Philip Andrew Sinclair,

The British University in Egypt,
El Sherouk City,

Misr-Ismalia Desert Road,
Postal No. 11837,

P.O. Box 43,

Egypt
email:psinclair@bue.edu.eg
Upon the existence of a removable circuit in a simple 3-connected eulerian graph.

We use Tutte’s theory of cleavage units or 3-blocks to prove a result on sufficient
conditions for a simple 3-connected eulerian graph to contain a circuit from which we
can delete the edges and leave a graph which is a nodally 3-connected graph.
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Notation

Let G be a graph and let J be a subgraph of G, we shall write J € G.

dg(v) is the degree of vin G.

4(G) is the minimum degree in G.

7(G) denotes the set of vertices of degree 1 in a tree G.

A ©-graph is a tree T for which 7(T’) < 3.

W (J, K) denotes the set of vertices of attachment of a subgraph K in a subgraph J of
G

G[X] denotes the subgraph induced by X C V(G).

f,’ is the complement of H in J.
I(z 5 is the graph obtained from the complete bipartite graph K 3 by adding an edge
between the vertices of the first partition.
V3(G) denotes the set of vertices with degree at least three.
(H, K) denotes either a separation or a cleavage.
R(G) = {Ry,...,Rs} denotes the set of cleavage units of a 2-connected graph G.
For a 2-connected graph G, G° denotes the graph that results after adding all possible
virtual edges.
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Introduction

All graphs will be finite and loopless. For a graph G, §(G) or 4 will denote the
minimum degree in G. A vertex v € V(G) is a node vertex if dg(v) > 3. Let V3(G)
denote the set of all node vertices of G. If G is a connected graph then a vertical
n-separation in G is a pair (J, K') of edge disjoint subgraphs for which:

HG=JUK;
(i) V() nV(K)| =n:
(i) V(I\V(K) # 0 and V(K)\V(J) # 0.

A graph G on at least m + 1 vertices is said to be m-connected if it does not have any
vertical n-separations for n < m. Note that this is not quite the same terminology as in
[1]. A block graph is a connected graph that does not contain any 1-separations. Let
G be a block graph. A subdivision of an edge e = zy € E(G) is the result of deleting
e and then adding a new vertex z to G — e with edges =z and yz. A subdivision of
G is a graph that can be obtained from G by a sequence of subdivisions. A nodal
n-separation is a pair of edge disjoint subgraphs (J, K') which satisfy the following
properties:

()G=JUK;
(i) V() NV(K)| =n;
(iii) both V3(J)\V3(K) # 0 and V3(K)\Va(J) # 0.

We shall say that a block graph with at least two nodes is nodally m-connected if there
do not exist any nodal n-separations, for n < m, in any subdivision of G. In Figure 1
are three nodally 3-connected graphs.

The following question is due to A. Hobbs [4], *Does every 2-connected eulerian
graph with minimum degree at least 4 contain a circuit C for which G — E(C) is a
2-connected graph?’ The answer to this question is no. The counter-example of Figure
2 was discovered by N. Robinson and independently by B. Jackson {5]. In [S] Jackson
proves Theorem 1.

Theorem 1 Let G be a simple 2-connected graph with § > k > 4 andlet e € E(G).
Then there exists a circuit C in G — e such that |E(C)| > k — 1and G — E(C) is
2-connected.

C. Thomassen and B. Toft (8] proved Theorem 2 in a paper about non-separating
induced circuits in graphs.

Theorem 2 Let G be a simple 2-connected graph with § > 4. Then G contains an
induced circuit C such that G — V(C) is connected and G — E(C) is 2-connected.

Theorem 3 is an earlier result due to W. Mader [7].
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Figure 1: Three nodally 3-connected graphs.

Theorem 3 Let G be a simple k-connected graph for which 8 > k + 2. Then G
contains a circuit C such that G — E(C) is a k-connected graph.

Jackson’s result has been strengthened by M. Lemos and J. Oxley [6].

Theorem 4 Let G be a simple 2-connected graph, H be a block that is a subgraph of
G, and k an integer exceeding three. Suppose that d(v) > k forallv € V(G) -V (H).
Then either

(i) G — E(C) is 2-connected for every circuit C that is edge disjoint from H; or

(ii) G has a circuit C that is edge disjoint from H such that G — E(C) is 2-connected
and when k > 5 the length of C is at least k + 1.

We shall make use of the following Corollary.

Corollary 5 Let G be a simple 2-connected graph with 6(G) > 4. Then there exists a
circuit C in G such that G — E(C) is 2-connected and not a circuit.

Proof 5 By Theorem 4, there exists a circuit C in G such that G— E(C) is 2-connected.
Put H = G — E(C). Suppose that H is a circuit and that V(H) = V(C) = V(G).
Since G is simple and 6(G) > 4, |V(G)| = 5 and thus there exist two chords of C,
D, = G[{u,v}) and Dy = G[{z,y}), of G such that = & V(D). Let H[u,v)] be
the uv-path in H that does not include x. Then H' = H{[u,v] + uv is a 2-connected
subgraph of G. Since §(G — E(H')) > 2 there exists a circuit C' that is edge disjoint
from H' in G and, by Theorem 4, such that G— E(C") is 2-connected. Since dg(z) = 4
and H' ¢ G - E(C"), G — E(C’) is not a circuit.
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Figure 2:

Let H C G. Let W(G, H) denote the set of vertices of attachment of H in G,
W(G,H) = {v e V(H)|3e = uv € E(G)-E(H)}. For X C V(G), let G[X] be the
subgraph induced by X, that is with vertex set X and E(G([X]) = {e = uv € E(G)
andu,v € X}. Let HE or H¢ be the complement of H in G, that is the subgraph with
V(HE) = (V(G\V(H))UW(G, H) and E(H§) = E(G)\E(H). We shall say that
J is an H-attached subgraph of G, for H C G, if W(G,J) C V(H). We shall say
that J is a H-bridge if the following conditions are satisfied:

(i) J is not a subgraph of H.
(ii) J is an H-attached subgraph.
(iii) no proper subgraph of J satisfies (i) and (ii).

