d-groupiods.

Since hi, 1 = 1,...,d, is the i-th projection (h;(z§) = z;), we see that
{hd+1,...,hx} is an EO set, and since all d-groupoids in an orthogonal set
of d-groupoids are necessarily d-quasigroups, we get that {hgy1,...,ht} is
an EQSdQs. 0

We have seen that every orthogonal set of d-groupoids consisting of k(> d)
d-groupoids defines an EO set having k& —d d-quasigroups. Since the converse
is also true (Theorem 1), we get that orthogonal sets of of k d-groupoids are
equivalent to EO sets of d — k d-quasigroups.
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Theorem 3. The maximum number k of orthogonal d-groupoids of order
s in an orthogonal set is

k<d+s-1.

PROOF. If { f1,..., fr}, k > d, is an orthogonal set of d-operations, then,
as in Theorem 2, it defines k¥ — d d-quasigroups which make an EOSdQs.
We have seen earlier that the maximal number of d-quasigroups of order s
in an EO set can not exceed s — 1, hence

k—d<s-1,

that is,
kLd+s-1.
O

Since every permutation d-cube can be interpreted as a finite d-quasigroup,
we get the following corollary.

Corollary 1. The maximal number dN(s) of permutation d-cubes of order
s in an orthogonal set is bounded by

dN(s) < d+s—1.

REMARK. An upper bound for dN(s) was given in [6] where it was
proved that

(5) dN(s) < (d—1)(s - 1).

This upper bound was quoted in [3] and used in some papers ([9]). Since the
upper bound given in Corollary 1 is linear, it is, for larger values of d and
s, much better than the quadratic bound (5). We note also that the bound
in Theorem 3 is more general since it applies to arbitrary d-groupoids, not
only d-quasigroups. This upper bound will bi slightly improved in the next
section using orthogonal arrays.

3. ORTHOGONAL ARRAYS

We shall now show that EOSdQs are equivalent to a class of orthogonal
arrays and derive some consequences from that equivalence.

An N x k array A with entries from a finite set S of s elements is an
orthogonal array (OA) with s levels, strength d and index A, where 1 < d <
k, if every N x d subarray of A contains every d-tuple exactly A times as a
row. Such an array will be denoted by OA(N, k, s, d).

If N = s¢, then we get a special class of orthogonal arrays OA(s?, k, s, d)
(such an array is necessarily of index 1 since A = N/s9).

Theorem 4. Every OA(s% k,s,d), k > d, is equivalent to an EO set of
k — d d-quasigroups.
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PROOF. Let A be an OA(s%,k,s,d) on a set S and let k = d + m.

We choose the first d columns of A (we could take any d columns, but to
simplify the notation we have chosen the first d columns). If the i-th row of
Ais (z1,...,Td, Tgs1,- - - » Td+m) We define d-operations fi,..., fm for every
i€e{l,...,s% by

fi(zd) =244, t=1,...,m.
To show that {f1,..., fm} is an EO set of d-groupoids we shall consider the
set {p1,...,Pr, f1,.--, fi}, where r and [ are nonegative integers such that
r+1 =d and p; is the i-th projection. Let a¢ € S and consider the system

pl(zf) =a,
pr(mlii) = Gr,
6
(©) fila) = ers,
filzf) = aa.
If the d-tuple (a9) is in the i-th row and columns [1,...,r,d+1,...,d+1] of
A and (%) is in the same row in columns [1,...,r,7+1,...,d] (then a; = bj,

j=1,...,7), from the properties of orthogonal arrays it follows that (b¢) is
a unique solution of the system (6).

Here, as before, we have restricted the choice of columns and operations
to the case with the simplest notation, but from the properties of OAs it is
clear that an analogous proof can be given for any choice of columns and
operations.

Conversely, let now {f1,..., fm} be an EOSdQs on a set S. If we define
an s% x (d+m) array A such that the rows of the s% x d subarray of the first d
columns consists of all elements from S9, and the i-throwof 4, =1,..., 54,
we define by

(ala coe O, fl(a‘f)a EEER ] fm(atli))s
then A will be an OA(s?,d + m, s,d). Indeed, since a; can be replaced by
pi(a$), i =1,...,d, we get that the i-th row of A can be represented by

(pl(atli)a ce apd(a‘li)) fl(alli)a ceey fm(a‘li))

That A is really an orthogonal array OA(s% d + m, s,d) follows from the
fact that {p1,...,pa, f1,..., fm} is an orthogonal set of d-operations. ]

In view of the established equivalence of EOSdQs and OA(s%,k, s,d), we
are able to obtain some improvements of the bound on maximal number
of d-groupoids in an orthogonal set (Theorem 3). Using the classical Bush
bound 2] which gives necessary conditions for the existence of orthogonal
arrays of index unity and some improvements of this bound obtained by
Kounias and Petros [7] we have the next theorem.

