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Abstract: Given integers m > 2, 7 > 2, let g (n), q(()'")(n) , bim™ (n)
denote respectively the number of m-colored partitions of n into distinct
parts, distinct odd parts, and parts not divisible by ». We obtain recur-
rences for each of the above-mentioned types of partition functions.
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1. Introduction

If n and r are natural numbers with r» > 2, let g(n), go(n), b.(n) denote
respectively the number of partitions of n into distinct parts, distinct odd
parts, and parts not divisible by r. (It is well-known that ¢(n), go(n), br(n)
also count respectively the number of partitions of n into odd parts, the
number of self-conjugate partitions of n, the number of partitions of n such
that no part occurs r or more times.) The function b.(n) is called the
number of r-regular partitions of n. Note that by(n) = q(n). '

Let the integer m > 2. In this note, we obtain numerous recurrences con-
cerning the m-color analogues of the above-mentioned partition functions.
We denote the functions to be studied g, (n), q((,m) (n), b{™ (n) respectively.

For example, let us list the partitions of 3 into distinct parts in two
colors. These are as [ollows:

3,3,24+1,2+1,24+1, 2+4171.
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Thus we have ¢2(3) = 6. Furthermore, since only the first two of these six

partitions consist entirely of odd parts, we have q(()z)(3) = 2. Also, since
the last four of these partitions consist of parts not divisible by 3, we have

bP(3) =4

The symbol p(n), which occurs in one of our theorems, denotes the
ordinary partition function. Let the integer ¢ > 2. The symbol r,(n),
which occurs in several theorems, denotes the number of representations of
n as the sum of ¢ squares of integers. (Representations that differ only in

the order of summands are considered distinct.)

2. Preliminaries

LetzeC,lz|<1. Ifke Z, let w(k) = k(3k —1)/2.
We will make use of the following ientities:

[[a-2m= 3 (-1

n=1 k=-—o00

[s o] [>e]
[T =23 =) (~1)k(2k + 1)z*E+1)/2
n=1 k=0

(=]

1 -z (1—:1:2")2_ (k+1)

n=1

ﬁ(l_x2n)(l+z2n—l)2= Z z*° =1+2sz2

n=1 k=—0c0 k=1

ﬁ(l _ x2n)t(1 +z2n—1)2t = irt(k)zk
n=1

k=0

H(l _ zn)3(1 _ z2n—l)2 — i (l - Gk)xw(k)
n=1

k=—o00

H(l _ x2n)3(1 __xZn—l)5 — f: (1 _ 6k)$w(k)
n=1

k=—00

[Ja-z"'=3"pn)e
n=]

n=0

[[a+=z= ﬁ(l -z )= qu(n)x"
n=1 n=1

n=0

402

(1)

(4)

(5)

(6)

(8)

(9)



oo o0

[Ta+z>" =3 gn)z" (10)
n=1 n=0
11 ___,:-: = z%b,.(n)a:" (11)
n=1 n=

_J 1 (mod?2) if n=w(Em
9(m) = { 0 Emod 2) otherwise( ) (12)
Remarks: Identities (1), (2), (3) are due to Euler, Jacobi, Gauss re-
spectively. (See [1].) (4) follows from the Jacobi Triple Product Identity,
taking z = 1. (5) follows from (4). (6) and (7), which are equivalent, are
consequences of the Gordon-Watson quintuple product identity. (See [3].)
(8) through (11) are well-known generating function identities. (12) follows
from (1) and (9).

Before presenting our main results, we begin with a convolution-type the-
orem that will be used to prove several identities.

Theorem A If the integer m > 2, let f.(n) and g(z) be functions
such that

> fmm)z™ = [ gz™)™
n=0 n=1

where both members of the above identity converge absolutely for |z| < 1.
Then for 1 < 5 <m —1, we have

fn(n) =" fm-j(n — k) f;(k) .
k=0

Proof: By hypothesis, we have

2 e = [T o™ [ 9="Y =3 fms(n)z™ D fi(m)a™ .
n=0 n=1 n=1

n=0 n=0

The conclusion now follows by matching coefficients of like powers of z.
]
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3. Partitions into Distinct Parts in m Colors

Definition 1: If m > 1, let g,.(n) denote the number of partitions of
n into distinct parts in m colors.

