On Multi-Color Partitions with Distinct Parts

Arnold Knopfmacher
School of Mathematics
University of the Witwatersrand
Johannesburg, South Africa

Neville Robbins Mathematics Department San Francisco State University San Francisco, CA 94132 USA

<u>Abstract</u>: Given integers $m \ge 2$, $r \ge 2$, let $q_m(n)$, $q_0^{(m)}(n)$, $b_r^{(m)}(n)$ denote respectively the number of m-colored partitions of n into distinct parts, distinct odd parts, and parts not divisible by r. We obtain recurrences for each of the above-mentioned types of partition functions.

Key Words: multi-color partitions

1. Introduction

If n and r are natural numbers with $r \geq 2$, let q(n), $q_0(n)$, $b_r(n)$ denote respectively the number of partitions of n into distinct parts, distinct odd parts, and parts not divisible by r. (It is well-known that q(n), $q_0(n)$, $b_r(n)$ also count respectively the number of partitions of n into odd parts, the number of self-conjugate partitions of n, the number of partitions of n such that no part occurs r or more times.) The function $b_r(n)$ is called the number of r-regular partitions of n. Note that $b_2(n) = q(n)$.

Let the integer $m \ge 2$. In this note, we obtain numerous recurrences concerning the m-color analogues of the above-mentioned partition functions. We denote the functions to be studied $q_m(n)$, $q_0^{(m)}(n)$, $b_r^{(m)}(n)$ respectively.

For example, let us list the partitions of 3 into distinct parts in two colors. These are as follows:

$$3, \overline{3}, 2+1, 2+\overline{1}, \overline{2}+1, \overline{2}+\overline{1}$$

Thus we have $q_2(3) = 6$. Furthermore, since only the first two of these six partitions consist entirely of odd parts, we have $q_0^{(2)}(3) = 2$. Also, since the last four of these partitions consist of parts not divisible by 3, we have $b_3^{(2)}(3) = 4$.

The symbol p(n), which occurs in one of our theorems, denotes the ordinary partition function. Let the integer $t \geq 2$. The symbol $r_t(n)$, which occurs in several theorems, denotes the number of representations of n as the sum of t squares of integers. (Representations that differ only in the order of summands are considered distinct.)

2. Preliminaries

Let $x \in C$, |x| < 1. If $k \in Z$, let $\omega(k) = k(3k - 1)/2$. We will make use of the following ientities:

$$\prod_{n=1}^{\infty} (1 - x^n) = \sum_{k=-\infty}^{\infty} (-1)^k x^{\omega(k)}$$
 (1)

$$\prod_{n=1}^{\infty} (1-x^n)^3 = \sum_{k=0}^{\infty} (-1)^k (2k+1) x^{k(k+1)/2}$$
 (2)

$$\prod_{n=1}^{\infty} \frac{1 - x^{2n}}{1 - x^{2n-1}} = \prod_{n=1}^{\infty} \frac{(1 - x^{2n})^2}{1 - x^n} = \sum_{k=0}^{\infty} x^{k(k+1)/2}$$
 (3)

$$\prod_{n=1}^{\infty} (1 - x^{2n})(1 + x^{2n-1})^2 = \sum_{k=-\infty}^{\infty} x^{k^2} = 1 + 2\sum_{k=1}^{\infty} x^{k^2}$$
 (4)

$$\prod_{n=1}^{\infty} (1 - x^{2n})^t (1 + x^{2n-1})^{2t} = \sum_{k=0}^{\infty} r_t(k) x^k$$
 (5)

$$\prod_{n=1}^{\infty} (1 - x^n)^3 (1 - x^{2n-1})^2 = \sum_{k=-\infty}^{\infty} (1 - 6k) x^{\omega(k)}$$
 (6)

$$\prod_{n=1}^{\infty} (1 - x^{2n})^3 (1 - x^{2n-1})^5 = \sum_{k=-\infty}^{\infty} (1 - 6k) x^{\omega(k)}$$
 (7)

$$\prod_{n=1}^{\infty} (1 - x^n)^{-1} = \sum_{n=0}^{\infty} p(n) x^n$$
 (8)

$$\prod_{n=1}^{\infty} (1+x^n) = \prod_{n=1}^{\infty} (1-x^{2n-1})^{-1} = \sum_{n=0}^{\infty} q(n)x^n$$
 (9)

$$\prod_{n=1}^{\infty} (1 + x^{2n-1}) = \sum_{n=0}^{\infty} q_0(n) x^n \tag{10}$$

$$\prod_{n=1}^{\infty} \frac{1 - x^{rn}}{1 - x^n} = \sum_{n=0}^{\infty} b_r(n) x^n \tag{11}$$

$$q(n) \equiv \begin{cases} 1 \pmod{2} & \text{if } n = \omega(\pm m) \\ 0 \pmod{2} & \text{otherwise} \end{cases}$$
 (12)

