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Abstract

A )-design on v points is a set of v subsets (blocks) of a v-set
such that any two distinct blocks meet in exactly A points and not
all of the blocks have the same size. Ryser’s and Woodall’s A-design
conjecture states that all A-designs can be obtained from symmetric
designs by a complementation procedure. In this paper, we establish
feasibility criteria for the existence of A-designs with two block sizes
in the form of integrality conditions, equations, inequalities, and Dio-
phantine equations involving various parameters of the designs. We
use these criteria and a computer to prove that the A-design conjec-
ture is true for all A-designs with two block sizes with A < 80 and
A # 45.

1 Introduction

Definition 1.1. Given integers A and v, 0 < A < v, a A-design on v points
is a pair (X, B), where X is a set of cardinality v whose elements are called
points and B is a set of v subsets of X whose elements are called blocks,
such that

(i) for all blocks A,B € B, A# B, |AN B| = A, and
(ii) there exist blocks A, B € B with |A| # |B|.

A-designs were first defined by Ryser (17], [18] and Woodall [26]. The
only known examples of A-designs are obtained from symmetric designs
by the following complementation procedure. Let (X, .A) be a symmetric
(v, k, p)-design with u # k/2 and fix a block A € A. Put B = {A}U{AAB:
B € A, B # A}, where A denotes the symmetric difference of sets (we refer
to this procedure as complementing with respect to the block A). Then an
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elementary counting argument shows that (X, B) is a A-design on v points
with one block of size k and v — 1 blocks of size 2), where A = k — u. Any
A-design obtained in this manner is called a type-1 A-design.

The A-design conjecture of Ryser [17], [18] and Woodall [26] states that
all M-designs are type-1. The conjecture was proven for A = 1 by deBruijn
and Erdés [5], for A = 2 by Ryser [17], for 3 < A < 9 by Bridges and
Kramer [2], [3], [14], for A = 10 by Seress [20], for A = 14 by Tsaur [4], [24],
and for A < 34 by Weisz [25]. S. S. Shrikhande and Singhi [22] proved the
conjecture for prime A and Seress [21] proved it when X is twice a prime.

Investigating the conjecture as a function of v rather than ), Ionin and
M. S. Shrikhande [11], [12] proved the conjecture for v = p+1, 2p+1, 3p+1,
and 4p + 1, where p is any prime, Hein [10] proved it for v = 5p + 1, where
p # 2 or 8 (mod 15) is prime, and Fiala [7], [8] proved it for v =6p+1, p
any prime, and v =8p+1, p=1 or 7 (mod 8) prime.

The reader interested in A-designs should consult the last chapter of
[13).

2 Preliminary results

In this section, we gather together some results on A-designs that we shall
need later. First, we have the following characterization of type-1 A-designs.

Theorem 2.1. [26] A \-design is type-1 if and only if it has ezactly two
distinct block sizes, one of which occurs only once.

Next, we make the following definition.

Definition 2.2. Given a A-design (X, B) and a point z € X, the replication
number of z, denoted by rz, is the number of blocks A € B containing z.

Ryser (17) and Woodall [26] independently proved the following theorem.

Theorem 2.3. If (X, B) is a A-design on v points, then there exist integers
T1 > ro- > 1 such that every point has replication number ry or ro and

r+rpa=v+1. 1)

In addition, if x1 and y; have replication number ry and zo and yy have
replication number ro, then

1 v—-1

) = @
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1 v-1
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We also have the following results.

Theorem 2.4. [19] A A-design on v points with replication numbers ry
and Ty is type-1 if and only if ri(ry —1)/(v —1) orro(ry = 1)/(v —1) is an
inleger.

Theorem 2.5. [15] Let (X, B) be a A-design with replication numbers ry
andry, vy >r2. Then(r1—1)/(ro—1) < Aand if (r1 —1)/(r2—1) 2 A-1,
then (X, B) is type-1.

Theorem 2.6. {7], (8], [10], [11], [12] Let (X, B) be a A-design with repli-
cation numbers ry and ro. If ged(ry — 1,72 — 1) =1,2,3,4,5,6, or 8, then
(X, B) is type-1.

Theorem 2.7. [21], [23] Let (X, B) be a A-design with replication numbers
r1 and ro. Let g =ged(ry — 1,72 —=1). Ifged(X, (r1 —72)/9) =1, 2, or A/2,
then (X, B) is type-1.

