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Abstract

Necessary and sufficient conditions are given to the existence for
a (K3 + e, A)-group divisible design of type g'u!.

Keywords: (K3 + e, A)-group divisible design; cyclic partial (K3 +
e, A)-GDD; difference leave; Fundamental Construction

1 Introduction

Let G be a simple, connected graph and H a complete multipartite graph.
AH denote the graph H with each of its edges replicated A times. We define
H to be of type gy g2 - -- g% if it has exactly Y °;_, u; classes (groups) in
the multipartition, and there are u; groups of size g; for ¢ = 1,2,...,s.
Then we define AH to be of the same type as H. A G-decomposition of
AH is a partition of AH into subgraphs (blocks) so that each subgraph is
isomorphic to G. We term it as a (G, A)-group divisible design of type
97'95% ---g¥, and it is often called a (G, A\)-GDD for short. The existence
problem of (K3,1)-GDD with group type g'u! is completely settled in [1].
The existence spectrum of (K; — e,1)-GDD with group type g¢* is also
determined in [2]. The aim of this paper is to solve the existence problem
for (K3 +e,A)-GDD of type g'u! for integers g, t, v and A. In what follows
we will denote (K3 + e) by (a,b,c)-d or (b, a,c)-d, sometimes it is called a
kite in [4]).

*Supported by NSFC grant 10371002.

ARS COMBINATORIA 89(2008), pp. 63-88



The following lemma is from [4] when A = 1. It is easy to check that it
still holds when A > 1.

Lemma 1.1 Let g, t, u and A be nonnegative integers. If there exists a
(K3+e,)\)-GDD of type g*u!, then the following conditions are all satisfied:

(1) ifg>0, thent >3, ort=2andu> [g/2],ort=1andu=0, or
t=0;

(2) v < |3g(t - 1)/2] or gt = 0;

(3) A(g3t(t — 1)/2 + gtu) = 0 (mod 4).

First observe that when gt = 0, or t = 1 and u = 0, the design is trivial,
it has no blocks. Hence we assume that g and ¢ are positive and ¢t > 2 in
the following sections.

Theorem 1.2 [4] The necessary conditions as in Lemma 1.1 for the exis-
tence of a (K3 +e,1)-GDD of type g'u' are also sufficient.

2 Preliminaries

In this section, we will introduce some recursive constructions and some
useful lemmas. The following lemmas are from [4] when A = 1. It is not
difficult to prove that they are still true when A > 1.

Theorem 2.1 (Fundamental Construction) Let (V,G, B) be a GDD where
G ={G1,...,Gm}. Let each z € V have an associated integer weight w(z).
Suppose that for each block {z1,22,...,2+} in B, thereis a (K3+e,A)-GDD
with k groups, having sizes w(x1),...,w(2x). Then there is a (K3 + e, A)-
GDD whose groups have sizes 3 cq, w(z) fori=1,...,m.



Lemma 2.2 If there exist (K3 + e, A\)-GDDs of types g'u' and (g/s)*w?!,
then there exists a (K3 + e, A)-GDD of type (g/s)*(w + u)!.

Lemma 2.3 If there exist (K3 + e,A)-GDDs of types g'u! and g°z! with
u = 8¢ + z, then there ezists a (K3 + e,))-GDD of type g**°z!.

Lemma 2.4 Let (V,G,B) be a (K3 + €,A)-GDD with group type g;" g5*
- gum and t > 3. If there exists a (K3 +e,A)-GDD of type gtu® for each
i=1,2,...,m, then there ezists a (K3 +e,))-GDD of type (|V|)*ul.

Lemma 2.5 If(V,G,B) is a (K3 +e,))-GDD of type g;" g5° - -- g¥°, then
there is a (Ka+e, A)-GDD of type (ng;)*' (ng2)¥2 - - - (ngs)** for any integer
n2>1.

Next we introduce a simple but very useful lemma.

Lemma 2.6 Let m and X be positive integers. If there exists a (K3 +e, \)-
GDD of type g'u?, then there exists a (K3 + e,mA)-GDD of type gtu!.