Generating Function:

> gm(n)z" = [J+z™)™ (13)
n=1

n=0

Remarks: Identity (13) follows from (9) and from Definition 1.

Our first theorem is a recurrence for g2(n).

Theorem 1

0 otherwise

i (—l)kqa(n—w(k))={ Lif n=m(m+1)/2

k=—00

Proof: Using (13) with m = 2, we have

$ e - [l = [ 42220
n=1

n=0

This implies

> aa(ma [J -am) = [ =22
n=0 n=1

In
n=1

The conclusion now follows from (1) and (8), matching coefficients of like
powers of z.

The next theorem generalizes Theorem 1.

Theorem 2 If m > 3, then

> (1) gmn —wk)) = gm-a(n-35( +1)/2) .

k=—o0 j>0
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Proof:

H(1+:c H(1+:c m-2H(1+x")2 H 2H(l+z -2,

so that
= e 00 1 2py2
[Ja+e [[-en = 1 5 [laven

The conclusion now follows if we invoke (13), (1), and (3) and match coef-
ficients of like powers of z. W

Our next theorem is a recurrence for gz(n).

Theorem 3

1 if n=m(m+1)/2
0 otherwise

gs(n) + 2Zq3('n. - kz) = {

k=1
Proof: Replacing z by —z in (4), we have
[> ] [ ] 2
H(l -172“)(1 _x2n—1)2 = Z (_l)nzn )
n=1 n=-—oco
Therefore, invoking (13) with m = 3, we have

qu(n Z (-1)"z n? H(l +m'n)3 H(l _ :1:2")(1 _ $2n—1)2 =
n=1 n=1

n=—oo

b bad l—x n nH
I_Il(l _ z?n—l)—S(l _ xZn)(l _$2n—l)2 = Tt Zz
n=

n=1

using (9) and (3). the conclusion now follows, matching coefficients of like
powersof z. W

The following theorem generalizes Theorem 3.

Theorem 4 If m >4, then

(o]

I S

k=-00
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Proof: We saw in the proof of Theorem 3 that

bt a3 had Nt K1)
[Ta+=z"? > (- =Yz 7
n=1 k=

n=-0oo

If we multiply this identity by []o,(1 + z™)™3, invoke (13) and match
coefficients of like powers of z, the conclusion follows. 1

The next theorem is another recurrence for gz(n).

Theorem 5

;(—l)k(2k+l)%(n——k(k; D) - { (=17@m +1) if n=m(m+1)

Proof: Setting m = 3 in (13), we have
2n)3

> astm)e” = [[(1+2"° = n“‘z .
n=0 n=1

This implies
oo [oo] [e o]
[T -2 as(m)z" = [T(1 -2
n=1 n=0 n=1

The conclusion now follows if we invoke (2) and match coefficients of like
powersofz. W

The following theorem generalizes Theorem 5.

Theorem 6 If m >4, then

So(-1)4(2k + Dam(n— LEXDy S 125 4 1)gmostn - 3G +1))
k>0 320
Proof:

[[Ta+zmm [ -z =J[a+z")2 [ -3 .
n=1 n=1 n=1 n=1

The conclusion now follows from (13) and (2), matching coefficients of like
powersof z. W

406



The next theorem states a congruential property of go(n) when p is prime.

Theorem 7 If p is prime, then

_ | a(n/p) (modp) if p|
gp(n) = { g n(rzr:od P) pot}:er\f')i.:e

Proof: Identity (13) implies

Yo gma=[[(1+z")P=[](1+2) (modp).
n=0 n=1 n=1

Now (9) implies
D g(n)z" =) g(n/p)z" (modp).
n=0 n=0

Matching coefficients of like powers of z, we have g,(n) = q(n/p) (mod p).
This last statement is equivalent to the conclusion, since by definition,
g(a) = 0if « is not a non-negative integer. W

Corollary 1

_ [ 1 (mod?2) if n=2w(xk)
g2(n) = 0 (mod 2) otherwise

Proof: Theorem 7 implies g(n) = ¢(n/2) (mod 2) if n = 2m. The
conclusion now follows from (12). W

The next several theorems state reduction formulas that express gm(n) in
terms of gx(n), where k < m.