Leta K{ 5-graph be the graph obtained from the complete bipartite graph K3 3 by
adding an edge between the vertices of the first partition. Let J,Jp = K;: 3. For
1= 1,2, let T, Yi. 2 € V(J,) such that d_]i (xi) = d.].. (y,) = dJ‘. (z,~) =2 Leta K{(‘l'
pair graph be the graph, J, constructed from J; and Js by identifying 2; and 22 to a
single vertex 2. Suppose that J occurs as a subgraph of G. Then J is called a K{ 4-pair
bridge on {z1,y1, z2, y2} if W(G, J) = {z1,%1, T2, ¥2}. Z1,%1, T2, Y2 are all distinct
and 1y, € E(G) and zoy2 ¢ E(G). We shall say that G contains a K{ 4-pair bridge
if there exists a K{:,-pair bridge on {z1, 31, %2, y2} for some z1, 22, 11,32 € V(G).
In this paper we prove Theorem 6.

Theorem 6 Let G be a simple 3-connected eulerian graph. Suppose that G does not
contain a K ; 5-pair bridge. Then there exists a circuit C in G such that G — E(C) is
a nodally 3-connected graph.

The next result is a Corollary of two results from [10] (Theorem II1.9 and Theorem
I11.10). Foratree T, let 7(T) = {v € V(T)|dr(v) = 1}.
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Corollary 7 Let H be a block subgraph of G and let X be a path subgraph or a block
subgraph such that X is edge disjoint from H in G, |V(X)NV(H)| 2 2and if X is
a path subgraph then 7(X) C V(X)NV(H). Then H U X is a block subgraph of G.

A branch B of a graph G is a path subgraph in G for which the node vertices

of G in P are precisely the end vertices of P. Let v be a node vertex in a graph
G. Let L;,L,,...,Lg be the set of branches of G that have v as an end vertex. Let
s

u; € T(L)\{v}, for 1 < i < s. Then G —3 v is the graph G — | J(L:\{w:}).
et
Theorem 8 and Corollary 9 are from [1], Problem 2.1.6. '
Theorem 8 If G is a tree with maximum degree A > k, then G has at least k-vertices
of degree one.

Corollary 9 A non-trivial tree has at least two vertices of degree 1.

Theorem 10 Let G be a graph and let H be a 2-connected subgraph of G. Let
{z,y} C V(H) be such that there do not exist any {x, y}-branchesin H. Let dy (z) >
2, dy(y) > 2 and let dyy (u) be even for eachu € V(H)\{z,y}. Let a € V(H) such
thata & {z,y}. If H' = H U B, where B is an {z,y}-branch, is nodally 3-connected
and |V3(H')| > 5 then there exists an zy-path P in H such that a € V{(P) and there
exists a circuit in H — E(P).

Proof 10 Suppose that the Theorem is false and let H C G be a counter-example. Let
v € Va(H')\{z,y,a}. Because H' —3 v is 2-connected there exists an zy-path P in
H —3 v such that a € V(P). Since H — E(P) contains no circuits H — E(P) is a
Sorest. However, by Theorem 8, the component of H — E(P) to which v belongs has at
least four vertices of degree 1, a contradiction as each vertex of V(H — E(P))\{z, y}
has even or zero degree.

Let [z, y] denote the empty graph with two vertices. Let G be a connected graph.
A 2-separation at [z, y] in G is a pair (J, K) of edge disjoint subgraphs which satisfy
the following properties:

i)G=JUK;
(i) V(J)NV(K) = {z,y};
(iii) both |E(J)| > 2 and |E(K)| > 2.

A split at [z,y) in G is a pair (J, K) of edge disjoint subgraphs which satisfy
properties (¢) and (i) of a 2-separation and

(iii’) both |[E(J)| > 1 and |E(K)| > 1.

A cleavage at zy is a 2-separation (J, K) at [z, y] for which not both J and K are split
at [z, y] and not both J and K are separable. We call [z, y] a set of hinge vertices. Let
(J, K) be a cleavage at [z, y]. The cleavage graphs at zy are the graphs J + zy and
K + zy. The added edge zy is called a virtual edge. The following Theorem is from
[10], Theorem IV.21.
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Theorem 11 The cleavage graphs at Ty are block graphs.

The cleavage units of G are the minimal cleavage graphs obtained by recursively con-
structing cleavage graphs from cleavage graphs. If G is 3-connected then G has just
one cleavage unit, itself. Figure 3 is an example of a 2-connected graph and its cleavage
units.

Figure 3: A 2-connected graph G and the cleavage units of G.

The original graph G with all possible virtual edges added is called the augmented
graph and is denoted G°. The cleavage graphs and cleavage units of G are subgraphs
of G°.

The following Theorem is proved in [9], Theorem 11.63, see also [10].

Theorem 12 Let G be a 2-connected graph with at least three edges. Then each cleav-
age unit of G is either a simple 3-connected graph, a bond graph with at least three
edges or a circuit graph with at least three edges. Each edge of G belongs to just one
cleavage unit, and each virtual edge of G* 10 exactly two.