Remarks: Identities (1), (2), (3) are due to Euler, Jacobi, Gauss respectively. (See [1].) (4) follows from the Jacobi Triple Product Identity, taking z = 1. (5) follows from (4). (6) and (7), which are equivalent, are consequences of the Gordon-Watson quintuple product identity. (See [3].) (8) through (11) are well-known generating function identities. (12) follows from (1) and (9).

Before presenting our main results, we begin with a convolution-type theorem that will be used to prove several identities.

<u>Theorem A</u> If the integer $m \ge 2$, let $f_m(n)$ and g(x) be functions such that

$$\sum_{n=0}^{\infty} f_m(n) x^n = \prod_{n=1}^{\infty} g(x^n)^m$$

where both members of the above identity converge absolutely for |x| < 1. Then for $1 \le j \le m-1$, we have

$$f_m(n) = \sum_{k=0}^n f_{m-j}(n-k)f_j(k)$$
.

Proof: By hypothesis, we have

$$\sum_{n=0}^{\infty} f_m(n) x^n = \prod_{n=1}^{\infty} g(x^n)^{m-j} \prod_{n=1}^{\infty} g(x^n)^j = \sum_{n=0}^{\infty} f_{m-j}(n) x^n \sum_{n=0}^{\infty} f_j(n) x^n.$$

The conclusion now follows by matching coefficients of like powers of x.

3. Partitions into Distinct Parts in m Colors

Definition 1: If $m \ge 1$, let $q_m(n)$ denote the number of partitions of n into distinct parts in m colors.

Generating Function:

$$\sum_{n=0}^{\infty} q_m(n)x^n = \prod_{n=1}^{\infty} (1+x^n)^m \tag{13}$$

Remarks: Identity (13) follows from (9) and from Definition 1.

Our first theorem is a recurrence for $q_2(n)$.

Theorem 1

$$\sum_{k=-\infty}^{\infty} (-1)^k q_2(n-\omega(k)) = \begin{cases} 1 & \text{if } n = m(m+1)/2 \\ 0 & \text{otherwise} \end{cases}.$$

Proof: Using (13) with m = 2, we have

$$\sum_{n=0}^{\infty} q_2(n)x^n = \prod_{n=1}^{\infty} (1+x^n)^2 = \prod_{n=1}^{\infty} \frac{(1-x^{2n})^2}{(1-x^n)^2}.$$

This implies

$$\sum_{n=0}^{\infty} q_2(n) x^n \prod_{n=1}^{\infty} (1-x^n) = \prod_{n=1}^{\infty} \frac{(1-x^{2n})^2}{1-x^n} .$$

The conclusion now follows from (1) and (3), matching coefficients of like powers of x.

The next theorem generalizes Theorem 1.

Theorem 2 If $m \ge 3$, then

$$\sum_{k=-\infty}^{\infty} (-1)^k q_m(n-\omega(k)) = \sum_{j\geq 0} q_{m-2}(n-j(j+1)/2) .$$

Proof:

$$\prod_{n=1}^{\infty} (1+x^n)^m = \prod_{n=1}^{\infty} (1+x^n)^{m-2} \prod_{n=1}^{\infty} (1+x^n)^2 = \prod_{n=1}^{\infty} \frac{(1-x^{2n})^2}{(1-x^n)^2} \prod_{n=1}^{\infty} (1+x^n)^{m-2}.$$

so that

$$\prod_{n=1}^{\infty} (1+x^n)^m \prod_{n=1}^{\infty} (1-x^n) = \prod_{n=1}^{\infty} \frac{(1-x^{2n})^2}{(1-x^n)} \prod_{n=1}^{\infty} (1+x^n)^{m-2} .$$

The conclusion now follows if we invoke (13), (1), and (3) and match coefficients of like powers of x.

Our next theorem is a recurrence for $q_3(n)$.