Theorem 8 1If1<j<m-—1,then

gm(n) =Y gm-3(n — k)g;(k) .

k=0

Proof: This follows from Theorem A, with f,,(n) = gm(n), and
gz®)=14z". N

407



Theorem 9 If m > 2, then

3 (Degnn—wk) = S gmor(n— 2w () .

k=—oo =
Proof:
ﬁ;(Hz H(l-x =]§[‘1+Z")'""f°[1(1-z2")
Invoking _(13), we have ) _
nz_%qm(n):c Hl(l —z") = éqm_l(n)xnﬁ(l _ay.

The conclusion now follows from (1), matching coefficients of like powers
ofz. W

The following theorem is yet another recurrence for go(n).

Theorem 10
— —1)k . _
> a —Gj)Q2(n—w(j))={ (1)8@k+1) il n= Kk +1)/2
j=-o0

Proof: Identities (6) and (9) imply

3

[[a+z"? Y (1 -6i)amln-w(i)) = [J1-2"?.  (14)

Jj=-0o0 1

n
The conclusion now follows if we invoke (13) and (2) and match coefficients
of like powersof z. W

The next theorem generalizes Theorem 10.

Theorem 11 If m > 3, then

[> o]

D (1-65)ga(n —w(@)) =Y (-1)*(2k + 1)gm-2(n —

j=-—o0 k>0

k(k + 1)
7 )

Proof:  The conclusion follows if we multiply (14) by [12>, (14z")™2,
invoke (13) and (2) and match coefficients of like powers of x |
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The last theorem in this section links ¢ (n) and p(n).

Theorem 12
[n/2]
Z gm(n — 2k)p(k) = qu 1(n — 5)p(3) -
j=0
Proof:
H(l +In)m H 2n)— H(l +xn)m—1 H(l n)-—l
n=1 n=1

Invoking (13) and (8), we have

qu(n)x ZP( )z" —qu 1(n)z" ) p(n)z”
n=0

n=0

The conclusion now follows by matching coefficients of like powers of z.
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Remarks: Identity (15) follows from (10) and from Definition 2. We

will find it convenient to employ an alternate form of (15), obtained by
replacing = by —z, namely:

S (-1 m)zn = [J(1 =22y (16)
n=0 n=1

Our first theorem in this section is a recurrence for q(2) (n).

Theorem 13
_piGne,@ _JU+D (=17 i n=w(E))
Z(:)( Ly o (n 2 )= 0 otherwise
12

Proof: (16) implies

Y (D)) = [ -2 [Ja -2 ()
n=0 n=1 n=1

oo 0 4 _ n
= H(l _I2n—-l)m-2 H(l —= )2
n=1 n=1
so that

H (l -z Z( l)n )(n)xn - H(l 2n—])m—2 H(l — "
n=1

n_

Invoking (1) and (3), we have

Z:L‘n(nﬂ) Z( )" (m)(n):r = H(l _z2n—l)m—2 i M (18)
n=1

nZO n=0 n=—oo

The conclusion now follows if we set m = 2, match coefficients of like powers
of z, and simplify. W

The next theorem generalizes Theorem 13.
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Theorem 14 If m > 3, then

RN ST e 2 TN T
j=0 k=—00

Proof: If m > 3, then (18) and (16) imply

[e ] o0 (o o]
PO G N SIS B C Vi S O LD B
n>0 n=0 n=0 n=-o00

The conclusion now follows if we match coefficients of like powers of z and

simplify, W

The next theorem is a second recurrence for qc(,z)(n).
Theorem 15

0 otherwise
k>0

Proof: If we multiply both members of the first equality in (17) by
[132,(1 — z™)3, set m = 2 and invoke (6), we obtain

S )@ me [[a-z = 3 (1 - kae®
n=0 n=1]

k=-—00

The conclusion now follows from (2), matching coefficients of like powers
ofz. B

The following theorem generalizes Theorem 15.

