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Abstract

A reflection of a regular map on a Riemann surface fixes some
simple closed curves, which are called mirrors. Each mirror passes
through some of the geometric points (vertices, face-centers and edge-
centers) of the map such that these points form a periodic sequence
which we call the pattern of the mirror. For every mirror there ex-
ist two particular conformal automorphisms of the map that fix the
mirror setwise and rotate it in opposite directions. We call these
automorphisms the rotary automorphisms of the mirror. In this pa-
per we first introduce the notion of pattern and then describe the
patterns of mirrors on surfaces. We also determine the rotary au-
tomorphisms of mirrors. Finally, we give some necessary conditions
under which all reflections of a regular map are conjugate.

Keywords: Riemann surface, regular map, reflection, pattern, rotary au-
tomorphism.

Mathematics Subject Classifications: 05C10, 30F10.

1 Introduction

A compact Riemann surface X of genus g > 1 is called symmetric if it
admits an anti-conformal involution 7: X — X, which is called a symmetry
of X. The fixed point set of T consists of k disjoint simple closed curves
on X, and these curves are called the mirrors of T. Here k is an integer
and by Harnack’s theorem 0 < k& < g+ 1. Let M be a regular map
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on X. A reflection of M is a symmetry of X that leaves M invariant
and fixes some mirrors. Every mirror of a reflection of M passes through
some of the geometric points of M such that these points form a periodic
sequence which we call the pattern of the mirror. By geometric points
we mean the vertices, the face-centers and the edge-centers of M. If M
is a mirror of a reflection of M, then there exist two particular conformal
automorphisms of M that fix M setwise and rotate it in opposite directions.
These automorphisms are inverses of each other and we call them the rotary
automorphisms of M.

In this paper we first introduce the notion of pattern and then describe
the patterns of mirrors on surfaces. Then we define the rotary automor-
phisms of a mirror and we determine such automorphisms according to
the patterns of the corresponding mirrors. Finally, we focus on conjugacy
classes of reflections and we give some necessary conditions under which all
reflections of a regular map are conjugate.

The idea of patterns of mirrors first appeared in Klein [4]. In the context
of Riemann surfaces we know of no other work where patterns of mirrors
have been discussed, although Coxeter has used this idea in geometry, (see
(2], Chapter 4).

2 Preliminaries

Non-Euclidean Crystallographic Groups. A non-Euclidean crystallo-
graphic (NEC) group is a discrete subgroup A of PGL(2,R), the group of
isometries of the hyperbolic plane U, such that U/A is compact. If A is
contained in PSL(2,R), the group of conformal isometries of U, then it is
called a Fuchsian group.

In this paper we deal with NEC groups generated by the reflections in
the sides of hyperbolic triangles. If T is a hyperbolic triangle with angles
w/l, ©/m, w/n, then the NEC group I'* generated by the reflections in the
sides of T is called the NEC triangle group I'*(l,m,n). Here each of I, m
and n is a positive integer greater than one, and 1/l+1/m+1/n < 1. The
group I'* has a presentation

(par| P =¢=r*=(pg) = (¢r)™ = (rp)" = 1).

The subgroup I' of I'* consisting of conformal isometries is called the Fuch-
sian triangle group I'[l,m,n), and it has a presentation

(@y|a =y™ = (zy)" =1).
See [5] and [7] for details.
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Automorphisms of Riemann Surfaces. A compact Riemann surface
X of genus g > 1 is conformally equivalent to U/K, where U is the hy-
perbolic plane and K is a torsion free Fuchsian group. An automorphism
of X is a conformal or anti-conformal homeomorphism of X onto itself.
A finite group G acts as a group of automorphisms of X if and only if G
is isomorphic to A/K, where A is an NEC group that contains K as a
normal subgroup. Thus, there is an epimorphism from A to G with ker-
nel XK. Such an epimorphism is called smooth. All automorphisms of X
form a group under composition of maps and we will denote it by Aut*X
and the subgroup consisting of conformal automorphisms by Aut*X. So,
Autt X and Aut*X are isomorphic to N*(K)/K and N*(K)/K, respec-
tively. Here N*(K) and N*(K) denote the normalizers of X in PSL(2,R)
and PGL(2,R), respectively.