Let D, = {d:1 < d < [n/2]}. The elements of D,, are called differences
of Z,. Let R = {oo}},...,00%} be a multiset where co; appears l; times
fori=1,2,...,rand RN Z, =0. Denote by (Z, UR, {d),ds,...,d;}) the
graph G with vertex set V(G) = Z, U R and edge set E(G) = {(d;) : 1 <
i <t}U{{o0,j}: 00 € R,j € Z,} where (&) = {(z,2+ d;) : 2 € Z,,} if
d; #n/2 and (n/2) = {(z,2+n/2):2=0,1,...,n/2 - 1}.

Let S be a set. We define AS to be a multiset in which each element of
S appears exactly A times. Suppose that B = (a,b,¢)-d and a,b,c,d € Z,,.
Define AB = {£(a —b),+(¢ —¢),£(b—¢),*(c—d)} and AB* = {d:d €
AB,1<d< [n/2]}. Note that AB* is a multiset.

A cyclic partial (K3 +e,)A)-GDD of type g* is a triple (Zy, G, B) where
G={{i,t+4,...,(9g—-1)t+4}: 0<i<t-1} and B is a collection of
(K3 + e)-blocks (called base blocks) of Zy, so that:

(1) AB*n{0,t,...,(g — 1)t} = @ for any B € B;
(2) UBEBAB+ c '\Dgﬁ
(3) If gt is even, then gt/2 ¢ AB™* for any B € B.

Let AB = UpegAB*Y and E = Dy N {0,t,...,(g — 1)t}. The set
L =MDy \ (ABU AE) is called difference leave of (Zy,G, B).
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Lemma 2.7 Letd € D,\{n/2}. Then the graph (Z, U {00}, 002}, {d}) can
be decomposed into (K3 + e)-blocks.

Proof The graph {(Z,, {d}) is regular of degree 2 and so it can be decom-
posed into r-cycles. Let (zo,21,...,2r—1) be such a cycle. Consider the
following (K3 + e)-blocks with the subscript modulo 7.

If r is odd: (001, %2i, T2i4+1)-002, 0 < i < (r — 3)/2; (001, Z2i41, T2it2)-
002, 0 < i < (r - 5)/2; (zr-2,Zr-1,001)-Zo; (002, Zo, Tr—1)-00).

If r is even: (001, %2i, T2i+1)-002, (001, T2i41, T2i4+2)-002, 0 < i < (r -
2)/2. °

Lemma 2.8 [3] Let dy,dz,d3 € Dyn\{n/2} such that d3 = d2 — dy. Then
the graph {Z, U {o0}, {d1,d2,d3}) can be decomposed into (K3 + e)-blocks.

Lemma 2.9 [3] Let n be even and d € Dp\{n/2} such that r = n/ged(n,d)
is even. Then the graph (Z, U {00}, {d}) can be decomposed into (K3 + e)-
blocks.

Lemma 2.10 [3] Let n be odd. The graph (Z, U {001,002}, {2,4}) can be
decomposed into (K3 + e)-blocks.

Lemma 2.11 [4] Let n = 0 (mod 4) and n > 4. Then the graph (Z,, U
{001,002}, {2}) can be decomposed into (K3 + e)-blocks.

Lemma 2.12 Let n be even and d € D,\{n/2}. Then the graphs (Z, U
{o0?, 002}, {n/2,n/2}) and (Z, U {c0}}, {n/2,n/2,d}) can be decomposed
into (K3 + e)-blocks.

Proof For the graph (Z,, U {00}, 002}, {n/2,n/2}), consider the following
(K3+e)-blocks: (001, n/2+i,1)-002, (001, 1, n/2+1)-002,i = 0,1,...,n/2-1.

For the graph (Z,U{003}, {n/2,n/2,d}), consider the following (K3+e)-
blocks: (coy,n/2+4,1)-(d+1), (001,12, n/2+i)-(n/24+d+1),i=0,1,...,n/2—
1. o

Lemma 2.13 Let dy,ds2 € D, \ {n/2}. Then the graph (Z, U {03, 03,
003}, {d1,dz}) can be decomposed into (K3 + €)-blocks.