Theorem 16
(-1 2k + g n - HEFL,
k20
3 (1)1 - 65)gd™ D (n - w(5)) .
Jj=—00
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Proof: (16) and (17) imply

> (-1 (n) = Z( —1)"g§™" 2’(n>1'[(1 )2

n=0 n=0

If we multiply this last identity by [Jo> (1 — z™)® and invoke (2) and (6),
we obtain

oo

(-1 ’(n>2( 1N Y1)l D) Y (16t

n=0 n=0 n=-oco

The conclusion now follows if we match coefficients of like powers of £ and
simplify. W

The next theorem is a recurrence for g )(n)

Theorem 17
{ (—1)%(2k +1) if n= A&

0 otherwise

S (=172 + 1)g (- 55 +1)) =

320

Proof: Setting m = 3 in (16), we have

— " 2
(-1 e —H(l 2?1 = H d xzn) :

n=0
Thus
o0 oo oo
[10 -2 Y (-1 e ()™ = [T (1 - =)°
n=1 n=0 n=1

The conclusion now follows from (2), matching coefficients of like powers
ofx. N

The next theorem generalizes Theorem 17.
Theorem 18 If m >4, then

3 (=100 (25 + 1)gf™ (n - (G + 1)) =
320

D (= 1Rk 4 1)gf™ D n - k(k+1)/2) .
k>0
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Proof: Identity (16) implies

S (="M ) = [T =212 S (-1)"g{™ F (m)z" .
n=1 n=0

n=0

If we multiply by [T, (1 — 22)3, we obtain
[T -2 (=D me" = [T -2 D (=) gf" D)z .
n=1 n=0 n=1 n=0

The conclusion now follows if we invoke (2) and match coefficients of like
powersofz. W

The next theorem is a recurrence for q((,s) (n).

Theorem 19
[e ]
ok oY [ (-1)¥ER(1 F6k) if n=w(tk)

kz_(:)( 1) (2k+1)g0™ (n k(k+1))_{ 0 otherwise

Proof: Replacing z by —z in (7), we have
oo (o]
[Ta+a2Pa-zP = Y (-1)*®-6k)e® . (19)
n=1 k=—-o00

The conclusion now follows from (15) and (2), matching coefficients of like
powersofz. M

The next theorem generalizes Theorem 19.

Theorem 20 If m > 6, then

D (=1)F2k+1)gf™ (n—k(k+1)) = Y (=1)*D(1-65)gd™ " (n-w(5)) .
k=0 j=—o0

Proof: If we multiply identity (19) by [T22,(1 + z?*~1)™~5, we get

ﬁ(1+ar:2"“)"'(1—-'r-'z")3 = 3 (e TJsa1ym=s.

n=1 k=—00 n=1

The conclusion now follows from (15) and (2), matching coefficients of like
powersof z. W
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The next theorem is an analogue of Theorem 8.

Theorem 21 Let1<j<m-—1. Then
@™ =Y o™ (n - k)g(k) .
k=0

Proof: This follows from Theorem A, with f,,(n) = q((,'")(n) and
glz)=1+z*""1. H

We conclude this section with several theorems that link r;(n) with q(()m) (n).

Theorem 22
3 (~1)kra(n - 2w(k)) = D (=172 + 1)g§ (n - (G + 1)) .
k=—o00 j =0

Proof: If we invoke (5) with ¢ = 2 and multiply by []32,(1 — z2"), we
get

iTQ(n)z" ﬁ(l - 1.211) = H(l _ $2n)3 ﬁ(l + IZn—l)‘! )
n=1 n=1 n=1

n=0

The conclusion now follows from (1), (2), and (15), matching coefficients of
like powersof z. W