Theorem 5. The maximal number k of orthogonal d-groupoids of order s
in an orthogonal set is bounded by
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k<d+1, if s<d,

k<s+d-2, if s>2d>3, sodd,

k<s, ifd=3, s=2(mod4), s>6,

k<s+d-3, if 4<d<s, sevenands#0 (mod 36),
k<6, ifd=4, s=35,

k < s+d-1, otherwise.

These bounds when applied to orthogonal sets of d-quasigroups improve
bound from Corollary 1.

Some of these bounds are the best possible since they are achieved in
some classes of orthogonal arrays ([5]).

4. OTHER STRUCTURES

There are other combinatorial structures which are equivalent to EOSdQs.
We are going to show that EOSdQs are equivalent to a higher dimensional
analogue of geometric k-nets.

Definition 3. Let two nonempty finite sets of objects be given, P (”points”)
and L ("lines”) and an incidence relation among them (if A € P is incident
to! € L we say that "point A is on the linel”). Let d,k € N, k > d > 2, and
let L be partitioned into k disjoint classes Ly, ..., Ly called parallel classes.
If

a) d lines from different classes have exactly one point in common,

b) every point from P belongs to exactly one line from each class,
then (P, L) is called a (d, k)-net.

The preceding definition for d = 2 becomes the usual definition of (geo-
metric) k-net ([1],[3]).

If (P, L) is a (d, k)-net, then we shall prove first that all sets L,,..., L
have the same cardinality.

Let L;, L; be two arbitrary classes from L. We take d—1 of the remaining
classes and denote them by L,,...,L4_;. Let |; € L;, from the definition
of (d, k)-net it follows that !; and d — 1 lines l; € Ly,...,lq—1 € Ls_; have
exactly one point A in common. A belongs to exactly one line /; € L;, and
A is the only point which lines l;,11,...,l4—; have in common. Hence the
mapping ¢ : l; = [; is an injection from L; into L;. If instead from L; we
start from L;, we get analogously that there is an injection from L; into L;,
that is, |L;| = |Lj|.

The number of lines in one class of lines of a (d, k)-net is called the order
of the net.

We shall now show that every (d, k)-net is equivalent to an EQ set of k—d
d-quasigroups.
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Let (P, L) be a (d, k)-net of order s and let S be a set, |S| = s. Since
every class from L has s lines, we can establish a bijection 1; between L;,
1 € Ng, and S.

We define k — d d-operations on S. If we take any d lines [; € L;, i € N,
then these lines have exactly one point A in common. A belongs to a unique
line l; € Lj, j=d+1,...,k. A d-operation f;, i € Nx_4, on S we define by

it (), ..., ¥a(la)) = Yarillari)-

From the properties of (d, k)-nets it follows that {fi,..., fx—q} is an EO set
of orthogonal d-quasigroups.

Now, let an EOSdQs {f4+1,--.,fk} on a set S be given, |S| = s, k > d.
We know that {fi+1,...,fk} is an EOSdQs if and only if the set
{f1,---s fa, fd+1,---, fx} is an orthogonal set of d-groupiods, where f; = p;,
i € Ny, are projections. Ordered d-tuples (a¢) € ¢ will be points, and pairs
[4,b], i € N, b € S, we call lines. The class L; consists of all pairs [i, ],
L; = {[i,b] | b € S}, i € Nx. The incidence is defined in the following way:
the point (a¢) belongs to i-line [3,b] if and only if f;(a%) = b. If the set
of points is denoted by P and the set of lines by L, from the properties of
orthogonal sets of d-groupiods it follows that (P, L) is a (d, k)-net. O

Orthogonal arrays and codes are closely related and it is not surprising
that EO set of d-quasigroups are also equivalent to a certain class of codes.
As it is well known, OA of index unity are equivalent to a class of maximal
distance separable (MDS) codes. We shall not go into details here and we
refer the reader to [5], p.79.

We summarize some of the preceding results in the next theorem.

Theorem 6. Let k,d be integers, k > d. The following are equivalent:
1. orthogonal set of k d-groupoids of order s,
2. extended orthogonal set of k — d d-quasigroups of order s,
3. orthogonal array OA(s%, k, s,d),
4. (d, k)-net of order s,
5. MDS code with size s% and minimal distanced =k —d + 1.
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