Theorem 3

$$q_3(n) + 2\sum_{k=1}^{\infty} q_3(n-k^2) = \begin{cases} 1 & \text{if } n = m(m+1)/2 \\ 0 & \text{otherwise} \end{cases}$$

Proof: Replacing x by -x in (4), we have

$$\prod_{n=1}^{\infty} (1-x^{2n})(1-x^{2n-1})^2 = \sum_{n=-\infty}^{\infty} (-1)^n x^{n^2}.$$

Therefore, invoking (13) with m = 3, we have

$$\sum_{n=0}^{\infty} q_3(n) x^n \sum_{n=-\infty}^{\infty} (-1)^n x^{n^2} = \prod_{n=1}^{\infty} (1+x^n)^3 \prod_{n=1}^{\infty} (1-x^{2n}) (1-x^{2n-1})^2 =$$

$$\prod_{n=1}^{\infty} (1 - x^{2n-1})^{-3} (1 - x^{2n}) (1 - x^{2n-1})^2 = \prod_{n=1}^{\infty} \frac{1 - x^{2n}}{1 - x^{2n-1}} = \sum_{n=0}^{\infty} x^{\frac{n(n+1)}{2}}$$

using (9) and (3). the conclusion now follows, matching coefficients of like powers of x.

The following theorem generalizes Theorem 3.

Theorem 4 If $m \ge 4$, then

$$\sum_{k=-\infty}^{\infty} q_m(n-k^2) = \sum_{j=0}^{\infty} q_{m-3}(n-\frac{j(j+1)}{2}) .$$

Proof: We saw in the proof of Theorem 3 that

$$\prod_{n=1}^{\infty} (1+x^n)^3 \sum_{n=-\infty}^{\infty} (-1)^n x^{n^2} = \sum_{k=0}^{\infty} x^{\frac{k(k+1)}{2}}.$$

If we multiply this identity by $\prod_{n=1}^{\infty} (1+x^n)^{m-3}$, invoke (13) and match coefficients of like powers of x, the conclusion follows.

The next theorem is another recurrence for $q_3(n)$.

Theorem 5

$$\sum_{k\geq 0} (-1)^k (2k+1)q_3(n-\frac{k(k+1)}{2}) = \begin{cases} (-1)^m (2m+1) & \text{if } n=m(m+1) \\ 0 & \text{otherwise} \end{cases}$$

Proof: Setting m = 3 in (13), we have

$$\sum_{n=0}^{\infty} q_3(n)x^n = \prod_{n=1}^{\infty} (1+x^n)^3 = \prod_{n=1}^{\infty} \frac{(1-x^{2n})^3}{(1-x^n)^3}.$$

This implies

$$\prod_{n=1}^{\infty} (1-x^n)^3 \sum_{n=0}^{\infty} q_3(n) x^n = \prod_{n=1}^{\infty} (1-x^{2n})^3.$$

The conclusion now follows if we invoke (2) and match coefficients of like powers of x.

The following theorem generalizes Theorem 5.

Theorem 6 If $m \ge 4$, then

$$\sum_{k\geq 0} (-1)^k (2k+1) q_m \left(n - \frac{k(k+1)}{2}\right) = \sum_{j\geq 0} (-1)^j (2j+1) q_{m-3} \left(n - j(j+1)\right) .$$

Proof:

$$\prod_{n=1}^{\infty} (1+x^n)^m \prod_{n=1}^{\infty} (1-x^n)^3 = \prod_{n=1}^{\infty} (1+x^n)^{m-3} \prod_{n=1}^{\infty} (1-x^{2n})^3.$$

The conclusion now follows from (13) and (2), matching coefficients of like powers of x.

The next theorem states a congruential property of $q_p(n)$ when p is prime.

Theorem 7 If p is prime, then

$$q_p(n) \equiv \left\{ egin{array}{ll} q(n/p) \pmod{p} & \mbox{if} & p|n \ 0 \pmod{p} & \mbox{otherwise} \end{array}
ight. .$$

Proof: Identity (13) implies

$$\sum_{n=0}^{\infty} q_p(n) x^n = \prod_{n=1}^{\infty} (1 + x^n)^p \equiv \prod_{n=1}^{\infty} (1 + x^{pn}) \pmod{p} .$$

Now (9) implies

$$\sum_{n=0}^{\infty} q_p(n) x^n \equiv \sum_{n=0}^{\infty} q(n/p) x^n \pmod{p} .$$

Matching coefficients of like powers of x, we have $q_p(n) \equiv q(n/p) \pmod{p}$. This last statement is equivalent to the conclusion, since by definition, $q(\alpha) = 0$ if α is not a non-negative integer.