Maps and Regular Maps. A map M is an embedding of a finite graph
G in a Riemann surface X such that the components of X — G, which are
called the faces of M, are each homeomorphic to an open disc. In our maps
we require G to be connected and every edge of G to have two vertices. We
also require X to be orientable, compact, connected and without boundary.
The genus of M is defined to be the genus of the underlying surface X.
We define a dart to be a pair, consisting of a vertex v and an edge directed
towards v. In our case, every edge will give two darts. Since X has no
boundary, each dart has two sides, which are called blades. In Figure 1,
a is a dart and b is a blade. M is said to be of type (m,n) if every face
of M has n sides and m edges meet at every vertex. An automorphism
of M is an automorphism of X that leaves M invariant and preserves
incidence. All automorphisms of M form a group under composition of
maps and we will denote it by Aut*M and the subgroup consisting of
conformal automorphisms by Aut* M. M is said to be regular if Aut*™ M
is transitive on the darts. If M admits an involution R that fixes the
mid-point of an edge and interchanges the two darts without interchanging
the two neighboring faces, then M is called reflezible and R is called a
reflection of M. M is reflexible if and only if Aut* M is transitive on the

blades.
é— A_—
a b
Figure 1

From the map M we may derive a second map M*, called the dual
map of M, on X. If M has F faces, E edges and V vertices, then M*
has F vertices, one in the interior of each face of M; E edges, one crossing
each edge of M; and V faces, one surrounding each vertex of M. In our
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maps we require M* to be regular. So the vertices and the face-centers of
M?* are the face-centers and the vertices of M, respectively. Clearly, their
edge-centers are the same. The map M* is of type (n,m) by construction.

In (3], it was shown that if M is a regular map of type (m,n) on a
Riemann surface X, then X is uniformized by a normal subgroup of the
Fuchsian triangle group I'[2, m,n]. Most triangle groups are maximal and
in this paper we will be concerned with maps M of type (m,n) such that
the triangle group I'[2,m,n] is maximal. So, by [6], M will be reflexible
and Aut* M will be isomorphic to Aut*X. The group Aut*M lifts to the
NEC triangle group I'*(2,m,n). I'* has a presentation

mar|p? =¢* =12 =(pg)* = (gr)™ = (rp)" = 1), (2.1)

and Aut* M is the image of I'* by a smooth homomorphism ®. The group
of conformal automorphisms of M, Aut* M, can be generated by ®(qr) = z
and ®(rp) = y, which satisfy

2™ =y = (zy)? =1,

where z is an anticlockwise rotation about a vertex and y is an anticlockwise
rotation about a face-center.

3 Patterns of Mirrors

Let X be a Riemann surface of genus g > 1 and let M be a regular map
of type (m,n) on X. Let F be a face of M. If we join the center of F to
the centers of the edges and the vertices surrounding F by geodesic arcs,
we obtain a subdivision of F into 2n triangles. Each triangle has angles
/2, #/m and 7/n, and will be called a (2, m,n)-triangle. In this way, we
obtain a triangulation of X. Note that there are as many (2, m, n)-triangles
as the order of Aut* M, and the reflexibility of M implies that Aut*M is
transitive on these triangles.

Let T be a (2,m,n)-triangle on X and let P, @ and R denote the
reflections in the sides of T. Suppose that these reflections satisfy the
relations

P?=Q*=R*=(PQ)*=(QR)™ = (RP)"=1. (3.1)

The reflections P, Q and R generate Aut*M. However, the relations in
(3.1) do not give a presentation if 1/m + 1/n < 1/2 and hence to get a
presentation for Aut* M we need at least one more relation.
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The geometric points of M are the vertices, the edge-centers and the
face-centers. Following Coxeter (2], we will label all vertices with 0, edge-
centers with 1, and face-centers with 2. Then the pair of any two successive
geometric points on a mirror is either 01, 02 or 12 (or in reverse order).
Let T* be a (2, m, n)-triangle. Then we see that each corner of T* either is
a vertex, a face-center or an edge-center of M. So we can label the corners
of T* with 0, 1 and 2. Then each of the pairs 01, 02 and 12 corresponds
to one of the sides of T*. We will call the corresponding sides of T* the
01-side, the 02-side and the 12-side. See Figure 2.

