ON FAMILIES OF BIPARTITE GRAPHS ASSOCIATED WITH SUMS OF FIBONACCI AND LUCAS NUMBERS

EMRAH KILIC1 AND DURSUN TASCI2

ABSTRACT. In this paper, we consider the relationships between the sums of the Fibonacci and Lucas numbers and 1-factors of bipartite graphs.

1. Introduction

The Fibonacci sequence, $\{F_n\}$, is defined by the recurrence relation, for n>2

$$F_n = F_{n-1} + F_{n-2}$$

where $F_1 = F_2 = 1$.

The Lucas Sequence, $\{L_n\}$, is defined by the recurrence relation, for n>2

$$L_n = L_{n-1} + L_{n-2}$$

where $L_1 = 1$, $L_2 = 3$.

The permanent of an n-square matrix $A = (a_{ij})$ is defined by

$$perA = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}$$

where the summation extends over all permutations σ of the symmetric group S_n . A matrix is said to be a (0,1) - matrix if each of its entries is either 0 or 1.

In [4], Minc constructed the $n \times n$ (0,1)-matrix F(n,k) where, $k \le n+1$, with 1 in the (i,j) position for $i-1 \le j \le i+k-1$ and 0 otherwise. Then he showed that $perF(n,k) = g_{n+1}^k$ where g_n^k is the nth generalized order-k Fibonacci number. When k=2, $perF(n,2)=F_{n+2}$.

²⁰⁰⁰ Mathematics Subject Classification. 11B39, 15A15, 15A36.

Key words and phrases. Fibonacci sequence; Lucas sequence; 1-factor; Permanent.

Also Lee defined the matrix \mathcal{L}_n as follows [3]:

$$\mathcal{L}_{n} = \begin{bmatrix} 1 & 0 & 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & & \vdots \\ 0 & 1 & 1 & 1 & \ddots & & \\ 0 & 0 & 1 & 1 & \ddots & & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots & & \\ & & & & & 0 \\ \vdots & & & & & 1 \\ 0 & \dots & 0 & \dots & 0 & 1 & 1 \end{bmatrix}$$

and showed that

$$per \mathcal{L}_n = L_{n-1}$$

where L_n is the *n*th Lucas number.

In this paper, we find families of square matrices such that (i) each matrix is the adjacency matrix of a bipartite graph; and (ii) the permanent of the matrix is a sum of consecutive Fibonacci or Lucas numbers.

A bipartite graph G is a graph whose vertex set V can be partitioned into two subsets V_1 and V_2 such that every edge of G joins a vertex in V_1 and a vertex in V_2 . A 1 – factor (or perfect matching) of a graph with 2n vertices is a spanning subgraph of G in which every vertex has degree 1. The enumeration or actual construction of 1-factors of a bipartite graph has many applications. Let A(G) be the adjacency matrix of the bipartite graph G, and let $\mu(G)$ denote the number of 1-factors of G. Then, one can find the following fact in [5]: $\mu(G) \leq \sqrt{perA(G)}$. Also, one can find more applications of permanents in [5].

Let G be a bipartite graph whose vertex set V is partitioned into two subsets V_1 and V_2 such that $|V_1| = |V_2| = n$. We construct the bipartite adjacent matrix $B(G) = [b_{ij}]$ of G as following: $b_{ij} = 1$ if and only if G contains an edge from $v_i \in V_1$ to $v_j \in V_2$, and 0 otherwise. Then, in [2] and [5], the number of 1-factors of bipartite graph G equals the permanent of its bipartite adjacency matrix.

Let $A = [a_{ij}]$ be an $m \times n$ real matrix row vectors $\alpha_1, \alpha_2, \ldots, \alpha_m$. We say A is contractible on column (resp. row.) k if column (resp. row.) k contains exactly two nonzero entries. Suppose A is contractible on column k with $a_{ik} \neq 0 \neq a_{jk}$ and $i \neq j$. Then the $(m-1) \times (n-1)$ matrix $A_{ij:k}$ obtained from A by replacing row i with $a_{jk}\alpha_i + a_{ik}\alpha_j$ and deleting row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible on row k with $a_{ki} \neq 0 \neq a_{kj}$ and $i \neq j$, then the matrix $A_{k:ij} = \left[A_{ij:k}^T\right]^T$ is called the contraction of A on row

k relative to columns i and j. Every contraction used in this paper will be on the first column using the first and second rows. We say that A can be contracted to a matrix B if either B = A or if there exist matrices $A_0, A_1, \ldots A_t$ $(t \ge 1)$ such that $A_0 = A$, $A_t = B$, and A_r is a contraction of A_{r-1} for $r = 1, 2, \ldots, t$. One can find the following fact in [1]: let A be a nonnegative integral matrix of order n > 1 and let B be a contraction of A. Then

$$perA = perB.$$
 (1.1)

2. THE SUMS OF THE FIBONACCI NUMBERS

In this section, we determine a class of bipartite graphs whose number of 1-factors is the summation of the Fibonacci numbers, $\sum_{i=0}^{n} F_{i}$.