Corollary 1

$$q_2(n) \equiv \left\{ egin{array}{ll} 1 \pmod 2 & \mbox{if} & n = 2\omega(\pm k) \\ 0 \pmod 2 & \mbox{otherwise} \end{array}
ight. .$$

<u>Proof:</u> Theorem 7 implies $q_2(n) \equiv q(n/2) \pmod{2}$ if n = 2m. The conclusion now follows from (12).

The next several theorems state reduction formulas that express $q_m(n)$ in terms of $q_k(n)$, where k < m.

Theorem 8 If $1 \le j \le m-1$, then

$$q_m(n) = \sum_{k=0}^n q_{m-j}(n-k)q_j(k)$$
.

<u>Proof:</u> This follows from Theorem A, with $f_m(n) = q_m(n)$, and $g(x^n) = 1 + x^n$.

Theorem 9 If $m \ge 2$, then

$$\sum_{k=-\infty}^{\infty} (-1)^k q_m(n-\omega(k)) = \sum_{j=-\infty}^{\infty} q_{m-1}(n-2\omega(j)).$$

Proof:

$$\prod_{n=1}^{\infty} (1+x^n)^m \prod_{n=1}^{\infty} (1-x^n) = \prod_{n=1}^{\infty} (1+x^n)^{m-1} \prod_{n=1}^{\infty} (1-x^{2n}).$$

Invoking (13), we have

$$\sum_{n=0}^{\infty} q_m(n) x^n \prod_{n=1}^{\infty} (1-x^n) = \sum_{n=0}^{\infty} q_{m-1}(n) x^n \prod_{n=1}^{\infty} (1-x^{2n}) .$$

The conclusion now follows from (1), matching coefficients of like powers of x.

The following theorem is yet another recurrence for $q_2(n)$.

Theorem 10

$$\sum_{j=-\infty}^{\infty} (1-6j)q_2(n-\omega(j)) = \begin{cases} (-1)^k(2k+1) & \text{if } n=k(k+1)/2\\ 0 & \text{otherwise} \end{cases}.$$

Proof: Identities (6) and (9) imply

$$\prod (1+x^n)^2 \sum_{j=-\infty}^{\infty} (1-6j)q_n(n-\omega(j)) = \prod_{n=1}^{\infty} (1-x^n)^3 .$$
 (14)

The conclusion now follows if we invoke (13) and (2) and match coefficients of like powers of x.

The next theorem generalizes Theorem 10.

Theorem 11 If $m \ge 3$, then

$$\sum_{j=-\infty}^{\infty} (1-6j)q_n(n-\omega(j)) = \sum_{k\geq 0} (-1)^k (2k+1)q_{m-2}(n-\frac{k(k+1)}{2}) .$$

<u>Proof:</u> The conclusion follows if we multiply (14) by $\prod_{n=1}^{\infty} (1+x^n)^{m-2}$, invoke (13) and (2) and match coefficients of like powers of x.

The last theorem in this section links $q_m(n)$ and p(n).

Theorem 12

$$\sum_{k=0}^{\lfloor n/2 \rfloor} q_m(n-2k)p(k) = \sum_{j=0}^n q_{m-1}(n-j)p(j) .$$

Proof:

$$\prod_{n=1}^{\infty} (1+x^n)^m \prod_{n=1}^{\infty} (1-x^{2n})^{-1} = \prod_{n=1}^{\infty} (1+x^n)^{m-1} \prod_{n=1}^{\infty} (1-x^n)^{-1}.$$

Invoking (13) and (8), we have

$$\sum_{n=0}^{\infty} q_m(n) x^n \sum_{n=0}^{\infty} p(\frac{n}{2}) x^n = \sum_{n=0}^{\infty} q_{m-1}(n) x^n \sum_{n=0}^{\infty} p(n) x^n .$$

The conclusion now follows by matching coefficients of like powers of x.

Table 1 below lists $q_m(n)$ where $1 \le m \le 5$ and $0 \le n \le 20$.

(2)	$q_{5(n)}$	1	5	15	40	92	206	425	835	1575	2880	5121	8885	15095	25165	41240	66562	105945	166480	258560	397235	604162
(2)	44(71)	1	4	10	24	51	100	190	344	601	1024	1702	2768	4422	6948	10752	16424	24782	36972	54602	79872	115805
(2)	$q_3(n)$	1	3	9	13	24	42	73	120	192	302	465	702	1046	1536	2226	3195	4536	6378	9688	12306	16896
(2)	$q_2(n)$	1	2	3	9	6	14	22	32	46	99	93	128	176	238	319	426	299	736	096	1242	1598
(2)	$q_1(n)$	1	1	1	2	2	3	4	3	9	8	10	12	15	18	22	27	32	38	46	54	64
٤	72	0	1	2	အ	4	ະດ	9	7	∞	6	91	11	12	13	14	15	16	17	18	19	50

Table 1: $q_m(n)$

Partitions into Distinct Odd Parts in m Colors

<u>Definition 2</u> If $m \ge 1$, let $q_0^{(m)}(n)$ denote the number of partitions of n into distinct odd parts in m colors.