Let (X, B) be a A-design on v points. Then Theorem 2.3 implies that
every point has replication number r; or rp for some integers ry > ro.
Therefore, the set X is partitioned into two subsets, E; and Ej, of points
having replication numbers »; and r2, respectively. Let |E)| = e; and
|E2| = eg. Then

e1t+e=v (8)
and counting in two different ways the set of triples (z, 4, B) € X x B2
such that A # B and z € AN B we obtain

eir1(ri — 1) +eara(ra — 1) = v(v - 1A (9)
Solving equations (8) and (9) for e; and ez (and uéing (1) to simplify) we

obtain
o = Av=1) —ra(re — 1)
te T —T2

(10)
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and

er = 7‘1("‘1 —7_1)_-1:(’0 - 1) (11)

Therefore, the right-hand sides of (10) and (11) are positive integers. We
also have the following results.

Theorem 2.8. [2] Let (X,B) be a A-design with replication numbers r,
and ro, 71 > 2. Ife; =1, then (X, B) is type-1. Also, ey # 2.

Theorem 2.9. [19] Let (X,B) be a A-design on v points with replication
numbers ry and ro. Then ejea < A(v — 1) and (X, B) is type-1 if and only
if eyea = Av - 1).

Moreover, each block A is partitioned into two subsets, A’ = AN E; and
A* = AN E,, of points having replication number r; and rq, respectively.
Let |A| =k, |A’| =K/, and |A*| = k*. Then

K+k =k (12)

and counting in two ways the set of pairs (z, B) € X x B\ {A} such that
z € AN B we obtain

Kri—-1)+k*(ra—1)=(v-1)A (13)
Solving equations (12) and (13) for &’ and k* we obtain
Mo =1)=k(rs=1)

r—=T2

% (14)

and

_k(ri=1)=-Av-1)
- T —To ’
Thus, |A’| and |A*| depend only on |A|.

Given two distinct points z and y, denote by 7z, the number of blocks
containing both z and y. We have the following results.

K (15)

Theorem 2.10. [19] Let (X, B) be a A-design on v points with replication
numbers ry and ro, 71 > 2. Let £, € E; and z2 € E5. Then more than
half of the numbers in {rz,y, : y2 € E2} are equal to [ry(r2 — 1)/(v — 1)]
and more than half of the numbers in {rz,y, : y2 € Ea,y2 # z2} are equal
to [ra(r2 —1)/(v = 1)].

Remark 2.11. Even though rz, is not necessarily constant for constant
rz and ry, for convenience we set ri2 = [ri(r2 —1)/(v — 1)] and ro2 =

[ro(r2 = 1)/(v - 1)].

Theorem 2.12. [19] A A-design (X, B) is type-1 if and only if there exists
z € X such that rzy depends only on ry.



3 Integrality conditions

Since type-1 A-designs have only two different block sizes, it seems natural
to study A-designs possessing only two distinct block sizes. In this section,
we begin the study of such designs by establishing integrality conditions
involving various parameters of the designs.

Let (X, B) be a A-design on v points with replication numbers r; and
ro and block sizes k; and k2. Then (14) and (15) imply that the number
of points in a block of size k;, i = 1,2, of replication number r;, j = 1,2,
depends only on ¢ and j and is given by the expressions

_AMv-1)—ki(r2 - 1)

/
kl T —T9 ’ (16)
k;: kl(n —1)—/\(‘0—1), (17)
ry—T2
, _ Mv—1) —ky(r2 — 1)
k‘Z - T — T2 ) (18)
and k 1)—X 1
k;: 2(T1— )_ (’U— )’ (19)

Ty —T2

respectively. Therefore, the right-hand sides of (16), (17), (18), and (19)
must all be nonnegative integers. We also have the following result.

Theorem 3.1. Let (X,B) be a A-design on v points with replication num-
bers vy and r9, 1 > 712, and block sizes ky and ko, k; > ks. Then
ro < kp < k) <7y

Proof. Clearly, we must have ki, k5 < e; and ki, k3 < e2. Using (10), (11),
(16), (17), (18), and (19), we obtain the result. O

Given a point z, denote by 7. the number of blocks of size k; that
contain z and denote by r} the number of blocks of size k; that contain z.
We have the following result.

Theorem 3.2. Let (X,B) be a A-design on v points with replication num-
bers ry and rg, vy > r2, and block sizes ki and ky. Then rl and v} depend
only onr;. In addition, if we denote the number of blocks of size k;, 1 =1,2,
that contain a fized point of replication number r;, j = 1,2, by r}, 1, 3,
and 3, respectively, then

o (k= Nrilra = 1) = (k2 = (@ — 1)]
v (k1 — ka)(r2 = 1) ’

(20)
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= U= V[t = N 1) —y(rp ~ 1]

ri e = k)(r2 = 1) @1)
, (k= Nrafry = 1) = (k2 = \)(v = 1)]
T (k1 = k2)(r1 = 1) ’ 2
and
g = B2 = Nl =N = 1) —rafrs = 1)) 23)

(k1 = ka)(r1 = 1)

Thus, the right-hand sides of (20), (21), (22), and (23) must all be nonneg-
ative integers. Furthermore, max{r},r}} < r1 and max{ry,r3} < ra.