Let R(G) = {Ry,...,R,} be the set of cleavage units of G. By Theorem V.29
and Theorem V.44, from {10], there exists a tree T' for which V(T") = {r; iff R; €
R(G)} and r;7; € E(T) if and only if there exists a virtual edge common to both R;
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and R;. We call T the cleavage unit tree of G. Let (J, K) be a cleavage at [z,y] in G.
Let R;, R; € R(G) be such that R; and R; have the virtual edge e = zy in common.
Then e = rir; € E(T). It follows from the recursive definition of the cleavage units
of G that the cleavage unit trees of the cleavage graphs J + e and K + e are precisely
the components of T" — e, and moreover, that any subtree of T is the cleavage unit tree
of a cleavage graph of G. For a graph G, which is 2-connected but not 3-connected, let
the end cleavage units of G be the cleavage units of G that have precisely one virtual
edge. These cleavage units correspond to the vertices of degree 1 in the cleavage unit
tree of G.

T6

Ts

T4

r3 T1

T2

Figure 4: The cleavage unit tree of the graph of Figure 3.

Theorem 13 is proved in [10], Theorem IV.20.

Theorem 13 Ler a 2-connected graph G be the union of two edge disjoint subgraphs
J and K with just two vertices, b and ¢ in common. Let J and K have each at least
one edge. Then J and K are both connected graphs.

Theorem 14 Let G be a 2-connected graph and let H be a 2-connected subgraph of
G. If R; is a cleavage unit of H which is not a circuit graph then V(R;) C V(R!) for
a cleavage unit R} of G.

Proof 14 Suppose that there exists a cleavage (J1, J2) at [z, y) in G such that V(R;)N
(V(IN{z,y}) # 0 and V(R;) N (V(J)\{z,y}) # 0. By Theorem 12, R; is either
a bond graph with at least three edges or a simple 3-connected graph. Thus, [z,y] is
not a separating set in H® and there exist vertices a € (V(R;) N V(J1))\{z,y} and
be (V(R;)NV(J))\{z, y} that are joined by a path P in R; — {z,y}. Since P is not
apathin G — {z,y} there exists ana’ € V(1) NV(R;) anda b’ € V(J) NV(R;)
such that o'’ € E(P) is a virtual edge of H®. Then there exists a cleavage (L1, Ls)
at [a’, b} in H which can be labelled such that V(R;) C V(L). By Theorem 13, since
H is 2-connected, there exists an a’b'-path Q in Ly. But now, Q is an a'b'-path in
G — {z,y}, a contradiction.

The following Theorem can be found in [10], Theorem 1V.45.
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Theorem 15 Let R; and R; be cleavage units of G which are adjacent in the cleavage
unit tree of G. Then they are not both bond graphs and not both circuit graphs.

Let G be a 2-connected graph and let e = zy € E(G). The cleavage unit to
which e belongs is called the leading 3-block with respect to e. We can classify graphs
that are 2-connected but not 3-connected with respect to e as follows. Let H be the
{z,y}-bridge for which V(H) = {z,y} and E(H) = {e}. If G has two or more
{z,y}-bridges other than H then G is of Type I and the leading 3-block with respect
to e is an r-bond with at least three edges. If G has just one {z, y}-bridge other than H
and that bridge is separable then G is of Type II and the leading 3-block with respect to
e is a circuit graph with at least three edges. If G has just one {z, y}-bridge other than
H and that bridge is not separable then G is of Type III and the leading 3-block with
respect to e is a simple 3-connected graph.

A connected graph is called a string of blocks if, for some integer k > 2, we can
enumerate its blocks as By, Bs, ..., By and its cut vertices as vy, vz . . . g so that the
following condition holds. The cut vertex v; belongs to B; and B;.; but to no other
block, foreach 1 < j < &k — 1. If an edge e is added with one end in V(B;)\{v:} and
one end in V(Bi)\{vx} then e is said to close the string of blocks. If G is of Type II
with respect to e then G — e is a string of block closed by e.

Theorem 16 is from [10], Theorem IV.30.

Theorem 16 Let G be a 2-connected graph. Let x be a vertex of G that belongs to two
distinct cleavage units R; and R; of G. Then x is an end vertex in G of each edge in
the unique path in the cleavage unit tree T of G joining i to ;.

Theorem 17 Let G be a 2-connected graph and let T' be the cleavage unit tree of G.
Let ry,rj,r. € V(T') such that r;,7,7x is a path in T. If [x,y] is a hinge common to
both R; and Ry then R; is a bond graph on {z,y} with at least three edges.

Proof 17 Letey = rir; € E(T) and ey = rjr1, € E(T). Let T; and T — T;; be the two
components of T — e such that ; € V(T;) andr; € V(T —T;). Let Tj and T be
the two components of (T — T) — eg labelled such that r; € V(1) and r. € V(T}).
Let G; be the cleavage graph of G whose cleavage unit tree is T;. By Theorem 16,
ey = zy = ea. Hence, G; is of Type I with respect to e1 and R; is a bond graph, as
required.

In Theorem 18, there is a slight abuse of notation, in that a cleavage unit R, is
changed to a new cleavage unit R} by replacing an edge e with a new virtual edge. We
use R, to denote both cleavage units and this is the practice throughout the paper.

