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Abstract. We study the spectral radius of graphs with n vertices and a
k-vertex cut and describe the graph which has the maximal spectral radius
in this class. We also discuss the limit point of the maximal spectral radius.

Key words: vertex cut, spectral radius, limit point.

AMS classification: 05C15

1. Introduction

The graphs in this paper are simple. The spectral radius, p(G), of a graph
G is the largest eigenvalue of its adjacency matrix A(G). For results on
the spectral radii of graphs, the reader is referred to [4], [5] and [7] and the
references therein. When G is connected, A(G) is irreducible and by the
Perron-Frobenius Theorem, e.g., [1], the spectral radius is simple and has
a unique (up to a multiplication by a scalar) positive eigenvector. We shall
refer to such an eigenvector as the Perron vector of G. If we add an edge
to G, the spectral radius increases.
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A wvertez cut of a connected graph G is a subset V'’ of V(G) such that
G - V' is disconnected. A k-verter cut is a vertex cut with k vertices.

Brualdi and Solheid (3] proposed the following problem concerning spec-
tral radii: Given a set .% of graphs, find an upper bound for the spectral
radii of graphs in % and characterize the graphs in which the maximal
spectral radius is attained. Berman and Zhang (2], and H. Liu et al [§]
studied this question for the graphs with n vertices and k cut vertices, and
k cut edges, respectively, and described the graph that has the maximal
spectral radius in these classes. In this paper, we investigate the same
question for & = ¥, the set of connected graphs with n vertices and a
k-vertex cut, where n > k+ 2 > 3. Let o be a vertex disjoint with the
complete graph K,_;. Then we denote by K*_; the graph obtained by
joining o with k vertices of K,_;, as in Fig. 1. We show that of all the
connected graphs 4*, the maximal spectral radius is obtained uniquely at
K,’:_l. Finally, we study the limit points of the spectral radii.

2. The main results

Suppose that G; and G2 are two connected graphs with k common vertices
V1,V2y vy Uk

0

7

Gvy - uG2 Kk,

Figure 1.
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Then H = Giviva - - 03 Gy is defined by V(H) = V(G;)UV(Ga), V(G1) N
V(Gs) = {v1,vs,...,v}, and E(H) = E(G,) U E(G,), as in Fig. 1.

Let p, ¢ > k£ > 1 and H = Kpvvz---vx Ky, where K, and K, are
complete graphs with V(K,) = {v1,...,%p—k,v1,...,%} and V(K,) =
{wi,...,wq—k,v1,...,vx}. Then V(K,) NV(K,) = {w,...,v}. Let
po(H) be the spectral radius of H. Then p(H) > maz{p,q} — 1. Let
E= (Y1) s Yp—ky T1y ooy Thy 21,5+ - ,zq_k)T be a Perron vector of H, where,
for1<i<k 1<j<p—kandl <!l<qg-—k, z; y; and 2 corre-
spond to v;, u; and wy, respectively. Then by the symmetry of H we have
Y1= " =Ypk, Ty =" =Tp and 21 =+ = 2g_.

Lemma 1. Let H = Kyv\va--- v Ky, p(H), &, T, y; and z be as above.
Writex = z;, y =y; and z = z. Then (p—k)y > z and (g —k)z > y ¢f
min{p,q} > k+1 and p(H) > maz{p,q} + k- 1.

Proof If p=gq, then y = 2, and so (p — k)y > z and (¢ — &)z > y since
p—k =q—k > 1. Suppose that p > gq. Then p(H) > p+ k — 1. From
AH) = p(H) weget p(H)y=(p—k—1)y+kz>(g—k—1)y+kz and
p(H)z = (g —k — 1)z + kz. Hence p(H)(y — z) > (g — k- 1)(y — z), which
implies that y > z. Thus (p — k)y > z.

Next we will show that (g — &)z > y. From A(H){ = p(H)& we also get
p(H)x=(p—k)y+(g-k)z+ (k- 1)z and p(H)y = (p — k — 1)y + k=z.
Thus (g — k)z = (£ (p(H) —k+ 1)(p(H) ~p+ k + 1) —p+ k)y.

Let f(A) = A—k+1)(A—p+k+1)—k(p—k). Then f/(\) = 22— (p—2),
and so f'(A) > 0 if A > (p —2). It is easy to verify that f(A) > 1 if
A > p+ k-1, which implies that (g — k)z > y.

Similarly, we can prove that (p — k)y > zand (g—k)z >y ifg>p. O

Theorem 2. Of all the connected graphs with n vertices and a k-vertex
cut (n > k+ 2 > 3), the mazimal spectral radius is obtained uniquely at
Kk_,.

Proof We have to prove that if G € 9%, then p(G) < p(K%_;) with
equality only when G = K*_,. If p(G) < n — 2, then p(G) < p(KE_)).
So suppose p(G) > n — 2. The adjacency matrix of a connected graph is
irreducible, so if we add an edge e to a connected graph G, p(G+e) > p(G).
Thus we can assume that the k-vertex cut of G is contained in exactly two
blocks and that these two blocks are cliques. Denote these two blocks by
K, and K, respectively. Then p+ g =n and p,g > k. If p=k+1
or g = k+1, then G = K¥_,. So suppose p,q > k+ 1. Let V(K,) =
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{u1,..., up—k,v1,..., 0} and V(K,) = {w1,...,wg—k,v1,...,v}. Then
G = Kpvivp - - vk Kg and V(K,) NV (K,) = {v1,..., v}

Select some w; or uj, say u,—, of G as the vertex o and delete all edges
ujup—x (1 < j < p—k—1)and join all vertices u; with w; (1<j<p-k-1,
1 <1< q—k). Then we obtain the graph G. Obviously G = K*_,.

Let £ be a Perron vector of G, and z, y and 2 are the coordinates of £

corresponding to v;, u; and wy, respectively. Then, by a simple calculation,
we can obtain

ETAG) - AG)NE=2(p -k -1)((a - k)2~ y)y
By Lemma 1, we know that ¢7(A(G) — A(G))¢ > 0.

—_ T AtCc T A(CY T
Thus p(G) = maz,co 42 > 40X 5 40X _ (), O

The study of the limit points of the eigenvalues of a graph was initiated
by Hoffman in (6], where he posed the problem of finding the limits of
cigenvalues of graphs. Now we consider the limits of the spectral radius of
K,,k;__l.

Theorem 3. Let p be the spectral radius of the graph KX_, (n > k+2 > 3).
Then

Si) n—2<p<n—-2+—y:3—'f§-k—+2;

it) limit,_o(p— (n —2)) =0
Proof Suppose V(K,’f_l) = {0,V1,...,Vk, W1, ..., Wn—k—1}, Where the
vertex o only joins with the vertices vq,...,v;. Let ¢ be a Perron vector of

K ,’f_l in which z, y and 2 are the coordinates corresponding to the vertices
v;, 0 and wy, respectively (1<i<k,1<I<n-k-1).

From A(K%_,)¢ = p¢ we obtain py = kz, pzr = y+(k—1)z+(n—k~1)z
and pz = kz + (n — k — 2)z. Hence we have

PP=(n-3)p*—(n+k-2)p+k(n-k—-2)=0 (1)

Since K*_, contains K,,_ as a subgraph, p > n—2, and so we can assume
p=n—2+4, where § > 0. Thus, by (1), we have

B +(2n—-3)8%4+(n?-3n—-k+2)6-k*=0 (2)
Hence ¢ < ;5% Sincen > k+2>3,n%—-3n—k+2>0. Part (ii)
follows from part (i). o
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