Proof. If z € E4, then

TR+TL=71 (24)
and (2) gives us
Lo + TS =‘v—1. (25)

k=X kp=X ro-—1
Therefore, r, and r} depend only on r;. Putting r, = r| and r; = r} and
solving equations (24) and (25) for r] and r} we obtain (20) and (21).
If z € E3, then
L4 TE=10 (26)
and (3) gives us

Tl + r, _ v—1
kl—/\ kz—)\—‘rl—l.

Thus, r,, and r} depend only on r;. Putting r, = r5 and r; = r; and

solving equations (26) and (27) for rj and 73 we obtain (22) and (23). O

*

(27)

Given two distinct points z and y, denote by rz, the number of blocks
of size k; that contain both z and y and denote by rz, the number of blocks
of size kg that contain z and y. We have the following results.

Theorem 3.3. Let (X, B) be a A-design on v points with replication num-
bers vy and ro, ™1 > 72, and block sizes ky and ko. Let z,y € X, z # y.

Then  (ky = Nlray(ra = 1) = (k2 = A)(ry = 1)]
1~ Txylr2 — - 2 — T —
== ?kl —ka)(r2 - 1) (28)
and (kg = N{(ky = Nrs = 1) = gy (ra = 1]
2 - 1~ AT — 1) —Tgy(T2 —
rey = (k1 — k2)(r2 = 1) : (29)
Tawe b (ks = N)(ray = (k2 = X))
1~ Tzy — 2 —
Toy = P (30)
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and
o= (k2 = A)(k1 = A —7zy)

% —— (31)
fzx € Ey and y € Es, and '
r (kl - ’\)[sz(rl - 1) — (k2 — ’\)(T'Z — 1)] 32
T = (k1 — k2)(r1 - 1) 32)
and
o (k=)0 = N2 = 1) = ray(ry = 1)) 53)
i (k1 = k2)(r1 = 1)
ifz,y € Es.
Proof. First of all,
r:,r:y + r;y = r,,y. (34)
If z,y € Eq, then (4) gives us
r:’:y T;y _ T — 1
Fi-A kA -1 (35)
Solving equations (34) and (35) for rz, and r;, gives us (28) and (29).
If z € £, and y € E», then (5) gives us
Ty, Tey _
k;—/\+k2—/\_1' (36)
Solving equations (34) and (36) for rz, and rz, gives us (30) and (31).
If z, y € F», then (6) gives us
Ty _y T _T271 (37)

kl—A kz—A_Tj—l.
Solving equations (34) and (37) for rz, and r;, gives us (32) and (33). O

Corollary 3.4. Let (X,B) be a A-design on v points with replication num-
bers ry and ra, 71 > 79, and block sizes k1 and k. Then the expressions

(k1 — N1 24212 — (k; — X))

= : (38)
- A [
(k2 = N)(ky = A = [F355 ]), (39)
ki — k2
(ks = N2 (s = 1) = (k2 = Nz = D] @0)

(k; — kz)(rl fond l)
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and

(k2 — N[(ky = N)(r2 — 1) — [22220(r; —1)]
(k1 = ka)(ry = 1)

(41)
are all nonnegative inlegers.

Proof. There exist z € E; and y € E; such that 7y, = r;2 by Theorem
2.10. Substituting this expression into (30) and (31) implies that (38) and
(39) are nonnegative integers. Similarly, there exist =,y € Ep, = # y, such
that rz, = ro2 by Theorem 2.10. Substituting this expression into (32) and
(33) implies that (40) and (41) are nonnegative integers. o

Remark 3.5. Even though r;, and r7, depend on rz, and not just on
rz and ry, for convenience we denote expressions (38), (39), (40), and (41)
by 7o, 712, Th2, and 73,, respectively. Note that we must have ri, <
min{r{, 75,712}, v}y < min{r},r3,r12}, r5y < min{rj,re2}, and 3y, <
min{r3, r22}. :

Theorem 3.6. Let (X,B) be a A-design on v points with replication num-
bers r1 and r9, ™1 > r9, v blocks of size ki, and vo blocks of size ks.
Then

vy = Jor = NNkz + 2w = 1))(rs = 1)(r2 — 1) = Mkz = N)(v — 1)’]
! k1 — k2)(r1 — 1)(r2 — 1)

(42)

and

vy = k2 = MR = N = 1) — (ks + AMw = 1))(r1 = 1)(r2 = 1)]
2 Aky — k2)(r1 — 1)(rz2 — 1)

Therefore, the right-hand sides of (42) and (43) must both be positive inte-
gers. Furthermore, we must have vy > max{r{,r3} and vo > max{r},3}.