Theorem 18 Let G be a graph and let H be a 2-connected subgraph of G. Let
R(H) ={R1,...,Rs} andlet T be the cleavage unit tree of H. Let R, be the leading
3-block with respect to an edge e = zy. Let H' be the graph that resulis from subdi-
viding e in H, one or more times, o create a branch B. Let T' be the cleavage unit
tree of H'. If H is of Type 1 or Type IlI with respect to e then R(H') = R(H)UR,, |,
where R,,, = B + zy is a circuit graph, V(T') = V(T) U {r,,} and E(T') =
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E(T)U{rsr,,,}. If H is of Type Il with respect to e, then R(H') = (R(H)\R,)UR;,
where R, is a circuit graph for which V(Rs) C V(R.), and T = T".

Proof 18 Proof is by induction on s = |R(H)|. Suppose that s = 1. If H is of Type
I or Type 11l with respect to e, then H — e is 2-connected, and because B is not split
at {z,y}, (B, H — €) is a cleavage at zy. Therefore, the cleavage units of H' are
H and B + zy and the result holds. If H is a circuit graph then (H —e)U B isa
circuit graph and the result holds. Hence, suppose that the Theorem is true for all 2-
connected graphs with less than s > 2 cleavage units. By Corollary 9, we can choose
ri € V(T) such that dr(r;) = 1 andi # s. Let e; € E(T) be incident with r; and let
e; = z;¥; be the virtual edge of G®. Let (J, K) be the cleavage at [z;,yi] in G such
that K = R; — e;. By the induction hypothesis, the result holds for the cleavage graph
J + e; and thus for H. The result now holds for all s by induction.

Theorem 19 Let G be a 2-connected graph and let T be the cleavage unit tree of G.
Lete; = rirj € E(T). Let (J, K) be the cleavage of G at e; = z;y;. PutG' =G +e
and let T' be the cleavage unit tree of G'. Suppose that e; ¢ E(T'). Then one end
vertex of e belongs 1o V (J)\{z:, yi} and one end vertex of e belongs to V(K )\{z:, v:}.

Proof 19 Suppose that both end vertices of e belong to either V(J) or V(K), say
V(J). Ife # z;y;i then (J + e, K) is a cleavage at [z;,y:] in G', a contradiction.
Suppose that e = z;y;. If K is not split in G at [z;,y;] then (J + e, K) is a cleavage
in G', and if J is not split at [z;,y;] in G then (J, K + e) is a cleavage in G', in each
case a contradiction.

A ©O-graph is a tree with at most three vertices of degree 1.

Theorem 20 Let G be a 2-connected graph and let H be a 2-connected subgraph of
G. Let T be the cleavage unit tree of H. Let Ry € R(H) such that R, is not a circuit
graph. For R, Ry, € R(H), Ro # Ry, let v, € V(R,) and vy, € V(Ry). Let P be
the rory-path in T. Let v, and v, be chosen such that vy € V(P). Let eg be the first
edge of P and let ey, be the last edge of P (e, and ey, not necessarily distinct). Suppose
that v, and vy have been chosen such that v, is not an end vertex of the virtual edge
eq in H®, and vy, is not an end vertex of the virtual edge ey in H®. Let Q be a path in
G for which V(Q) NV (H) = 1(Q) = {va, ). Let (J;, K;) be a cleavage at [z, y]
in H chosen such that V(R,) C V(K;). If {va, v} N (V(J)\{z,y}) # 0 then let
ve and vy be labelled such that v, € V(Ji)\{z,vy}. Let L C J; be a ©-graph chosen
such that z,y € 7(L) and either, if v, € V(J;)\{z,y} then v, € V(L) and, subject
toz,y € (L), (L) C {vs, z,y}, or otherwise ifvy, & V(Ji\{z, v}, 7(L) = {z,y}.
Put H' = K; UL U Q. Then H' is 2-connected and there exists an R} € R(H') such
that V(Ry) C V(RY}) and R} is not a circuit graph.

Proof 20 Let e be the virtual edge at {z, y) for the cleavage (J;, K;). Sincer; € V(P),
Tq and Ty belong to the same component of T —e. Let L = Py U P,, where P, is an zy-
path and P, is either null or the third branch of L with 7(P,) = {v,vs}. By Corollary
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7 H =K, ULUQ = K;UP,UP,UQ is a 2-connected graph. Let Tp be the
cleavage unit tree of Kp = K; U Py. Let P’ be the path in Tp such that P’ is an
raro-path if sy € V(Tp) and P’ is an r,7}-path otherwise (ro € V(Tp) by Theorem
18). Thenty € V(P'). Put @' = P,UQ if vy € V(I)\{z,y} or Q' = Q otherwise.
Put 7(Q') = {vq, v’} (v' = vy or v’ = v). Since Kp is a 2-connected graph, and Q' is
not split at {ve,v'} in H', either (Kp,Q') is a cleavage at vov' in H' or |E(Q’)| = 1.
Put H* = (H' —(Q' — {vq,v'})) +vat’ so that H* is the cleavage graph of H' at v,v'
if |[E(Q)| > 1and H* = H' if|[E(Q’)| = 1. By Theorem 18, R, is a cleavage unit
of Kp. Therefore, by Theorem 14, V(R,) C V(R}), for some Ry € R(H'). Since
vav' € E(H*), v' and v, belong to the same cleavage unit of H*. Suppose that some
e' € E(P') is a virtual edge of H* at [z’,y'] say. Then v' and v, would belong to
different components of H* — {z',y'}. a contradiction. Therefore, V(Ry) C V(R}),
as required.