Theorem 23
ra(n) = 3_(~1)*(2k +1)g§” (n — k(k +1)) .
k=0
Proof: If we invoke (5) with ¢ = 3, we obtain

irr(n)x“ = ﬁ(l - zﬁn)3 ﬁ(l + I?n-—l)6 .
n=1

n=0 n=1

The conclusion now follows from (2) and (15), matching coefficients of like
powersof z. W
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Theorem 24
rs(n) = 3 (-1 2k + 1)g(n - LEXDy
k=0

Proof: If we invoke (5) with t = 3, replace z by —z and simplify, we
have

Z(—l)nm(n)xn = H(l — x‘fl)3 H(l _ z2n~1)3 .
n=1 n=1

n=0

So that (16) implies

S (-)rra(m)zt = [T =22 Y (=g (n)z™ .
n=0 n=1 n=0

The conclusion now follows from (2), simplifying and matching coefficients
of like powersof z. W

Remarks: In [2], Ewell obtained the identity:

ra(n) = D (=1)*¥)(1 - 6k)go(n — w(k)) .
k=—00
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Table 2 below lists q("‘) (n)forl<m<5and 0<n<20.

n] g’ a7 [ g () | 4" () [ & (n)
0 1 1 1 1 1
1 1 2 3 4 5
2 0 1 3 6 10
3 1 2 4 8 15
4 1 4 9 17 30
5 1 4 12 28 56
6 1 5 15 38 85
7 1 6 21 56 130
8 2 9 30 84 205
9 2 12 43 124 315
10 2 13 54 172 465
11 2 16 69 232 665
12 3 21 94 325 960
13 3 26 123 448 1380
14 3 29 153 594 1925
15 4 36 193 784 2651
16 5 46 252 1049 3660
17 5 54 318 1388 5020
18 5 62 391 1796 6775
19 6 74 486 2320 9070
20 7 90 609 3005 | 12126

Table 2: q((,m) (n)

5. Partititions into parts not divisible by r, in m colors

Definition 3 Ifm > 2 and r > 2, let 5™ (n) denote the number of
partitions of n in m colors into parts not divisible by r.

Generating Function

Z b(”‘) (n)z" =

n=0

Remarks: Identity (20) follows from (11) and from Definition 3.

(20)
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Our first theorem in this section is an analogue of Theorem 5.
Theorem 25 If1<j<m-—1,then
b (n) = Yo (n - k) (k) .
k=0

Proof: This follows from Theorem A, with f,(m) = 5{™(n) and
9z)=01-z")/(1-z). W

The next theorem is a recurrence concerning b$.2) (n).

Theorem 26
i (=1)%6{D (n — w(k)) = i (=1Ybp(n - rw(j)) .
k=-00 j=~o0

Proof: Invoking (20) with m = 2, we have

o0
ZbS?) n)z" _H(l—x

n=0

Multiplying by [Tnz,(1 — z®), we have

S e Tla - - [T 125 [lo -+
n=0

n=] n=1

Now (11) implies

Zb(z)(n)x H(l -z" Zb,-(n):z: H(l -z

n=0 n=0

The conclusion now follows from (1), matching coefficients of like powers
ofz. N

The next theorem is a recurrence for b (n).
Theorem 27

. e _1\k s = rk(k+1)
D (-1Y (25 + )6 (n - ’(’—;1—)) = { (-DH2k+1) f n= G

0 otherwise
320
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Proof: If we invoke (20) with m = 3 and multiply by []3>,(1 — z*)3,
we obtain

ﬁ(l ")3Zb(3)(n)x —H(l—x
n=1 n=0

The conclusion now follows from (2), matching coefficients of like powers
ofz. B

Our last theorem is a reduction formula that generalizes Theorem 27.
Theorem 28 If m > 4, then

Z(_l)j(2j+1)b$.m)(n 3G+ 1)) Z( l)k(2k+1)b("‘ 3)( Tk(k;— 1)) .

j20 k20

Proof: Identity (20) implies

S e = [TEZor [T

n=0
so we have
oo oo o0 [ ]
[Ja -y 6w = [[1 -2 Y 6"
n=1 n=0 n=1 n=0

The conclusion now follows if we invoke (2) and match coefficients of like
powersofz. W
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