Proof. First of all,

. (43)

v1t+v2=v. (44)
Also, (7) gives us

_1_+ v, Y2 (v-1)?
A ki=XA k=X (rn-1(r2-1)

Solving equations (44) and (45) for v; and v, we obtain (42) and (43). O

(45)

Corollary 3.7. Let (X, B) be a A-design on v points with replication num-
bers 1 and o, Ty > 19, and block sizes ky and ko. Then (X, B) is type-1 if
and only if

(ks = Ml(k2 + Mo = 1)(rs = D(ra = 1) = (b2 =N = 1)2] _
A(ky = ka)(r1 = 1)(r2 - 1)
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or

(k2 = N[Mks = N(w =1)% = (k1 + M = D)(r1 = )(ra = 1)] _
A(k] kz)(rl - 1)(7'2 - 1)

Proof. Apply Theorems 2.1 and 3.6. a

4 Equations

In this section, we derive several equations involving various parameters of
A-designs with two block sizes.

Theorem 4.1. Let (X,B) be a A-design on v points with replication num-
bers vy and ro, Ty > 72, vy blocks of size ki, and ve blocks of size ks.
Then

(k1 = A)ri(r2 —=1) = (k2 =N =1)] _ ni[Av —1) —ki(rz — 1)]

(kl k2 (T2 - 1) _‘ A('U hd l) - T2(T2 hd l) (46)

(k2 = M[(k1 = A —=1) —ri(ra = D] _ v2[Av = 1) — ka(r2 — 1)] (a7)
(k1 — ko)(ra—1) Av—=1)=7a(re —1) '

(kl - A)[Tg(ﬁ - 1) - (k2 - /\)(‘U - 1)] — v,[)\(v - 1) - k](Tl - l)] (48)
(k1 = ko)(r1 = 1) AMo—1)—ri(r1=-1) "’

and

(k2 = N)[(ky = A)(v — 1) = 72(ry — 1)) _ vo[AMv — 1) — ka(ry — 1)] (49)

(k1 — ko)(r1 = 1) AMv—-1)=7r(ry —-1)

Proof. For each i,j = 1,2, we count in two different ways the set of pairs
(z, A) € E; x B such that {A] = k; and z € A4 and obtain

eir] = vikj, (50)

eir] = v2kj, (51)

627"2 = vlk‘{, (52)
and

eory = ugk). (53)

Solving equations (50), (51), (52), and (63) for r}, r{, 75, and r$, respec-
tively, using (10), (11), (16), (17), (18), and (19), and equating the results
with the right-hand sides of (20), (21), (22), and (23), we obtain (46), (47),
(48), and (49). a
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A type-1 A-design not only possesses just two distinct block sizes, it is
also the case that one of the blocks is E) or E;. This suggests the following
result which can be found in [24].

Theorem 4.2. Let (X, B) be a A-design on v points with replication num-
bers ry and ro, Ty > T2, vy blocks of size ky, and vy blocks of size ky. Then
(X,B) is type-1 if and only if k1 =0, k] = e, k3 =0, or ky = e;. If
ez > 1, then (X,B) is type-1 if and only if k} =0, k} = ea, k3 = 0, or
k3 = ea.

Proof. By Theorem 2.8, we may assume that e; > 1. Suppose that (X, B)
is type-1. Suppose that 0 < k{,k5 < e;. Then (50) and (51) imply that
)y = vi(ki/e1) and r} = va(kjy/e;). Therefore, v1,v2 > 1, a contradiction
by Corollary 3.7.

Suppose ki = 0. Then r{ = 0 by (50). Let z € E;. Then (4) and (5)

imply that Z . ey _me .
Plogwi [Al= A ko=X mm-1
ify € Fy and
Z 1 _ Tzy -1
AnpeA A=A kp—2A

ify € Ep. Thus, rzy = (k2 — A)(r1 —1)/(r2—1)ify € Ey and rzy = kg — A
if y € FE,. Therefore, by Theorem 2.12, (X, B) is type-1. The remaining
cases are proven similarly. O

Theorem 4.3. Let (X, B) be a A-design on v points with replication num-
bers ry and ro, Ty > 79, vy blocks of size k1, and vg blocks of size ks.
Then

eiry(ry — 1) + eary(ry — 1) = v (v — 1), (54)
e1rir + earpry = dvyve, (55)

and
eiri(r] — 1)+ eara(ry — 1) = dvg(v2 — 1). (56)

Proof. For 1,5 = 1,2, count in two ways the number of triples (z, A, B) €
X x B? such that A # B, |A| = k;, |B| = kj, and z € AN B. We obtain
(54), (55), and (56). O
5 Inequalities

In this section, we establish some inequalities involving various parameters
of M-designs with two block sizes. First, we shall need some results.
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Definition 5.1. Given a real symmetric 7 x n matrix A, we will denote the
eigenvalues of A (which must be real) by A\ (A) > ... > M\ (A). If Bisa
m X m matrix with m < n, then we say that the eigenvalues of B interlace
the eigenvalues of A if B has only real eigenvalues and if A\;(A) > \(B) >
An—m+i(A) for i = 1,...,m. We say that the interlacing is tight if there
exists an integer [, 0 < ! < m, such that A\;(A) = i(B) fori=1,...,l and
An—mii(A)=M(B) fori=1+1,...,m.