Main result

Theorem 6 Let G be a simple 3-connected graph, in which the degree of each vertex
is even and with §(G) > 4. Suppose that G does not contain a K{ 3-pair bridge. Then
there exists a circuit C in G such that G — E(C) is a nodally 3-connected graph.

Proof 6 Suppose that the Theorem is false and let G be a counter-example. By Corol-
lary 5, we can choose a circuit C in G for which G — E(C) is 2-connected and is not
a circuit graph. Put H = G — E(C). Let T be the cleavage unit tree of H. Some of
the vertices of degree 1 in T may correspond to cleavage units that are circuit graphs.
Let T' be the cleavage unit tree that is left after all such vertices of degree 1 have been
deleted. Suppose that T' is trivial with V(T') = {r}. Let R be the cleavage unit of H
corresponding to v in T'. Then R is either a simple 3-connected graph, a circuit graph
with at least three edges or a bond graph with at least three edges. By choice of C, R
is not a circuit graph, but now H is a nodally 3-connected graph, a contradiction. Let
C be chosen such that the following conditions hold:

(a) the graph H is 2-connected.

(b) subject to (a), there exists a cleavage unit Ry that is not a circuit graph.
(c) subject to (b), |Va(Ry)| is maximum.

(d) subject to (c), | E(C)| is minimum.

Let f = riv' € E(T'), such that if dp-(r') = 1 then R' is not a 3-bond, such an v’
exists for otherwise, R, is a simple 3-connected graph, by Theorem 15, and thus H
is nodally 3-connected. Let f = zy be the virtual edge of H® and let (J,, K,) be
the cleavage of H at f. Because G is simple and 3-connected there exists an edge
e = vguy € E(C) such that vo € V(Ih)\{z,y} and vy € V(K \)\{z,y}. Put
Q = vg,e,v. Letv, € V(R,) and vy € V(Ryp) for Ra, Ry cleavage units of H.
Let Pr be the rory-path in T. Let v; € V(T') such that d7+(r;) = 1 and i # 1.
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of degree 1 in V(T') N Nt,(r1), and the cleavage units that are isomorphic to circuit
graphs that map to vertices of V(T) with degree 1 in T. Let {ri1,...,11p-1} =
(Nr,(m) N V(T')\{rn} so that dp+(ri) = 1, for1 < i < p— 1. Let V(Ri;) =
{z1i,yi}andletey; = ryry s for1 <i < p—1. Let Ty ; be the component of T — e ¢
which includes v ;. Then T} ; has at most three vertices, T1; and one or two vertices
which have degree 1 in T. For1 <i < p— 1, let (X, Y1) be the cleavage at e ; in
H, such that Ty ; is the cleavage unit tree of the cleavage graph X, ; + e1 ;. Then X ;
is the union of two i ;y1 ;-branches, that is X, ; is a circuit graph.

Suppose that each v; € V(T')\{r1} is adjacent to r\, so that T' is a star graph
with centre vertex ry = 1. By Theorem 12, Theorem 15 and Condition (b) in the
choice of circuit, R, is a simple 3-connected graph. Now, H can be obtained from
R, by replacing each virtual edge e, ; of Ry by a subgraph X ;, for1 < i <p-—1,
and the virtual edge e; by two zyy;-branches. Therefore, H is nodally 3-connected, a
contradiction. Hence, r; can be chosen non-adjacent to T\, 71 # 7.

Claim 3 If L' is nodally 3-connected with [V3(L')| > 4 then |Va(L')| = 4 and {v,,vp}N
(V(I\{z1,u}) #0.

Proof 3 Suppose that the Claim is false. Let P be an zyy;-path in L. If {va, v} N
(V(L)\{zt,w}) # O then |V3(L')| > 5, and thus, by Theorem 10, P can be chosen
such that {ve,vp} NV (L) C V(P) and so that there exists a circuit C' in L — E(P).
Then Mp = M U P is a subdivision of the cleavage graph M + e; and is thus 2-
connected. Put Mg = Mp U Q. Then (L, M), Q and P satisfy Theorem 20 and there
exists a cleavage unit R} of Mg such that R} is not a circuit graph and V(R;) C
V(R}). By Corollary 7, because Vg, Up € V(M p). MpUC is 2-connected. Therefore,
by Theorem 4, C' can be chosen such that G — E(C") is 2-connected. By Theorem 14,
C’ contradicts the choice of C by Condition (c).

Claim 4 If Ry is a circuit graph then L' is a string of blocks closed by e; and each
block is a circuit graph.

Proof 4 Suppose first that some edge f of Ry is not a virtual edge. Fort,,t; € V(Ry),
let W be a longest tito-path in Ry such that f € E(WY) and no edge of W is a
virtual edge. Since e;,e1; € E(Ri), W can be labelled such that t, & {x1,yi}. Let
e1,; = toty be the virtual edge of R, incidentto t, andletTiry ; = e, ; € E(T"). InH,
there are exactly two toty-branches in X) ;. Therefore, since dg,(t1) = 2, dy(t1) = 3,
a contradiction, as dp(v) is even for each v € V(HY). Hence, each edge of Ry is a
virtual edge. Let V (Ry) be labelled z; = v, 12, ..., V,p = Y1 as Ry —ey is traversed
fromzy to y. For1 <i < p—1, the virtual edge e, ; = viivi,i+1 € E(Ry) joins 7 to
r1,i in T'. Now dg,(vi,i+1) = 2 and so the vertex vy 4.1 belongs to precisely X; ; and
Xiisr, forl1 < i < p—2, but to no other Xy 5, j # ,i+ 1. Thus, L' is a string of
blocks X1,1, X1,2,...,X1,p—1 closed by e; and each block is a circuit graph.