Generating Function:

$$\sum_{n=0}^{\infty} q_0^{(n)}(n) x^n = \prod_{n=1}^{\infty} (1 + x^{2n-1})^m . \tag{15}$$

<u>Remarks:</u> Identity (15) follows from (10) and from Definition 2. We will find it convenient to employ an alternate form of (15), obtained by replacing x by -x, namely:

$$\sum_{n=0}^{\infty} (-1)^n q_0^{(m)}(n) x^n = \prod_{n=1}^{\infty} (1 - x^{2n-1})^m . \tag{16}$$

Our first theorem in this section is a recurrence for $q_0^{(2)}(n)$.

Theorem 13

$$\sum_{j\geq 0} (-1)^{j(j+1)/2} q_0^{(2)} \left(n - \frac{j(j+1)}{2}\right) = \begin{cases} (-1)^j & \text{if } n = \omega(\pm j) \\ 0 & \text{otherwise} \end{cases}.$$

Proof: (16) implies

$$\sum_{n=0}^{\infty} (-1)^n q_0^{(m)}(n) x^n = \prod_{n=1}^{\infty} (1 - x^{2n-1})^{m-2} \prod_{n=1}^{\infty} (1 - x^{2n-1})^2$$
 (17)

$$=\prod_{n=1}^{\infty} (1-x^{2n-1})^{m-2} \prod_{n=1}^{\infty} (\frac{1-x^n}{1-x^{2n}})^2$$

so that

$$\prod_{n=1}^{\infty} \frac{(1-x^{2n})^2}{1-x^n} \sum_{n=0}^{\infty} (-1)^n q_0^{(m)}(n) x^n = \prod_{n=1}^{\infty} (1-x^{2n-1})^{m-2} \prod_{n=1}^{\infty} (1-x^n) .$$

Invoking (1) and (3), we have

$$\sum_{n\geq 0} x^{\frac{n(n+1)}{2}} \sum_{n=0}^{\infty} (-1)^n q_0^{(m)}(n) x^n = \prod_{n=1}^{\infty} (1 - x^{2n-1})^{m-2} \sum_{n=-\infty}^{\infty} x^{\omega(n)} ,. (18)$$

The conclusion now follows if we set m=2, match coefficients of like powers of x, and simplify.

The next theorem generalizes Theorem 13.

Theorem 14 If $m \ge 3$, then

$$\sum_{j\geq 0} (-1)^{j(j+1)/2} q_0^{(m)} \left(n - \frac{j(j+1)}{2}\right) = \sum_{k=-\infty}^{\infty} (-1)^k q_0^{(m-2)} \left(n - \omega(k)\right).$$

Proof: If $m \ge 3$, then (18) and (16) imply

$$\sum_{n>0} x^{\frac{n(n+1)}{2}} \sum_{n=0}^{\infty} (-1)^n q_0^{(m)}(n) x^n = \sum_{n=0}^{\infty} (-1)^n q_0^{(m-2)}(n) x^n \sum_{n=-\infty}^{\infty} x^{\omega(n)}.$$

The conclusion now follows if we match coefficients of like powers of x and simplify.

The next theorem is a second recurrence for $q_0^{(2)}(n)$.

Theorem 15

$$\sum_{k\geq 0} (-1)^{n-k(k+1)/2} (2k+1) q_0^{(2)} (n - \frac{k(k+1)}{2}) = \begin{cases} 1 \mp 6j & \text{if } n = \omega(\pm j) \\ 0 & \text{otherwise} \end{cases}$$

<u>Proof:</u> If we multiply both members of the first equality in (17) by $\prod_{n=1}^{\infty} (1-x^n)^3$, set m=2 and invoke (6), we obtain

$$\sum_{n=0}^{\infty} (-1)^n q_0^{(2)}(n) x^n \prod_{n=1}^{\infty} (1-x^n)^3 = \sum_{k=-\infty}^{\infty} (1-6k) x^{\omega(k)}$$

The conclusion now follows from (2), matching coefficients of like powers of x.

The following theorem generalizes Theorem 15.