Theorem 5.2. [9] Let A be a real symmetric n x n matriz partitioned as
Jollows:

Al,l e Al,m
A= oo,
AT ... Amm
where A;; is square for i = 1,...,m. Let b; ; be the average row sum of

A;ij fori,j=1,...,m. Let B = (b; ;) (we refer to B as the quotient matriz
of A with respect to the partition). Then the eigenvalues of B interlace the

eigenvalues of A. If A;j has constant row sums for i,5 = 1,...,m, then
every eigenvalue of B is also an eigenvalue of A. If the interlacing is tight,
then A;; has constant row and column sums fori,j=1,...,m.

Let (X, B) be a A-design on v points with replication numbers r, and
T2, T1 > T2, v blocks of size ki, and vz blocks of size k;. Let N be any
matrix whose rows are indexed by the elements of X (points in E) coming
first), whose columns are indexed by the elements of B (blocks of size k;
coming first), and whose (z, A) entry is 1 if z € A and is 0 otherwise. Thus,

NTN = [ (k= Ny + 2, Moy 02
Mus o, (k2 = Nlug + Adoy, )

where I,, denotes the n x n identity matrix, J, denotes the n x n matrix
of all 1’s, and Jp, » denotes the m x n matrix of all 1’s. Let

0 N
a=( % V).
The rows of N can be partitioned into £; and E, and the columns of N
can be partitioned into the set of blocks of size k; and the set of blocks of
size ko. This induces a partition of A with quotient matrix B given by
0 0 = 77
0 0 7, 73

B= A
k0 0
kK, ki 0 0
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Theorem 5.3. Let (X, B) be a A-design on v points with replication num-
bers vy and r3, v1 > T2, vy blocks of size k1, and vy blocks of size ka. Then
every eigenvalue of B is also an eigenvalue of A.

Proof. The block matrices in the partitioning of A have constant row sums
by Theorem 3.2. Now apply Theorem 5.2. ' O

Let (X, B) be a A-design on v points with replication numbers r; and
r9, 71 > 72, v blocks of size k;, and v blocks of size k3. Suppose that
e1,e2 >l andri,r},ry, 73 > 0. For i =1,2, fix z; € E; and define N; to be
any (v —1) x r; matrix whose rows are indexed by the elements of X \ {z;}
(points in F; coming first), whose columns are indexed by the set of blocks
in B that contain z; (blocks of size k; coming first), and whose (z, A) entry
is 1 if z € A and is 0 otherwise. Therefore,

T (kl - )\)I,.( + (A - I)J,-r ()\ - I)Jrr’,.. v
NiN; = ( A=Drers (ke =N + A= 1)y )

Fori=1,2, let
0 N
A= ( NT 0 )

The rows of N can be partitioned into E; \ {z1} and F3 and the columns
of N can be partitioned into the set of blocks of size k; that contain z;
and the set of blocks of size ko that contain xz;. Similarly, the rows of Ny
can be partitioned into E; and F» \ {z2} and the columns of N2 can be
partitioned into the set of blocks of size k) that contain zz and the set of
blocks of size kg that contain zs. This induces partitions of A; and A, with
quotient matrices B; and Bs, respectively, given by

riki-1)  ry(k—-1)

0 0% P ad

B = o o =z s
K -1kt 0 0
kKy—1 k§ 0 0

and 77 -y /
0 0 raky T2ky

A=) r30d-1

Bz= 0 0 2321_1 e2—1
K k-1 0 0
Ky ki—1 0 0

Theorem 5.4. Let (X, B) be a A-design on v points with replication num-
bers r; and re, 71 > T2, vy blocks of size ki, and vy blocks of size ky. If
e1 > 1 and r{,r} > 0, then the eigenvalues of B, interlace the eigenvalues
of A1 and if the interlacing is tight, then (X,B) is type-1. Ifex > 1 and
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Ty, 75 > 0, then the eigenvalues of B interlace the eigenvalues of Az and
if the interlacing is tight, then (X, B) is type-1.