0

w/m

Figure 2

Let M be a mirror on X. Then M passes through some geometric
points of M. From the picture of M, we can easily observe that these
geometric points form a periodic sequence of the form

G102 ...Gk—10k 0102 ... Gk—10k -.-0102 ... Gk—10k (3.2)

1

2 N

which we call the pattern of M, where a; € {0,1,2} and 1 < i < k. We
call each repeated part ajas...ax—16x of (3.2) a link of the pattern. So, a
link contains no repeats and the pattern of a mirror is a chain consisting of
finite links. We define the order of a pattern to be the number of its links.
We abbreviate the pattern (3.2) to (a1az. . .ax-1ax)". So, the abbreviated
form of 01010101 is (01)*.

As an example, we give the patterns corresponding to the spherical
maps in Table 1, which also appear in [2].

Since the maps (3,4) and (4, 3) are duals of each other, the patterns for
the map (4, 3) can be deduced from the patterns corresponding to the map
(3,4) by interchanging Os and 2s. The same discussion applies to the maps
(5,3) and (3,5).

It is known that the regular maps of genus one are of types (4,4), (3,6)
and (6,3). In this case, on the same torus there may be more than one
maps with the same type. This is because in the Euclidean plane there
exist similar polygons of different sizes. However, this situation does not
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Table 1: Spherical Maps and Patterns

| Map Type | Number of Mirrors | Pattern

T G.3) — 010212 |
3 12)"

(3,4) 5 (0102)?

G5 15 (010212)?

occur in the sphere and the hyperbolic plane. Let M be a regular map of
type (4,4) and let R be a reflection of M. It is not difficult see that the
pattern of each mirror of R is either (01)%, (02)%, or (12)*, where k is a
positive integer.

If M is a regular map of type (3,6), then by examining the picture of
M we can see that the pattern of any mirror on the corresponding torus
is either (0102)* or (12)3*, where k is a positive integer. Since the maps
(6,3) and (3,6) are duals of each other, the pattern of any mirror on the
torus that underlies a regular map of type (6, 3) is either (2120)* or (10)3,
where k is a positive integer.

Now let M be a regular map of type (m,n) on a Riemann surface of
genus g > 1. We know that Aut* M can be generated by three reflections
P, Q, R obeying (3.1). The patterns of the mirrors of these reflections
can easily be determined by examining the picture of M according to the
parities of m and n. As an example, let m and n be odd. In this case every
mirror has pattern (010212)*, where k is a positive integer.

Similarly, the patterns for the other cases can easily be determined, and
we give the results in Table 2.

Table 2: Patterns of Mirrors

[ Case T Reflections [ Pattern Link ||
mandnodd | P,Q, R | 010212 |
m odd n even p 12

Q. R 0102

P 12
m and n even | Q 01

R 02
m even n odd PR 0212

Q 01

Notes on Table 2:

360



(¢) In the table, we give only one link for each pattern.

(#t) In the case where m and n are odd, all reflections of M are conjugate
in Aut*M and any mirror on the surface has pattern (010212)%,
where k is a positive integer.

(#4%) In the case where m is odd and n is even, @ and R are conjugate
in Aut* M. However, P may not be conjugate to them and it has
at least one mirror with pattern (12)*. Similarly, each of Q and R
has at least one mirror with pattern (0102)%. In each case, k is a
positive integer. Similar discussions apply to the other cases. (In the
last section we will see that in the cases where m and n are not both
odd, all reflections of M may be conjugate in Aut*M.)

As a result, the pattern of a mirror on a surface is obtained from one
of the following links: 12, 02, 01, 0102, 0212, 010212.