Let n be positive integer and $n \geq 3$. Let $P_n = [p_{ij}]$ be the $n \times n$ (0,1)-tridiagonal matrix with $p_{ij} = 1$ if and only if $|i-j| \leq 1$. Let $R_n = [r_{ij}]$ be the $n \times n$ (0,1)-matrix with $r_{1j} = 1$ if and only if $3 \leq j \leq n$. Now we consider the sum of these matrices and denote by $V_n = [s_{ij}] = P_n + R_n$. Clearly

$$V_n = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & & & 0 \\ \vdots & & & \ddots & \ddots & \ddots & 1 \\ 0 & & 0 & \dots & 0 & 1 & 1 \end{bmatrix}.$$

Theorem 1. Let $G(V_n)$ be the bipartite graph with bipartite adjacency matrix $V_n = P_n + R_n$, $n \geq 3$. Then the number of 1-factors of $G(V_n)$ is $\sum_{i=0}^{n} F_i = F_{n+2} - 1$.

Proof. If n = 3, then we have

$$perV_3 = per \left[egin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}
ight] = F_0 + F_1 + F_2 + F_3 = 4.$$

Let V_n^k be the kth contraction of V_n , $1 \le k \le n-2$. Since the definition of the matrix V_n , the matrix V_n can be contracted on column 1 so that

$$V_n^1 = \begin{bmatrix} 2 & 2 & 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & 0 & 0 & & & 0 \\ 0 & 1 & 1 & 1 & 0 & & \vdots \\ & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & & & \dots & 0 & 1 & 1 \end{bmatrix}.$$

Since the matrix V_n^1 can be contracted on column 1 and $\sum_{i=0}^3 F_i = 4$ and $F_4 = 3$,

$$V_n^2 = egin{bmatrix} 4 & 3 & 1 & 1 & 1 & \dots & 1 \ 1 & 1 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 & 0 & \vdots \ & \ddots & \ddots & \ddots & \ddots & 0 \ \vdots & & \ddots & \ddots & \ddots & \ddots & 1 \ 0 & & \dots & 0 & 1 & 1 \ \end{bmatrix}$$

$$= egin{bmatrix} \sum_{i=0}^3 F_i & F_4 & 1 & 1 & 1 & \dots & 1 \ 1 & 1 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 & 0 & \vdots \ & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \ \vdots & & & \ddots & \ddots & \ddots & \ddots & 1 \ 0 & & & & & \ddots & \ddots & \ddots & 1 \ \end{bmatrix}.$$

Furthermore, the matrix V_n^2 can be contracted on column 1 so that

$$V_n^3 = \begin{bmatrix} \sum_{i=0}^4 F_i & F_5 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & 0 & 0 & & 0 \\ 0 & 1 & 1 & 1 & 0 & & \vdots \\ & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & \ddots & 1 \\ 0 & & & \dots & 0 & 1 & 1 \end{bmatrix}.$$

Continuing this process, we have

$$V_n^k = \begin{bmatrix} \sum_{i=0}^{k+1} F_i & F_{k+2} & 1 & 1 & 1 & \dots & 1\\ 1 & 1 & 1 & 0 & 0 & & 0\\ 0 & 1 & 1 & 1 & 0 & & \vdots\\ & & \ddots & \ddots & \ddots & \ddots & 0\\ \vdots & & & & \ddots & \ddots & \ddots & 1\\ 0 & & & & \dots & 0 & 1 & 1 \end{bmatrix}$$

for $3 \le k \le n-4$. Hence,

$$V_n^{(n-3)} = \begin{bmatrix} \sum_{i=0}^{n-2} F_i & F_{n-1} & 1\\ 1 & 1 & 1\\ 0 & 1 & 1 \end{bmatrix},$$

which, by contraction of $V_n^{(n-4)}$ on column 1, gives

$$V_n^{(n-2)} = \left[\begin{array}{cc} \sum_{i=0}^{n-1} F_i & F_n \\ 1 & 1 \end{array} \right].$$

By applying (1.1), we obtain $perV_n = perV_n^{(n-2)} = \sum_{i=0}^n F_i$.