Proof. Apply Theorems 5.2 and 2.12. O

Let (X, B) be a A-design on v points with replication numbers r; and
r9, 71 > 79, vy blocks of size k;, and vs blocks of size k3. Suppose that
e;r > 1, ea > 2, and riy,7],,755,73 > 0. By Theorem 2.10, there exist
z) € E; and x3,¥2, 22 € E2 such that 74,1, = r12 and ry,,, = r22. Define
N2 to be any (v — 2) x 712 matrix whose rows are indexed by the elements
of X\ {z1,z2} (points in E; coming first), whose columns are indexed by
the set of blocks in B that contain x; and z3 (blocks of size k; coming first),
and whose (z, A) entry is 1 if z € A and is 0 otherwise. Similarly, define
Nyj to be any (v — 2) x 79 matrix whose rows are indexed by the elements
of X \ {y2, 22} (points in E; coming first), whose columns are indexed by
the set of blocks in B that contain y2 and 2 (blocks of size &k, coming first),
and whose (z, A) entry is 1 if z € A and is 0 otherwise. Thus,

VTN, — [ = NI, + (0 =2)Jry (A =2)Jrs, s,
i5Nis (A = 2)Jrg, ot (k2 = Nlrs + (A= 2)Jry, |

i

For (4,5) = (1,2),(2,2), let

0 N
(%)

The rows of Nj2 can be partitioned into E; \ {z,} and E; \ {z2} and the
columns of Njs can be partitioned into the set of blocks of size k; that
contain z; and z2 and the set of blocks of size ko that contain z; and z;.
Similarly, the rows of N2, can be partitioned into E; and E» \ {y2, z2} and
the columns of Ny, can be partitioned into the set of blocks of size k; that
contain y2 and 2z; and the set of blocks of size k2 that contain y; and z5.
This induces partitions of A;2 and Ass with quotient matrices By, and Bas,
respectively, given by

0 0 "{2(:’11'1) T;:("é_l)
ria(k}—1 rio(k3—1
Blz = 0 0 ez2—1 ex—1
ki-1 ki-1 0 0
kb—1 k3-1 0 0
and s ! L] 7
0 0 '2:"! rzezkz
B 0 0 k=2 rpE-2
22 = ex—2 ez —2
1 k1—2 0 0
ky k3—2 0 0
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Theorem 5.5. Let (X,B) be a A-design on v points with replication num-
bers r, and ro, r1 > 72, vy blocks of size ky, and vy blocks of size ko. If
e, e2 > 1 and rig, ]y > 0, then the eigenvalues of By interlace the eigen-
values of A1z. If ea > 2 and roy,r3; > 0, then the eigenvelues of Ba
interlace the eigenvalues of Agg.

Proof. Apply Theorem 5.2. a

Remark 5.6. The spectrum of the matrix A is easily calculated since

g2 NNT 0
- 0 NTN )

the spectra of NNT and NTN are the same, the eigenvalues of any matrix

of the form
(@ —c)m +cim cImn
cJnm (b—-c)n+cn

are a — ¢ with multiplicity m — 1, b — ¢ with multiplicity » — 1, and

-;—(a+b+c(m+'n.—2):|:

Via+b+c(m+n—2))2 —4((a-c)b-c)+em(b—c) + cnla —c))),

and the spectrum of A is symmetric with respect to zero. These comments
also clearly apply to the calculation of the eigenvalues of the matrices A,
Az, A12, and A22

6 Diophantine equations

In this section, we prove a theorem for A-designs with two block sizes that
is similar to the Bruck-Ryser-Chowla Theorem for symmetric designs [1].
First, we must recall some results from the theory of rational quadratic
forms [6].

Definition 6.1. Let G and H be n x n matrices over . Then G and H
are equivalent, denoted by G = H, if there exists a matrix S over Q such
that H = STGS and det(S) # 0.

Theorem 6.2. Any symmetric matriz is equivalent to a diagonal matriz
diag(dla d?a RS} dn)’ If';r € Sm then dia'g(dl; d2’ AR ) dﬂ) = diag(d‘u'(l)x d7r(2)1
cordnmy)- If ¢ # 0, then diag(dy,da,...,dn) & diag(cdy,dy,...,dn).
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If diag(ay, a,...,an) = diag(b1, b2, ...,bs), then diag(ay,as,...,an,c) =
diag(by, b, ...,bn,c). If

a1
COn—1
ay -+ Gn-1| @n
and det(H) # 0, then G = diag(H,det(G)/det(H)).

Theorem 6.3. If diag(ay,as,...,an,¢) = diag(by,ba,...,bn,c), ¢ # 0,
then diag(a,az, ..., an) = diag(by, b2, ..., bn).

Theorem 6.4. diag(n,n,n,n) = diag(1,1,1,1) for any n € N.
We now have the following result.