4 Rotary Automorphisms

Let M be a regular map of type (m,n) on a Riemann surface X of genus
g > 1, and let M be a mirror of a reflection of M. Suppose that the order
of the pattern of M is greater than one. Then there exist two conformal
automorphisms of M, each of which fixes M setwise and cyclically permutes
the links of the pattern of M. These automorphisms are inverses of each
other and they rotate M in opposite directions. We will call them the
rotary automorphisms of M. So each rotary automorphism of M generates
a maximal cyclic subgroup of Aut* M whose order is the same as the order
of the pattern of M. If the order of the pattern of M is one, i.e. the pattern
of M consists of one link, then M has just one rotary automorphism, which
is the identity.

We will now determine the possible rotary automorphisms of M in terms
of the generators of Aut*M in (3.1). Let M have pattern (12)*, where
k is a positive integer. As we saw earlier, this pattern occurs in the cases
where n is even. Using geometrical techniques we can find one of the rotary
automorphisms of M as follows. From the picture of M it follows that M
passes through % faces of M. Let us denote these faces by Fy, F3,..., F}.
Let us divide each of these faces into 2n (2, m, n)-triangles as in §3. Let T}
be one of these triangles contained in Fy such that its 12-side lies on M.
Let P, @ and R be the reflections in the sides of 7. These three reflections
generate Aut* M and satisfy (3.1). The automorphism (RP)(2 VR of M
reflects 77 onto another triangle, say T», in F} such that the 12-side of T3
lies on M, and @ reflects T onto another triangle, say T3, in F». Therefore,
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Q(RP)(2-VR maps T} to T3 and hence F; to F,. It is not difficult to
see that Q(RP)(2-VR has order k and cyclically permutes the faces F;
(i=1,...,k). So, it fixes M setwise and cyclically permutes the links of
the pattern of M. Therefore, Q(RP){(2-VR is a rotary automorphism for
M. We illustrate this in Figure 3, where m = 3 and n = 8.

Remark 4.1 Note that in the above discussion each of the reflections
(RP)(2-1R and Q has a mirror orthogonal to M, and these reflections
have been chosen in order that Q(RP)(2 -1 R has order k. If we had cho-
sen another mirror M* that has the same pattern as M, then we would have
seen that each rotary automorphism of M* is conjugate to Q(RP)(3-1R.
So, each pattern corresponds to a conjugacy class of rotary automorphisms.

In the same way, we can find the rotary automorphisms corresponding
to the other patterns, and we give the results in Table 3. In the table,
the rotary automorphism in each line represents the conjugacy class of the
rotary automorphisms corresponding to the given pattern.

Example 4.1 Let X be Klein's surface, i.e. the Riemann surface of genus 3
with 168 conformal automorphisms. It is known that X .underlies a regular
map M of type (3,7) and Aut* M is isomorphic to PGL(2,7), which has
a presentation

(P,Q,R|P*=Q* =R’ = (PQ)* = (QR)* = (RP)" = (PRQ)® = 1).

Let M be a mirror on X. If we choose P, @ and R as the reflections
in the sides of a convenient (2,3, 7)-triangle on X, then M has a rotary
automorphism S = QRPRQ(PR)*Q(RP)3, which has order 3. Since the
order of a rotary automorphism is equal to the order of the corresponding
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Table 3: Patterns and Rotary Automorphisms

Case | Pattern Link | Rotary Automorphism (|
1 |12 (RP)3-DRQ
2 |02 (PRYZ-DP(QR)YT-1Q
3 |01 (RQYZ-DRP
4 | o102 (PR)(3-DP(QR)"% P(RQ)™F
5 | 010212 (QR)®F P(RQ)™ (PR)** Q(RP)"%
6 | 0212 (PR)*T Q(RP)™7 (QR)(2-1Q

pattern, we see that M has pattern (010212)3. This result also follows
from Klein [4]. When the order of Aut*M is too large, the order of S can
be determined by using a computer algebra system such as MAGMA.

Remark 4.2 In the above example, with the aid of MAGMA we can also
observe that

(P,Q,RIP*=Q*=R*=(PQ)*=(QR)*=(RP)"=5%=1)

is a presentation for PGL(2,7), where S = QRPRQ(PR)*Q(RP)3. Thus,
83 = 1 is a defining relation and so we have another presentation for
PGL(2,7).