3. On the Lucas Numbers and Their Sums

In this section, we determine two classes of bipartite graphs whose number of 1-factors are the Lucas numbers and their sums, $\sum_{i=0}^{n-2} L_i$. Now we note that our result on the Lucas numbers is different from the result of Lee.

Firstly, let be positive integer such that $n \geq 4$ and let $C_n = [c_{ij}]$ be the $n \times n$ (0,1) -matrix with $c_{13} = c_{14} = 1$ and $c_{ij} = 1$ for $|i-j| \leq 1$ and 0 otherwise. Clearly

Theorem 2. Let $G(C_n)$ be the bipartite graph with bipartite adjacency matrix C_n , $n \geq 4$. Then the number of 1-factors of $G(C_n)$ is L_n where L_i is the ith Lucas number.

Proof. If n = 4, then we have

$$perC_4 = per \left[egin{array}{cccc} 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 0 \ 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 \end{array}
ight] = 7 = L_4.$$

Let C_n^k be the kth contraction of C_n , $1 \le k \le n-2$. Since the definition of the matrix C_n , the matrix C_n can be contracted on column 1 so that

$$C_n^1 = \begin{bmatrix} 2 & 2 & 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & 0 & & & 0 \\ 0 & 1 & 1 & 1 & 0 & & \vdots \\ 0 & 1 & 1 & 1 & 1 & \ddots & & \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & & 1 \\ 0 & & & \dots & 0 & 1 & 1 \end{bmatrix}.$$

Since the matrix S_n^1 can be contracted on column 1 and $L_2=3,\,L_3=4,$

$$C_n^2 = \begin{bmatrix} 4 & 3 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & & 0 \\ 0 & 1 & 1 & 1 & & \vdots \\ & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & 1 \\ 0 & & \dots & 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} L_3 & L_2 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & & 0 \\ 0 & 1 & 1 & 1 & & \vdots \\ & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & 1 \\ 0 & & \dots & 0 & 1 & 1 \end{bmatrix}.$$

Furthermore, the matrix C_n^2 can be contracted on column 1 so that

$$C_n^3 = \left[egin{array}{cccccc} L_4 & L_3 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & & 0 \\ 0 & 1 & 1 & 1 & & dots \\ & \ddots & \ddots & \ddots & \ddots & 0 \\ dots & & & & 1 \\ 0 & & \dots & 0 & 1 & 1 \end{array}
ight].$$

Continuing this process, we reach

$$C_n^k = \left[egin{array}{cccccc} L_{k+1} & L_k & 0 & 0 & \dots & 0 \ 1 & 1 & 1 & 0 & & 0 \ 0 & 1 & 1 & 1 & & dots \ & \ddots & \ddots & \ddots & \ddots & 0 \ dots & & & & 1 \ 0 & & \dots & 0 & 1 & 1 \end{array}
ight]$$

for $3 \le k \le n-4$. Hence,

$$C_n^{(n-3)} = \left[\begin{array}{ccc} L_{n-2} & L_{n-3} & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right],$$

which, by contraction of $C_n^{(n-4)}$ on column 1, gives

$$C_n^{(n-2)} = \begin{bmatrix} L_{n-3} + L_{n-2} & L_{n-2} \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} L_{n-1} & L_{n-2} \\ 1 & 1 \end{bmatrix}.$$

By applying (1.1), we obtain $perC_n = perC_n^{(n-2)} = L_n$. So the proof is complete.

Secondly, let n be positive integer such that $n \geq 4$ and let $K_n = [k_{ij}]$ be the $n \times n$ (0,1)-tridiagonal matrix with entries $k_{ij} = 1$ for $|i-j| \leq 1$ and $2 \leq i, j \leq n$, $k_{11} = 1$ and 0 otherwise. Let D_n be the $n \times n$ (0,1)- matrix with $d_{1j} = 1$ for $3 \leq j \leq n$, $d_{24} = 1$ and 0 otherwise. Now we consider the sum of these matrices, K_n and D_n , and denote by $W_n = [w_{ij}] = K_n + D_n$.