Theorem 6.5. Let (X, B) be a A-design on v points with vy blocks of size
k1 and vy blocks of size ko. Then

(k1 — Nt (kg — NP2 (k1 — A)(k2 — A) + Avy (k2 = A) + Avz(ky — A))]
is a perfect square and
() Ifvy =0 (mod 4) and vz = 2 (mod 4), then
diag(ks — A\ k2 — A) = diag(1,1).
If v1 = 2 (mod 4) and v =0 (mod 4), then
diag(ky — M\ k1 — A) =2 diag(1,1).
(b) Ifvi,v2 =2 (mod 4), then
diag(ks — A, kg — A) E diag(ks — A, k1 — A).
(c) Ifvi,v2 =1 (mod 4), then
diag(1,1, \(k1 — N)(kp — X)) = diag(ky — X, ks — A, A).
(d) Ifvi =1 (mod 4) and v2 = 3 (mod 4), then
diag(ks — A\, A(ky — N)(ka — X)) & diag(ky — X, A).
If v; = 3 (mod 4) and vz = 1 (mod 4), then
diag(ky — A Aky — N)(ka — A)) = diag(ks — A, \).
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(e) Ifvy,vp =3 (mod 4), then
diag(k; — A k2 = A, A(ky = A) (k2 — A)) = diag(1,1,N).

(f) If v1 =0 (mod 4) and v2 =1 (mod 4), then
diag(ks — A\, \) = diag(1, A(k2 — N)).
If v1 =1 (mod 4) and v2 =0 (mod 4), then
diag(ky — A\, A) 2 diag(1, A(ky — A)).
(g) If vi =0 (mod 4) and v = 3 (mod 4)), then
diag(1, A) 2 diag(ks — A, A(kz — X))
If vy = 3 (mod 4) and v2 = 0 (mod 4), then
diag(1, \) = diag(ky — A\, A(ky — N)).
(h) Ifv; =1 (mod 4) and v3 = 2 (mod 4), then
diag(1, ky — A\ \) = diag(ks — A, k2 — A, Ak — A)).
If vy =2 (mod 4) and v2 =1 (mod 4), then
diag(1, ko — A, \) = diag(ky — A k1 — A, A(kz — A)).
(i) Ifvi =2 (mod 4) and v2 = 3 (mod 4), then
diag(ky — M k1 =\ A) 2 diag(1, kp — A\, A(kz — \)).
If v; = 3 (mod 4) and v3 = 2 (mod 4), then
diag(ka — A kg — A\, A) = diag(1, ky — A\, A(ky — A)).

Proof. Let

IR

I,.

H= NTN - ( (kl - )‘)Iui + )‘Jvl )‘Jvl W2 )

Advan (k2 = M)y, + Ay,

Next, let

D=diag(!cl _’\v"'lkl _)E!ICQ_A:-").ICQ_A‘!A)

vi v2
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and

Then

STDS =

det(D) = A(k1—A)" (k2 — )2, and det(H) = (k1 —A)** ~H (kg = A)¥*~[(k1 -

A)(k2 = A) + dvy (k2 = A) + Mva(ky — A)] is a perfect square.

Case 1. Suppose v; and v, are both even. Then Theorem 6.2 implies that
det(D)

" det(H)

diag(H, Mk, — \)" (k — \)*2) = diag(ly, A).

D = diag(H, — <) & diag(H, det(D)) =

Therefore,

diag(k1 — A, ... k1 = AN ko — A, ... k2 — D) = diag(l,.
iag (k1 1= A ko 2 — ) 2 diag(},...,1)
vy tlz v

by Theorem 6.3.
Subcase la. If v; = 0 (mod 4) and v = 2 (mod 4), then Theorems 6.4 and
6.2 imply that

diag(ky — M.,k =M ka =\ ... by — \) =

n v2

diag(l,...,1,1,..., ko = AN ko — A) =
Nt N et

v 03—2
diag(ks — M k2 — M\ 1,...,1) = diag(l, ..., 1).
\W2_¢ N’
v— v

Then Theorem 6.3 implies that
diag(ky — A\, ko — X) = diag(1,1).
Similarly, if vy = 2 (mod 4) and v = 0 (mod 4), then
diag(ky — A k1 — A) =2 diag(1,1).
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Remark 6.6. This implies that if »; = 0 (mod 4) and v, = 2 (mod 4),
then ko — A is the sum of two perfect squares and if v; = 2 (mod 4) and
vz = 0 (mod 4), then k; — X is the sum of two perfect squares.