Theorem 16

$$\sum_{k>0} (-1)^{\frac{k(k-1)}{2}} (2k+1) q_0^{(m)} \left(n - \frac{k(k+1)}{2}\right) =$$

$$\sum_{j=-\infty}^{\infty} (-1)^{\omega(j)} (1-6j) q_0^{(m-2)} (n-\omega(j)) .$$

Proof: (16) and (17) imply

$$\sum_{n=0}^{\infty} (-1)^n q_0^{(m)}(n) = \sum_{n=0}^{\infty} (-1)^n q_0^{(m-2)}(n) \prod_{n=1}^{\infty} (1 - x^{2n-1})^2.$$

If we multiply this last identity by $\prod_{n=1}^{\infty} (1-x^n)^3$ and invoke (2) and (6), we obtain

$$\sum_{n=0}^{\infty} (-1)^n q_0^{(m)}(n) \sum_{n=0}^{\infty} (-1)^n x^{n(n+1)/2} = \sum_{n=0}^{\infty} (-1)^n q_0^{(m-2)}(n) \sum_{n=-\infty}^{\infty} (1-6n) x^{\omega(n)}.$$

The conclusion now follows if we match coefficients of like powers of x and simplify.

The next theorem is a recurrence for $q_0^{(3)}(n)$.

Theorem 17

$$\sum_{j>0} (-1)^{n-j} (2j+1) q_0^{(3)} (n-j(j+1)) = \begin{cases} (-1)^k (2k+1) & \text{if } n = \frac{k(k+1)}{2} \\ 0 & \text{otherwise} \end{cases}.$$

Proof: Setting m = 3 in (16), we have

$$\sum_{n=0}^{\infty} (-1)^n q_0^{(3)}(n) x^n = \prod_{n=1}^{\infty} (1 - x^{2n-1})^3 = \prod_{n=1}^{\infty} \frac{(1 - x^n)^2}{(1 - x^{2n})^3} .$$

Thus

$$\prod_{n=1}^{\infty} (1-x^{2n})^3 \sum_{n=0}^{\infty} (-1)^n q_0^{(3)}(n) x^n = \prod_{n=1}^{\infty} (1-x^n)^3.$$

The conclusion now follows from (2), matching coefficients of like powers of x.

The next theorem generalizes Theorem 17.

Theorem 18 If $m \ge 4$, then

$$\sum_{j\geq 0} (-1)^{j(j+1)} (2j+1) q_0^{(m)} (n-j(j+1)) =$$

$$\sum_{k\geq 0} (-1)^{k(k+1)/2} (2k+1) q_0^{(m-3)} (n-k(k+1)/2) .$$

Proof: Identity (16) implies

$$\sum_{n=0}^{\infty} (-1)^n q_0^{(m)}(n) x^n = \prod_{n=1}^{\infty} (1 - x^{2n-1})^3 \sum_{n=0}^{\infty} (-1)^n q_0^{(m-3)}(n) x^n.$$

If we multiply by $\prod_{n=1}^{\infty} (1-x^{2n})^3$, we obtain

$$\prod_{n=1}^{\infty} (1-x^{2n})^3 \sum_{n=0}^{\infty} (-1)^n q_0^{(m)}(n) x^n = \prod_{n=1}^{\infty} (1-x^n)^3 \sum_{n=0}^{\infty} (-1)^n q_0^{(m-3)}(n) x^n.$$

The conclusion now follows if we invoke (2) and match coefficients of like powers of x.

The next theorem is a recurrence for $q_0^{(5)}(n)$.

Theorem 19

$$\sum_{k=0}^{\infty} (-1)^k (2k+1) q_0^{(5)}(n-k(k+1)) = \begin{cases} (-1)^{\omega(\pm k)} (1 \mp 6k) & \text{if } n = \omega(\pm k) \\ 0 & \text{otherwise} \end{cases}$$

Proof: Replacing x by -x in (7), we have

$$\prod_{n=1}^{\infty} (1 + x^{2n-1})^5 (1 - x^{2n})^3 = \sum_{k=-\infty}^{\infty} (-1)^{\omega(k)} (1 - 6k) x^{\omega(k)} . \tag{19}$$

The conclusion now follows from (15) and (2), matching coefficients of like powers of x.

The next theorem generalizes Theorem 19.