Clearly

$$W_n = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & & & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & & & & & \ddots & \vdots \\ 0 & \dots & & & & & & \ddots & \ddots \end{bmatrix}.$$

Theorem 3. Let $G(W_n)$ be the bipartite graph with bipartite adjacency matrix $W_n = [w_{ij}] = K_n + D_n$, $n \ge 4$. Then the number of 1-factors of $G(W_n)$ is $\sum_{i=0}^{n-2} L_i = L_n - 1$.

Proof. If n = 4, then we have

$$perW_4 = per \left[egin{array}{cccc} 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 \end{array}
ight] = 6 = L_0 + L_1 + L_2.$$

Let W_n^k be the kth contraction of W_n , $1 \le k \le n-2$. Since the definition of the matrix W_n , the matrix W_n can be contracted on column 1 so that

$$W_n^1 = \begin{bmatrix} 1 & 2 & 2 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & & & 1 \\ 0 & \dots & & & \dots & 0 & 1 & 1 \end{bmatrix}.$$

Since the matrix W_n^1 can be contracted on column 1 and $\sum_{i=0}^1 L_i = 3$ and $L_2 = 3$,

$$W_n^2 = \begin{bmatrix} 3 & 3 & 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & 0 & 0 & & & 0 \\ 0 & 1 & 1 & 1 & 0 & & \vdots \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & & & \dots & 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{i=0}^{1} L_i & L_2 & 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & 0 & 0 & & & 0 \\ & & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & & & & \dots & 0 & 1 & 1 \end{bmatrix}.$$

Furthermore, the matrix W_n^2 can be contracted on column 1 so that

$$W_n^3 = \begin{bmatrix} \sum_{i=0}^2 L_i & L_3 & 1 & 1 & 1 & \dots & 1\\ 1 & 1 & 1 & 0 & 0 & & 0\\ 0 & 1 & 1 & 1 & 0 & & \vdots\\ & \ddots & \ddots & \ddots & \ddots & \ddots & 0\\ \vdots & & & \ddots & \ddots & \ddots & \ddots & 1\\ 0 & & & \dots & 0 & 1 & 1 \end{bmatrix}.$$

Continuing this process, we reach

$$W_n^k = egin{bmatrix} \sum_{i=0}^{k-1} L_i & L_k & 1 & 1 & 1 & \dots & 1 \ 1 & 1 & 1 & 0 & 0 & & 0 \ 0 & 1 & 1 & 1 & 0 & & \vdots \ & & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \ \vdots & & & \ddots & \ddots & \ddots & \ddots & 1 \ 0 & & & & \dots & 0 & 1 & 1 \end{bmatrix}$$
 $n-4$. Hence,

for $4 \le k \le n-4$. Hence,

$$W_n^{(n-3)} = \begin{bmatrix} \sum_{i=0}^{n-4} L_i & L_{n-3} & 1\\ 1 & 1 & 1\\ 0 & 1 & 1 \end{bmatrix},$$

which, by contraction of $W_n^{(n-4)}$ on column 1, gives

$$W_n^{(n-2)} = \begin{bmatrix} \sum_{i=0}^{n-3} L_i & L_{n-2} \\ 1 & 1 \end{bmatrix}.$$

By applying (1.1), we have $perW_n = perW_n^{(n-2)} = \sum_{i=0}^{n-2} L_i$.

ACKNOWLEDGEMENTS

The authors would like to thank the referee for a number of helpful suggestions.

REFERENCES

- R. A. Brualdi & P. M. Gibson. "Convex Polyhedra of Doubly Stochastic Matrices I: Applications of the Permanents Function." J. Combin. Theory A 22 (1977): 194-230.
- [2] F. Harary. "Determinants, permanents and bipartite graphs." Math. Mag. 42 (1969): 146-148.
- [3] G. Y. Lee. "k-Lucas numbers and associated bipartite graphs." Linear Algebra and Its Appl. 320 (2000): 51-51.
- [4] H. Minc. "Permanents of (0,1)-Circulants." Cand. Math. Bull. 7.2 (1964): 253-263.
- [5] H. Minc. Permanents, Encyclopedia of Mathematics and its Applications. Addison-Wesley, New York, 1978.

¹TOBB Economics and Technology University Mathematics Department 06560 Ankara Turkey

E-mail address: ekilic@etu.edu.tr

²DEPARTMENT OF MATHEMATICS, GAZI UNIVERSITY 06500 ANKARA TURKEY