5 Conjugacy Classes of Reflections

Let M be a regular map of type (m,n) on a Riemann surface of genus
g > 1, and let P, Q and R be the generators of Aut*M in (3.1). Using
dihedral groups we can see that if m and n are odd, then P, Q and R are
conjugate in Aut* M. It follows from [1] that if m and n are not both odd,
then every regular map of genus two has two or three conjugacy classes
of reflections. A natural question is whether this situation occurs for any
regular map of genus g > 1. In this section, we will see that it does not
occur always. Also, in the cases where m and n are not both odd, we will
give some necessary conditions under which all reflections of a regular map
are conjugate.

Lemma 5.1 Let M be a regular map of type (m,n) on a Riemann surface
of genus g > 1 and let a and B be two reflections of M. Suppose that A
and B are two mirrors fized by a and B, respectively. If A and B both
contain a pair ij (i,j € {0, 1,2}) in common, then A and B have the same
length and pattern. Furthermore, o and B are conjugate in Aut* M.
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Proof. The pair ij is either 01, 02 or 12 (or in reverse order). Let A
and B contain a pair 01 in common. This means that each of A and B
contains the 01-side of at least one (2,m, n)-triangle. Let T4 and Tg be
two (2, m,n)-triangles whose 01-sides lie on A and B respectively. Since
M is regular and reflexible, Aut* M is transitive on the (2, m, n)-triangles
and so there exists an automorphism f € Aut* M such that f(T4) = Ts.
It follows that f(A) = B and as f is an isometry, A and B have the same
length. Since f maps the vertices (resp. edge-centers, face-centers) to
vertices (resp. edge-centers, face-centers), A and B have the same pattern.
Similarly, we can show that if ij is 02 or 12, then A and B have the same
length and pattern.

Let f be the automorphism above and x be a point on A. Then we see
that f(z) € B, a(z) = z and B(f(z)) = f(z). It follows that

(f718A)(=) = F7HBU(2) = f (f(z) = =,

and so every point on A is fixed by a and f~!8f. Thus, af ~!3f pointwise
fixes A. As af~!8f is conformal, it must be the identity and hence a =
F7'Bf. So, @ and B are conjugate in Aut* M. 0

Proposition 5.1 Let M be a regular map on a Riemann surface X of
genus g > 1, and let My and M, be two mirrors on X with different pat-
terns. Suppose that Ry and Ry are the reflections fixring My, and Ms, re-
spectively. Then R, and Ry are conjugate in Aut* M if and only if each of
them has at least two mirrors that have the same patterns as My and M,.

Proof. Let R, and R; be conjugate in Aut* M. Then there exists a €
Aut* M such that R; = a~!Rya. Since

M, = Ry(My) = (o' Rya)(My) = o~} (Ry[a(My))),

it follows that a(M;) = Ra(a(M)), and hence a(M,) is fixed by Ry and
it has the same pattern as M;. So, Ry has at least two mirrors that have
the same patterns as M; and M>. Similarly, the mirror o=}(M;) is fixed
by R; and has the same pattern as M>. So, R; has at least two mirrors
that have the same patterns as M; and M,.

The converse follows from Lemma. 5.1. (m]

‘We now give the following corollaries. Their proofs follow easily from
Lemma 5.1, Proposition 5.1 and the discussions in §3.

Corollary 5.1 Let M be a regular map on a Riemann surface X of genus
g > 1. Then,
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(7) If My and M, are two mirrors on X with the same pattern, then the
reflections firing them are conjugate in Aut* M.

(%) There are at most three classes of mirrors on X such that the mirrors
in each class have the same length and pattern.

(#ii) Aut* M is transitive on the mirrors with the same pattern. |

Corollary 5.2 Let M be a regular map of type (m,n) of genus g > 1. Let
all reflections of M be conjugate in Aut*M. Then,

(?) Ifm and n are both even, then every reflection of M has at least three
mMITToTSs.