Proof By Lemma 2.7 the graphs (Z, U {003,002}, {d1}) and {Z, U {002,
003}, {dz2}) can be decomposed into (K3 + e)-blocks. °
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Lemma 2.14 Let B = (a,b,0)-d withn/2 € AB*. Then the graphs (Z,U
{00}, 003}, AB*) and (2, U {o0},...,008}, AB*) can be decomposed into
(K3 +e)-blocks. When n is even and there are two odd differences in AB™,
or n is odd and the differences 2 and 4 are contained in AB*, the graph
(ZnU{0?,...,002},AB*) can also be decomposed into (K3 + e)-blocks.

Proof Without loss of generality we can assume that AB* = {a, b, b—a, d}.
For the graph (Z, U {o0}, 003}, AB*), by Lemmas 2.7 and 2.8 the graphs
(ZnU{003,002}, {d}) and (Z,U{c02},{a,b,b—a}) can be decomposed into
(K3 + e)-blocks.

For the graph (Z, U {00?,...,002}, AB*), by Lemma 2.7 the graphs
(Zn U {OO%, 002}, {a})v (Zn U {w‘-’!wg}! {b})’ (Zn U {°°§a°°5}; {b - (l.}),
(Zn U {005,003}, {d}) can be decomposed into (K3 + e)-blocks.

When n is even, suppose that a, b are odd. By Lemmas 2.7 and 2.9 the
gra.phs (Zn U {00:12: °°2}a {b - a}), (Zn U {002; oog}, {d})v (Zn U {°°4}7 {a})v
(Z, U {004}, {b}) can be decomposed into (K3 + e)-blocks.

When 7 is odd, we can assume that ¢ = 2, d = 4. By Lemmas 2.7
and 2.10 the graphs (Z,, U {00}, 003}, {b — a}), {Z, U {003,004}, {B}), (ZnU
{003,004}, {2,4}) can be decomposed into (K3 + e)-blocks. °

Lemma 2.15 Let (Z,,G,B) be a cyclic partial (K3 + e,2)-GDD of type
g* with difference leave L where G = {{i,t +1i,...,(g = 1)t +i} : 0 <
i <t — 1}, in which there exists B € B such that AB* contains two odd
differences if gt = 0 (mod 2), or 2,4 € AB* if gt = 1 (mod 2). If the graph
(ZgsU{003,...,002}, L) can be decomposed into (K3 + e)-blocks, then there
ezists a (K3 + €,2)-GDD of type g'u' for any integer v = 2l + w where
0<1<38|.

Proof Let!=3k+ j where j=0,1,2and 0< k< |B| -1 when j = 1,2,
or 0 < k < |B| when j =0.

For the case of j = 0, choose k base blocks from B, say By,..., B;. By
Lemma 2.14 arrange the differences of each base block By, 1 <! < k, with
six different infinite points respectively, saying the resultant collection of
(K3 +e)-blocks K. Let K> denote the collection of (K3 + e)-blocks gener-
ated by the graph (Z,,U{003,...,002 }, L) and the remaining base blocks of
B\{By, ..., Bi} (note that the collection of (X3+e)-blocks generated by the
graph (Z,, U {003,...,002 }, L) is empty-set if L = ). All different infinite
points form a group R, = {001,...,00,} Where u = 6k +w = 2l +w. Then
it is easy to verify that (Zy UR,,GU{R.}, K1 UK>) is a (K3 +e,2)-GDD
of type g'u! where u = 2l + w.
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For the case of j = 1,2, choose k base blocks from B\{B}, say By, ...,
By.

When j = 1, (Z, U {o0?,00%}, AB*) can be decomposed into (K3 + e)-
blocks by Lemma 2.14. When j = 2, (Z, U {002, 00%, 003,002}, AB*) can
be decomposed into (K3 + e)-blocks by Lemma 2.14.