Subcase 1b. If v;,ve = 2 (mod 4), then Theorems 6.2 and 6.4 imply that
diag(lcl _)"---vkl _A}\k2 _A)-'-ka —Al) =

151 v2

diag(l,...,1,ky = AN ki = A 1,.. ., ko — A kp — A) &
N’ S

v -2 va—2
diag(ky — A\ ky — A ky — A k2 — A 1,...,1) 2 diag(l,...,1).
\q.d_./ "\, s’
v~ v

Then Theorems 6.3 and 6.4 imply that
diag(ky — M\ k1 — A ko — N ko — A) =2 diag(1,1,1,1) =

diag(k1 - /\, kl - /\, k1 - )\, kl - A)
Finally, Theorem 6.3 implies that

diag(ks — A\ k2 — X) = diag(ky — A\, k1 — A).

Remark 6.7. This implies that if v1,v2 = 2 (mod 4), then (k) — \)(z? +
y2) = ko — X has a nontrivial rational solution and therefore that (k; —
A)(z? + y?) = (ko — A)z? has a nontrivial integral solution. This implies
that k; — ) is the sum of two perfect squares if and only if k; — X is the
sum of two perfect squares.

Case 2. Suppose v; and v; are both odd. Then Theorem 6.2 implies that

det(D) det(D) det(H)

D = diag(H, _—det(H)) & diag(H, det(H) (k1 = N1 (ky — A)Vz—]) =

diag(H, M(k1 — N)(kz — \)) & diag(l,, \(ky — A)(kz — \)).

Thus,
d"ag(bl —'A,...,kl _Al)!c2_’\:"':k2_):)A)g

v

" v
diag(l,...,1, Mk1 — A)(k2 — A)).
v

Theorem 6.5 (c), (d), and (e) are now proven similarly. The remainder of
Theorem 6.5 is also proven similarly. a
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7 An algorithm

In this section, we develop a simple algorithm that was implemented in
Maple [16]. We use the algorithm to prove that all A-designs with two
block sizes with A < 90 and A # 45 are type-1.

Let (X, B) be a A-design on v points with replication numbers r, and
T2, 71 > T2. Let p=(r; — 1)/(r2 — 1) = z/y, where ged(z,y) = 1, and let
d = e; —r2. Then it can be shown [17], [26] that

n=Mp+1)-(d+1)(p-1), (87)
rp = /\(p+l);d(p— D (58)
o MetD+d 59
P
and

ea=MAp+1)—p(d+1). (60)

Since e1,e2 > 1, using {(59) and (60) we have that
p-Np+1) sas SN (61)

We also have the following resuit.
Theorem 7.1. [22) If A > 1, theny< A andz —y < A,

Suppose (X, B) has just two block sizes, k; and kg, k1 > k3. Then for a
fixed value of A > 1, Theorems 7.1 and 3.1 and (61) imply that

1€y<A-1, (62)
y+1<z <20 -1), (63)
[p—Ap+1)]<d< l%ﬂj, (64)
max{A+1,r2} <ks <r -1, (65)
and
ke+1<k <y (66)

Therefore, for a fixed A > 2, the set of possible A-designs with two block
sizes can be described by a finite set of 6-tuples of the form (\, y, z, d, k2, k1)
(although a single tuple could correspond to multiple designs) which can be
generated using (62), (63), (64), (65), (66), (57), and (58). The algorithm
generates this set of tuples and uses the results present in this paper to
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eliminate tuples that must correspond to nonexistent or type-1 designs.
We also use the following result from [20].
For z € E,, define

Vo= Y (141-

A:z€A

and for = € E; define

U= 3 (1A1-2- 2%,
A:ze A P+ l

Theorem 7.2.

PZU + ZUz_elez(P"l) .

z€E, z€EE, pt+1

In this case,

Uy = ri(ky - ) +rilke A=

T1
+1

for z € E, and

Us = rlks = A= L20) 473 (hks - Us

p+1’ "

for x € E9, so Theorem 7.2 says

erez(p — 1)

Uy + exUs =
pe1l 2U2 PES

Additionally, let ¢; = [r1/(p+1)] —71/(p+1), t2 = [r2/(p+1)] —12/(p+1),
and C = (z — y)|[r1/(p + 1) — A]/(z — y)]. Then we have the following
results from [21].

Theorem 7.3.
4 < (p=1)Ap+tA-p+d)
T e+ +Ar-)p)
and
< (L= DOptA+d)
e+ +A-1)
Theorem 7.4.

tl(p - 1)[62 —e1+1-— tl(v - 1)]

U he -]
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Theorem 7.5.

talp—1)[ez —e1 — 1 — to(v — 1))
- 2o —t2(p+1) - 1]

Us >

Theorem 7.6.

U1>(p+l)(———)\ CA+C+z-y— —— L.

p+1”

The algorithm was run for all 12 < A < 90 and all tuples except
(45,1,4, 3,81,90) and (45,1,4, 11,81, 90) were eliminated. Thus, we have
the following result.

Theorem 7.7. All A-designs with two block sizes with A < 90 and A # 45
are type-1.
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