Theorem 20 If $m \ge 6$, then

$$\sum_{k=0}^{\infty} (-1)^k (2k+1) q_0^{(m)}(n-k(k+1)) = \sum_{j=-\infty}^{\infty} (-1)^{\omega(j)} (1-6j) q_0^{(m-5)}(n-\omega(j)) .$$

<u>Proof:</u> If we multiply identity (19) by $\prod_{n=1}^{\infty} (1+x^{2n-1})^{m-5}$, we get

$$\prod_{n=1}^{\infty} (1+x^{2n-1})^m (1-x^{2n})^3 = \sum_{k=-\infty}^{\infty} (-1)^{\omega(k)} (1-6k) x^{\omega(k)} \prod_{n=1}^{\infty} (1+x^{2n-1})^{m-5}.$$

The conclusion now follows from (15) and (2), matching coefficients of like powers of x.

The next theorem is an analogue of Theorem 8.

Theorem 21 Let $1 \le j \le m-1$. Then

$$q_0^{(m)}(n) = \sum_{k=0}^n q_0^{(m-j)}(n-k)q_0^j(k)$$
.

<u>Proof:</u> This follows from Theorem A, with $f_m(n) = q_0^{(m)}(n)$ and $g(x) = 1 + x^{2n-1}$.

We conclude this section with several theorems that link $r_t(n)$ with $q_0^{(m)}(n)$.

Theorem 22

$$\sum_{k=-\infty}^{\infty} (-1)^k r_2(n-2\omega(k)) = \sum_{j=0}^{\infty} (-1)^j (2j+1) q_0^{(4)}(n-j(j+1)) .$$

<u>Proof:</u> If we invoke (5) with t = 2 and multiply by $\prod_{n=1}^{\infty} (1 - x^{2n})$, we get

$$\sum_{n=0}^{\infty} r_2(n) x^n \prod_{n=1}^{\infty} (1-x^{2n}) = \prod_{n=1}^{\infty} (1-x^{2n})^3 \prod_{n=1}^{\infty} (1+x^{2n-1})^4.$$

The conclusion now follows from (1), (2), and (15), matching coefficients of like powers of x.

Theorem 23

$$r_3(n) = \sum_{k=0}^{\infty} (-1)^k (2k+1) q_0^{(6)}(n-k(k+1)) .$$

Proof: If we invoke (5) with t = 3, we obtain

$$\sum_{n=0}^{\infty} r_r(n) x^n = \prod_{n=1}^{\infty} (1 - x^{2n})^3 \prod_{n=1}^{\infty} (1 + x^{2n-1})^6.$$

The conclusion now follows from (2) and (15), matching coefficients of like powers of x.

Theorem 24

$$r_3(n) = \sum_{k=0}^{\infty} (-1)^{\frac{k(k-1)}{2}} (2k+1) q_0^{(3)} (n - \frac{k(k+1)}{2}) .$$

Proof: If we invoke (5) with t = 3, replace x by -x and simplify, we have

$$\sum_{n=0}^{\infty} (-1)^n r_3(n) x^n = \prod_{n=1}^{\infty} (1-x^n)^3 \prod_{n=1}^{\infty} (1-x^{2n-1})^3.$$

So that (16) implies

$$\sum_{n=0}^{\infty} (-1)^n r_3(n) x^n = \prod_{n=1}^{\infty} (1-x^n)^3 \sum_{n=0}^{\infty} (-1)^n q_0^{(3)}(n) x^n.$$

The conclusion now follows from (2), simplifying and matching coefficients of like powers of x.

Remarks: In [2], Ewell obtained the identity:

$$r_3(n) = \sum_{k=-\infty}^{\infty} (-1)^{\omega(k)} (1-6k) q_0(n-\omega(k)) .$$

Table 2 below lists $q_0^{(m)}(n)$ for $1 \le m \le 5$ and $0 \le n \le 20$.

n	$q_0^{(1)}(n)$	$q_0^{(2)}(n)$	$q_0^{(3)}(n)$	$q_0^{(4)}(n)$	$q_0^{(5)}(n)$
0	1	1	1	1	1
1	1	2	3	4	5
2	0	1	3	6	10
3	1	2	4	8	15
4	1	4	9	17	30
5	1	4	12	28	56
6	1	5	15	38	85
7	1	6	21	56	130
8	2	9	30	84	205
9	2	12	43	124	315
10	2	13	54	172	465
11	2	16	69	232	665
12	3	21	94	325	960
13	3	26	123	448	1380
14	3	29	153	594	1925
15	4	36	193	784	2651
16	5	46	252	1049	3660
17	5	54	318	1388	5020
18	5	62	391	1796	6775
19	6	74	486	2320	9070
20	7	90	609	3005	12126

Table 2: $q_0^{(m)}(n)$

5. Partititions into parts not divisible by r, in m colors

<u>Definition 3</u> If $m \ge 2$ and $r \ge 2$, let $b_r^{(m)}(n)$ denote the number of partitions of n in m colors into parts not divisible by r.