That is to say that we can arrange the four differences of B with 2j
different infinite points, and denote the obtained (K3 + e)-blocks as K.
Then by Lemma 2.14 arrange the differences of the base blocks By, 1 <
l < k, with six different infinite points respectively, saying the resultant
collection of (K3 + e)-blocks K2. Let K3 denote the collection of (K3 + €)-
blocks generated by the graph (Zy U {00%,...,00%}, L) and the other base
blocks of B\{B, By,...,B:}. All different infinite points form a group
R, = {c01,...,00,} where u = 6k + 2j + w = 2/ + w. Then it is easy to
verify that (Zg URy,GU{R.}, K1UK2UK3) is a (K3+e€,2)-GDD of type
g'u! where u = 2l + w. °

3 The existence of a (K3 + ¢,2)-GDD of type
gtul
By Lemma 1.1 we know that the necessary conditions for the existence

of a (K3 + €,2)-GDD of type g'u! are equivalent to one of the following
conditions:

Case 1: g%t(t — 1)/2 + gtu = 0 (mod 4) and v < |3g(¢t — 1)/2], and
when t =2, u > [g/2];

Case 2: ¢°t(t —1)/2 + gtu = 2 (mod 4) and v < [3g(t — 1)/2].

Lemma 3.1 If g%t(t — 1)/2 + gtu = 0 (mod 4), v < {3g(¢t — 1)/2], and
when t = 2, u > [g/2], then there is a (K3 + e,2)-GDD of type g'u!.

Proof It follows immediately from Lemma 2.6 and Theorem 1.2. °

Next we mainly treat Case 2. For the sake of convenience, we classify
the necessary conditions in Case 2 as follows when g, t and u are all positive
and t > 2:

(I) g=1(mod 2),t=4(mod 8), and u < |3g(t — 1)/2];

(I1) g =1 (mod 2), t =1 (mod 2), u = 3g(t — 5)/2 (mod 4) and
u < 3g(t-1)/2;
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g=2(mod4),t=1 (mod 2), u =1 (mod 2) and u < 3g(t — 1)/2.

Lemma 3.2 There ezists a (K3 + e,2)-GDDof type 14u! for 0 < u < 4.
Proof Let X = {1,2,3,4} U {001,...,004}, and ¢ = {{i} : 1 < i <

4} U {{o01,...,004}}. A (K3 + ¢,2)-GDD of type 1*u! is constructed by
listing its blocks as below:

1*: (1,2,3)4 (2,4,1)-3 (2,3,4)-1

11 (1,2,3)4 (1,4,001)-2 (1,2,4)-001 (1,001,3)-4
(c01,3,2)-4

12 (1,2,002)3 (3,4,1)-001  (3,001,2)-1 (002,2,4)-001
(41 1, °°l)'2 (11 002, 3)'001 (2) 3: 4)'002

1°3:  (2,002,1)-003 (3,002,4)-001 (4,003,2)-00; (1,003, 3)-00;

(4)°°2| 1)'001

(2)4) 1)'&[
14 (2,001,1)-002
(4: 04, 1)'003
(1,3,004)-4

(2, 002,3)-1

(4, 001, 3)-003
(3, 004, 2)-003
(11 2, 00])'4

(3» 00134)'003

(2,002,4)-003
(41 003, 2)‘&4
(1) 4) 002)'3

(3, 003, 2)-001

(11 03, 3)'001
(2a 002, 3)'4

Lemma 3.3 There exists a (K3 + e,2)-GDDof type 3*u! for 0 < u < 13.

Proof Let X = Z;2U {o01,...,004}, G = {{i,4+4,8+i}:0< i<
3} U {{o01,...,004}}, B = {(3,1,0)-5}. Then (X, G,B) is a partial cyclic
(K3 +e,2)-GDD of type 3* with the difference leave L = {1,2, 3,5, 6,6}.
We can arrange the differences in L with w different infinite points where
w = 3,4,5,6,7 by Lemmas 2.7, 2.9, 2.11 and 2.12. That is to say that
(Z12 U {003, ...,00%}, L) can be decomposed into (K3 + e)-blocks for w =
3,4,5,6,7. Then by Lemma 2.15 we get a (K3 + ¢,2)-GDD of type 3%u!
where v = 25+ w, 0 < j < 3, w = 3,4,5,6,7. This handles the case of
u > 3. For u = 0, apply Lemma 2.5 to a (K3 + e,2)-GDD of type 1*
from Lemma 3.2. For u = 1,2, a (K3 + ¢,2)-GDD of type 3%u! is listed in
Appendix B. o

Lemma 3.4 Let g = 1 (mod 2) and u < |99/2|. Then there is a (K3 +
€,2)-GDD of type gtul.