Let T" be the tree that results by deleting each vertex of T' of degree 1 that is not
r1. Recall that if dp+(r)) = 1 then P! = r1;,71,Thy.. ., Tm,Tk, Where ). =1 = 1,
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and if dr(r1) # 1 then P' = 114,71, Th, ..., "m, Tk, Tk,i, Such that dp+(rx ;) = 1 and
Ty € V(P'). Put e, = xTm. Let (K, N) be the cleavage at ey, with hinges (zk,yx] in
H such that V(Ry) C V(K). Pt K' = K + ey

Claim 5 T" is a path graph and we may assume that v, € V(L')\{zi,u1} and v, €
V(K" )\{zx, yx}. If Ry is a circuit graph then Ry is a 3-circuit.

Proof § Suppose that the Claim is false. If {Vq,vs} N V(L) # O then let e be labelled
such that vy € V(L). If Ry is a simple 3-connected graph then L' is a nodally 3-
connected graph, and by Claim 3, v, € V(L)\{z1,y1}. Therefore, suppose that R,
is a circuit graph either with at least four edges (p > 3) or with three edges (p = 2)
and such that v, € V(L). By Claim 4, L is a string of blocks and each block X ;
of L is a circuit graph that can be thought of as two vy vy iy1-branches, for 1 <
i <p-1 Letvyvg € V(L)NV(C), let S be a viva-path in L and let P be an
zyyi-path in L. If vy € V(L) let vy belong to a branch By, of L. Since G is simple,
V(C) N (V(Xi i\ {vi5, v,i41}) # Ofor 1 <1 < p—1, and we can choose vy,v2, S
and P such that the following four statements hold:
(i) the edges of S belong to at most one branch of any X ;.
(i) V(C) N V(8S) = {v1, v2}.
(i) E(S) N E(By) = 0.
(iv) E(S)N E(P) =0 and v, € V(P).
Put Mp = M U P. Let S) and Sa be two {vy,v;}-bridges in C labelled such that
e g E(S)). Pt C' = S USand Mg = Mp U Q. Then (L,M), P and Q satisfy
Theorem 20, and therefore there exists a cleavage unit R} of Mg such that V(R,) C
V(R}). By Theorem 4, because C' C M§ there exists a circuit C" C M§ such that
G — E(C") is 2-connected. Therefore, by Corollary 14, C" contradicts the choice of
C by Condition (c).

Hence, vy € V(L) and if Ry is a circuit graph, p = 2 and Ry is a 3-circuit. If ) #
1k then by applying the above arguments to K', it follows that v, € V(K')\{zx, yx}-
Hence, v, € V(K')\{zk,yx} and T" is a path graph.

By Claim 5, T’ is a tree in which a path T" can be identified such that all vertices of
T either lie on the path or are are adjacent to a vertex on the path.

Claim 6 Neither Ry nor Ry, is a circuit graph.

Proof 6 Suppose that the Claim is false and that R, is a circuit graph. By Claim 5,
|E(Ry)] = 3. If S and P can be chosen in L such that statements (i) (ii),(iii) and
(iv) of Claim 5 hold then the result follows as for in Claim 5. Hence, v, belongs
to the same branch as either all the vertices of V(C) N V(Xi,1) or all the vertices
of V(C) n V(X 2). Another consequence is that vja & V(C). By symmetry, we
can assume that vi,vy € V(X),1), vi.vp € V(B)) for a branch By of Xi,,. Let
B be a v v 3-branch of X, o for which V(B2) N V(C) # 0. Let v, € V(Bs)
such that v, is the first vertex of C that occurs on By, in traversing By from v 1o
v,3. Let S and P be chosen such that statements (i) and (ii) of Claim 5 hold and