Generating Function

$$\sum_{n=0}^{\infty} b_r^{(m)}(n) x^n = \prod_{n=1}^{\infty} \left(\frac{1 - x^{rn}}{1 - x^n}\right)^m . \tag{20}$$

Remarks: Identity (20) follows from (11) and from Definition 3.

Our first theorem in this section is an analogue of Theorem 5.

Theorem 25 If $1 \le j \le m-1$, then

$$b_{\tau}^{(m)}(n) = \sum_{k=0}^{n} b_{\tau}^{(m-j)}(n-k)b_{\tau}^{(j)}(k) .$$

<u>Proof:</u> This follows from Theorem A, with $f_n(m) = b_r^{(m)}(n)$ and $g(x) = (1 - x^r)/(1 - x)$.

The next theorem is a recurrence concerning $b_r^{(2)}(n)$.

Theorem 26

$$\sum_{k=-\infty}^{\infty} (-1)^k b_r^{(2)}(n-\omega(k)) = \sum_{j=-\infty}^{\infty} (-1)^j b_r(n-r\omega(j)) .$$

Proof: Invoking (20) with m = 2, we have

$$\sum_{n=0}^{\infty} b_r^{(2)}(n) x^n = \prod_{n=1}^{\infty} (\frac{1-x^{rn}}{1-x^n})^2.$$

Multiplying by $\prod_{n=1}^{\infty} (1-x^n)$, we have

$$\sum_{n=0}^{\infty} b_r^{(2)}(n) x^n \prod_{n=1}^{\infty} (1-x^n) = \prod_{n=1}^{\infty} \frac{1-x^{rn}}{1-x^n} \prod_{n=1}^{\infty} (1-x^{rn}) .$$

Now (11) implies

$$\sum_{n=0}^{\infty} b_r^{(2)}(n) x^n \prod_{n=1}^{\infty} (1-x^n) = \sum_{n=0}^{\infty} b_r(n) x^n \prod_{n=1}^{\infty} (1-x^{rn}) .$$

The conclusion now follows from (1), matching coefficients of like powers of x.

The next theorem is a recurrence for $b_{\tau}^{(3)}(n)$.

Theorem 27

$$\sum_{j\geq 0} (-1)^j (2j+1) b_r^{(3)} (n - \frac{j(j+1)}{2}) = \begin{cases} (-1)^k (2k+1) & \text{if } n = \frac{rk(k+1)}{2} \\ 0 & \text{otherwise} \end{cases}$$

Proof: If we invoke (20) with m = 3 and multiply by $\prod_{n=1}^{\infty} (1 - x^n)^3$, we obtain

$$\prod_{n=1}^{\infty} (1-x^n)^3 \sum_{n=0}^{\infty} b_r^{(3)}(n) x^n = \prod_{n=1}^{\infty} (1-x^{rn})^3.$$

The conclusion now follows from (2), matching coefficients of like powers of x.

Our last theorem is a reduction formula that generalizes Theorem 27.

Theorem 28 If $m \ge 4$, then

$$\sum_{j>0} (-1)^j (2j+1) b_r^{(m)} (n - \frac{j(j+1)}{2}) = \sum_{k>0} (-1)^k (2k+1) b_r^{(m-3)} (n - \frac{rk(k+1)}{2}).$$

Proof: Identity (20) implies

$$\sum_{n=0}^{\infty} b_r^{(m)}(n) x^n = \prod_{n=1}^{\infty} (\frac{1-x^{rn}}{1-x^n})^3 \prod_{n=1}^{\infty} (\frac{1-x^{rn}}{1-x^n})^{m-3} .$$

so we have

$$\prod_{n=1}^{\infty} (1-x^n)^3 \sum_{n=0}^{\infty} b_r^{(m)}(n) x^n = \prod_{n=1}^{\infty} (1-x^{rn})^3 \sum_{n=0}^{\infty} b_r^{(m-3)}(n) x^n.$$

The conclusion now follows if we invoke (2) and match coefficients of like powers of x.

6. References

- 1. George E. Andrews The Theory of Partitions (1976) Addison-Wesley
- 2. John A. Ewell Representing numbers by sums of three squares JP J. Algebra Number Theory Appl. 1 (2001) n.3 203-212
- 3. Basil Gordon Some identities in combinatorial analysis Quart. J. Math. Oxford Ser. 2, 12 (1961) 285-290