(it) If m and n have different parities, then every reflection of M has at
least two mirrors. 0

Theorem 5.1 Let M be a regular map of type (m,n) on a Riemann sur-
face X of genus g > 1, where m is odd and n is even. Let P, @ and R
be the generators of Aut*M in (3.1). If n = 0 (mod 4) and the order of
(RP)(2-VRQ is odd, then all reflections of M are conjugate in Aut*M.

Proof. Since m is odd, Q and R are conjugate in Aut*M. We will now
show that P and Q are conjugate. Let T be a (2, m, n)-triangle on X and
let M be the mirror that contains the 12-side of T. We can consider P,
@ and R as the reflections in the sides of T. Let Mg be the mirror that
contains the 01-side of T. Clearly, it is fixed by Q. Since n is even there is
a mirror Mp- that intersects M orthogonally at the corner 2 of T and is
fixed by the reflection P* = (RP)(2~VR. (See Figure 4, where m = 3 and
n = 8). P* is conjugate to P if (n/2) — 1 is odd and to R if (n/2) -1 is
even. Since n = 0(mod 4), (n/2) — 1 is odd and so P* is conjugate to P.

The reflections P* and @ generate a dihedral group Dy, where N is
the order of P*Q = (RP)(3-DRQ. By hypothesis, N is odd and hence
P* and Q are conjugate in Aut*M. Since P* and P are conjugate we see
that P and Q are conjugate and so all reflections of M are conjugate in
Autt M. ]

In the case where m is even and # is odd we give the following theorem,
which can be proved in the same way.

Theorem 5.2 Let M be a regular map of type (m,n) on a Riemann sur-
face X of genus g > 1, where m is even and n is odd. Let P, Q and R
be the generators of Aut* M in (3.1). If m = 0 (mod 4) and the order of
(RQ)(2-VRP is odd, then all reflections of M are conjugate in Aut* M.
a
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M —L 1P
Mq
Mp.
Figure 4

Theorem 5.3 Let M be a regular map of type (m,n) on a Riemann sur-
face X of genus g > 1, where m and n are even. Let P, Q and R be
the generators of Aut*M in (3.1). If the orders of (RP)(3-VRQ and
(RQ)'Z~YRP are odd, then in each case below, P, Q and R are conjugate
in Autt* M:

(?) m =0(mod 4), n =2 (mod 4),
(#) m =2 (mod 4), n = 0(mod 4),
(¢%) m = 2(mod 4), n = 2 (mod 4).

Proof. Case(i): m = 0(mod 4), n = 2(mod 4). Let T be a (2,m,n)-
triangle on X and let M be the mirror that contains the 01-side of T. We
can consider P, @ and R as the reflections in the sides of T". So, M is fixed
by Q. (See Figure 5, where m = 4 and n = 6).

Since m is even there is a mirror Mg- that intersects M orthogonally
at the corner 0 of T and is fixed by the reflection Q* = (RQ){% -1 R. This
reflection is conjugate to Q if (m/2) — 1 is odd and to R if (m/2) — 1 is
even. Since m = 0(mod 4), (m/2) — 1 is odd and so @* is conjugate to Q.
Similarly, P fixes a mirror Mp, which is perpendicular to M at the corner
1 of T. By hypothesis, the order of PQ* is odd and hence P and Q* are
conjugate in Aut* M. We know that Q* and Q are conjugate and hence P
and @ are conjugate in Aut*M.

Now consider the mirror Mp of P. The mirror M of Q is perpendicular
to Mp at the corner 1 of T. Since n is even, there is a mirror Mg. that
intersects Mp at the corner 2 of T and is fixed by the reflection R* =
(RP)(3-DR. R* is conjugate to R if (n/2) — 1 is odd and to P if (n/2) —1
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Figure 5

is even. Since n = 2(mod 4), (n/2) —1 is odd and so R* is conjugate to R.
By hypothesis, the order of R*Q is odd and so R* and @ are conjugate in
Aut* M. Since R* is conjugate to R we see that R is conjugate to Q and
therefore all reflections of M are conjugate in Aut* M.

Cases (i) and (4i¢) can be proved similarly. O
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