395



96¢

puv {"a‘iz} = (‘W)A U (IB)A ‘2ous dpy ur g youvaq-oR0x up o1 sSuofaq a
{00z} — g fo auoduwods p 01 s8uojaq ®a aouig -°a s1 {0 ‘0x}\(07) A fo apou
Quo oy (dp)EA 3 STl puv \Jy = | 0 smyL "(OW)EA S (dJV)A o1ys yons
(O ‘0T) 129D} DS 20 pa12IUU0I-£ K)Dpou s1 d py 32w *, fy ul [0 *0] 1v uonvivdas
-Z 1opou p st (Opy ‘07) 1pys asoddng ydpa8 parpauuor-g apduns v s1 Yy wy awnsso
Kow am ‘7| wa103y] Kq ‘sny] UONIIPDIIUOD D ‘PIIIIUNOI-L S1 ] SDI SIYI U] “OM]
1sD3] 1D 3215 Jo 28p2 apdunu v ynm a3pa yova Swovydas Kq € wosf pauviqo ydp.8 v
Jo uoisinpgns v o1 siydiowost s1 [y uayy ydvad puoq v st 13y f1 Yy = °y ‘aouay
@ = (') A U (D) A 2outs) pasaaaas 21p % puv ®a fo 52194
3y fi s1nsas uoNIPDAIUO0D D ‘Mou Ing ydpa8 11nd410 v 51 %Y ‘7] wa10231 ] q ‘a10f249y ]
‘ydou8 pa1oauuoa-g a)duus v 10u 51 %Yy ‘Ydpa8 puoq o s1 Ty 2ouis ‘1N2412 Jo 2210Yd Y1
u (2) uonipuo) £q puv ydpid puoq o 10u st °y ‘Cr wai0] Kg ‘[ Jo yipdgns v si
L ‘Tu %y pup ydoad puoq v st 4ty = ly ([P4*Uu]IJ)A D 1 pup Iy pup Wy oy
01 uownuod 135 a8uy v 51 [ ‘1] = [I8'Ix) asnpoaq ‘4| waioay] £g Wy # °Y
Ipy1 asoddng uouAPVLINCI D UIDIGO 01 PAIIAUUOI-L S1 [ 1DY1 2a04d mou ay
"2y 01 s8u0jaq ospp €n
‘Sny ] UONIIPDAIUOI D UIDIQO 0] AUNTID 240qD 2y u} €'ln puv T ynm Vin puo 1y
dpms up2 am uays jun a8papapd aws ays 01 Suojaq jou op °o puv €'n J ‘nun 28vava
awps ay1 o1 8uojaq ®n pup 1'la 1y1 awnsso Kow am ‘aouapy (2) uoupuo) £q *p fo
2010Y2 3Y1 01 UONAPDIINOD D *, [T JO 11un a8vAD3]2 v ul pauIpI0d 51 Yy ‘b1 Lipjjoao)
€g ydva8 nmono v jou st Wy puv () A O (W) A 10y yons (dpxr)3L 3 Yy uv sisixa
21311 ‘u0f2431y1 pup Oz wai0ny] Kfsuvs 1P pup 4 (N '7) % sp Via Suummusqns
uayy “p fo nun a8pavapo> awws ay 01 Suojaq 1ou op Pa puv 'in oy asoddng
W = WH 9ouag g = (,2)(-0)d=Hp sny1 pup (,31) A = (.0) A S0 ‘uOBIIPVAIOD
v st yomym g = (,)-Ap smy puv (LW)A U ({0} N (D)A) 5 (H'D)m (2)
uononbg £q 4209MOY ‘pa1dauU0I-g S1 , [J 20Uis 1512 1snut o 0 yons (D) — ] ut
yind-a 0  $iSI1X2 242Y3 10y Yyons uasoys 2q ‘(3 ‘OIM D 127 g = (a)(-2)a=ip
= (a)-Hp ‘(1) uononbyg wosy 'y < (a)-Ap wy1 yons (,3)A D a D SiSIX2 2491
wy puv N # JH oy asoddng (3] = .0 40) JN = H DYl MOYS MOU I
(0)A = (1A (A B P sp D fo av10y2 2y1 ut (p) uoupuo) £q ‘2ousg

4] {2} n(0)AS LA

pup
(n “({Pa}\(Pa*"a)28) A)\O N [a Tlafeg N [Elatda]tg = 31

uay} ‘' D]y Ul 40f sv 3q TG pun 15177 " H Jo Iy
nun a8vanap2 v 10f (M)A = (W) A ‘(2) uompuo) puv g waioay] ‘g wat0ay] £g
Pa1dauu0d-z st (,D)F — 9 = H WY yons 3 S5 .0 Nnaud v SISIX3 242y} ‘a10f219y)
pup (3 A 3 o 243 10f ‘uana s1 (o) +Xp ‘uay] "3(, W) = .3 Ind pa1oauuod-g ap
CONIONIW = N snyipup WYNd = T smjs puv ‘J N = 9] °, kvjjoio)
Ag (€10 *a)ig na ‘®a)eg = 2P pup Y% Vhalg = 1Y ind 9 # (Y1X)FU(S)T
Ao # (Cg)au(s)dsnyL 9 = (°g)g u(d)d puv ¢ = (d)F U ()T 1oy yons



V(M) NV (Q2) = {#1,a}, {Zo,v0} = {z1, 0} and B is an z,y-branch. But this is
a contradiction, as Ry = R, is not a circuit graph.
If ri. # 1 then the above arguments apply with the réles of Ti and ry reversed.

By choice of C, R, is a simple 3-connected graph. By Claim 3 and Claim 6,
R = Ky La V(R = {z1,y1, u1,u2}. Pt M' = M + ;.

Claim 7 We can assume that |V (C) 0 (V(L\{z1i,:})| = 2.

Proof 7 Suppose that the Claim is false and that |V (C)N(V (L)\{zi, ui})| = 1. Since
G is simple and 3-connected, V(C) N (V(X1:)\{z1i, y1:}) # 0, where [zy,:,y1,]
is the hinge of (X1;.Yi,:), for 1 < i < q. Therefore, V(C) N (V(L)\{z,u}) =
VYN (VX i)\ {xi1,ma}) = {w} Since Ry = Ky, uyuz is a virtual edge of
Ry, and we can label ;) = uy and y1,1 = ug so that V(X 1) = {vp,u1,u2}. Thus
L= K;_s. PutC' = X;) and H' = G — E(C"). Put B, = z;,u1,y1, B2 = z1,u2, u1
and Hc = M U By U By = (H — E(C")) - {v}. By Corollary 7, H' = HcUC
is 2-connected and Condition (a) in the choice of circuit is satisfied by C'. Both R,
and Ry, are (not necessarily distinct) cleavage units of M' and thus, by Theorem 14,
there exists a cleavage unit Ry of H' such that V(R,) C V(R]) and Rj is not a
circuit graph. Thus, Condition (b) is satisfied. By Condition (c), we may assume that
V(R}) = V(Ry). By Condition (d), since |E(C’)| = 3 and G is simple, |E(C)| = 3.
Let V(C) = {vq, vb, vc}-

By Claim 5, both v, and v belong to V(K )\{zx,yx}, for otherwise replacing e
with either vyv. or vav, results in a contradiction. Thus, if Ry # R, then the result
holds with Ry and R, swapped. Hence R;. = R,.

We now apply Claims I through to 6 to H'. Suppose that Ry, # Ry. If Ry, is a bond
graph then zy, € E(G) and since B, and Bs are both xy,-branches Ry, is replaced
by a cleavage unit R), in H' that is a bond graph with at least 4-edges, a contradiction
to Claim 1. If Ry, is not a bond graph then Ry, is either a circuit graph or a simple
3-connected graph, V(Ry,) ¢ V(R}) and hence, Claim 7 holds for H'. Therefore,
Ri. = Ry = Ry,. Let (Jy, J2) be a nodal 2-separation at [z',y') in H' chosen such that
V(Ry) C V(J1). Then z;,y1 € V(J1) and there is precisely one end cleavage unit,
R} say of Jo such that v, € V(R}). Then Jp = K and z'y’ & E(G).

We now claim that z,y,,x’ and y' are all distinct. If [z1,y1] = [z',y’] then either
there is a vertical 2-separation in G at [zy,y1)) or G = K U L U C, in both cases a
contradiction. Suppose that |{zi,yi} N {z',y¥'}| = 1 and, without loss of generality,
let {z,y} N {=',y'} = {w} = {2'}. Put C* = vy, v,,vc,y1,u2,u1,%. Put G' =
(G = {Va, Vb, Ve, u1, u2}) U {a1, a2, a3}, where ay = zyy;, a2 = yiy’ and az = 71y,
Then H* = G — E(C*) is a subdivision of G’ which is vertically 3-connected, and
thus H* is nodally 3-connected, a contradiction. Hence, {z;, 1} N {z',y'} = 0. But
now LU K is a K3 5-pair bridge in G, a contradiction.

Claim 8 V(C) N (V(L\{zs,w}) € V(Xi)\{zi,1, 9.1}
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Figure 5:

Proof 8 Suppose that the Claim is false and let

vy € V(ICYN{(V(L)\{zt, u NV (Xi2)\{Z1,1,91,1})). P C’' = Xy andlet H' =
G-E(C"). Because L' is nodally 3-connected, Lc. = (L' = E(C'Y\N(V(Xi,))\{z1.1,v1,1})
is 2-connected. Therefore, by Corollary 7, H" = Lo U M is 2-connected. Because
G is simple and 3-connected, V(C) N (V(R;)\W (H®*, R;)) # 0, for each R; that is
an end cleavage unit of H. Therefore, because vy, & V(C'), [V(C)NV(H")| > 2.
By Corollary 7, H' = H" U C is 2-connected. Hence, Condition (a) is satisfied by
C'. Because G is simple and L has a spanning subgraph which is a subdivision of
one of the graphs of Figure 5 we can choose vy, and an zy;-path Py in Lo such that
vy € V(P). Put Mp = M UP,. By Theorem 18, R, € R(Mp). Therefore, by Theo-
rem 14, there exists an Ry € R(H') such that V(R,) C V(R}) and R} is not a circuit
graph. Thus, Conditions (b) and (c) in the choice of circuit are satisfied by C'. By Con-
dition (d), |[E(C)| < |E(C")|. Therefore, V(C) — (V(Xia\{z1.1,91,1}) = {ve,vL},
|E(C")| = |E(C)| and Condition (d) is satisfied by C'. Because P, is a ©-graph,
Py.vq,v and (L, M) satisfy Theorem 20. Therefore V(R,) C V(R}), a contradic-
tion.

By Claim 7 and Claim 8, there exist wy, wy € V(X1,1) N V(C). Let Qy, be a
wywa-path in X,y and let wy, we and Q. be chosen such that |E(Q.,)| is minimum.
Let Sy and Sy be two {w),ws}-bridges in C, labelled such that e € E(S2). Put
Cq = 51U Qu. Because Q,, C Xy, has been chosen such that |E(Q,)| is minimum,
L - E(Q.) is connected. By Claim 8, vp,uy,u2 € V(Xi,1). Because |E(Quy)| is
minimum either uy € V(Qu) or us & V(Qy), by symmetry we may assume that
uy € V(Qw). Then, By = z;,uy,y is an zyy-path in L. Let P be a vyu;-path in
X1 — E(Qu). By choice of P, V(B,) NV (P,) = {u;}. Hence, ByU P, UQ is
a O-graph. Because M’ is 2-connected and Mp = M U P, is a subdivision to M,
Mp is 2-connected. Therefore, by Theorem 7, U = Mp U By U Q, is 2-connected.
By Theorem 4, because Cq C U¥€ there exists a circuit C' in U¢ such that G — E(C’)
is 2-connected. Hence, because (L, M) and By U P, U Q satisfy Theorem 20, Cq
contradicts the choice of C by Condition (c).

It seems quite likely that Theorem 6 is true for all simple 3-connected eulerian
graphs.
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Conjecture 1 Let G be a simple 3-connected eulerian graph. Then there exists a cir-
cuit C such that G — E(C) is nodally 3-connected.

e

Figure 6:

Conjecture 1 may also be true for multigraphs and indeed for all graphs of order 4
or more, however it is not true for |V(G)| = 3; a circuit cannot be removed from the
graph of Figure 6 without leaving either a graph without any node vertices, or a graph
with a 1-separation.

Conjecture 2 Let G be a 3-connected eulerian graph for which |V(G)| > 4. Then
there exists a circuit C such that G — E(C) is nodally 3-connected.
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