Proof The conclusion follows by Lemmas 3.2 and 3.3 when ¢ = 1,3.
When g > 3, we treat the case of 0 < u < 4g first. There exists a TD(5, g)
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when g > 3. Give weight 1 to the points of the first four groups of the
TD(5,9) and any weight between 0 and 4 to the points of the last group.
Now applying Fundamental Construction with a (K3 + e,2)-GDD of type
14w! (0 < w < 4) from Lemma 3.2, we get a (K3 +¢,2)-GDD of type g*u!
where 0 < u < 4g.

Next we consider the case of 49 < u < [9¢/2]. We form a (K3 +
e,2)-GDD of type gu! on the point set X = Z4y U {o01,...,00,} and
group set G = {{i,4+14,...,(g-1)4+4}:0< i <3}U {{o01,...,004}}.
Let E = D4y N {0,4,...,(g — 1)4}. By Lemmas 2.12 and 2.11 we can
decompose (Z, U {c0?,002}, {29,2¢}) and (Z, U {002,003}, {2}) into (K3 +
e)-blocks, and say K. Choose 2g—m odd differences from 2(Dy\E) where
m € {g+1,...,2¢9}, and by Lemma 2.9 arrange them with one infinite
point respectively and denote the resultant (K3 + e)-blocks as K». By
Lemma 2.7 arrange others differences in 2(D4,\ E) with three infinite points
respectively and denote the resultant (X3 + e)-blocks as K3. Furthermore,
it is not difficult to assure that each infinite point appears two times in all
those graphs. Then we can calculate out that the total number of different
infinite points is (5 + 3(g — 2 + m) + 2g — m)/2 = (59 — 1)/2 + m where
me€ {g+1,...,29}. It is easy to check that (X,G,K; UK> U K3) is a
(K3 + €,2)-GDD of type giu! where 49 < u < |99/2). °

Lemma 3.5 Let ¢ = 1 (mod 2), t = 4 (mod 8) and u < [3g(¢t — 1)/2].
Then there exists a (K3 + e,2)-GDD of type g'ul.

Proof Let t =8!+ 4. When [ = 0, the conclusion follows by Lemma 3.4.
Next we consider the case of { > 0. By Lemma 3.1 there is a (K3 + e, 2)-
GDD of type (4g)**+'z' where 0 < z < 12gl. By Lemma 3.4 there is a
(K3 +e,2)-GDD of type g*w! where 0 < w < |9¢/2]. Then apply Lemma
2.2 to get a (K3 +€,2)-GDD of type g*u! where v < |3g(t — 1)/2] (since
u=w+ ). °

Lemma 3.6 Let n and s be positive integers such that n > 8s. Then
there exists a collection B of (K3 + e)-blocks (base blocks) on Z,, such that
AB = UpepAB*Y = {1,2,...,4s)}, in which there is a B € B such that
{2,4} € AB*.

Proof Consider the following base blocks B:

When s > 4: (4s — 1,25+ i+ 1,0)-(2s — 27) where 2 <7 < s — 3 (note
that the number of (K3 + e)-base blocks in this part is s — 4);
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(4s,25+1,0)-3s, (4s—1,25+2,0)-(3s+1), (35+2,3s—1,0)-1, (25,25 —
2,0)-4.

When s =3: (2,6,0)-10, (3,11,0)-9, (12, 5,0)-1.
When s =2: (2,6,0)-7, (8,8,0)-1.
When s =1: (1,3,0)-4.

It is easy to check that AB = {1,2,...,4s} and that thereis a B € B
such that {2,4} € AB*. o

Lemma 3.7 Lett > 3 be odd, u = —(t—5)/2 (mod 4) andu < |3(t—1)/2].
Then there ezists a (K3 + e,2)-GDD of type 1tul.

Proof Lett = 8s+ k where k = 1,3,5,7. We repeat the base blocks in
Lemma 3.6 twice and denote the resultant base blocks as B. It is easy to
see that (Z;, {{i} : 0 <i < t—1},B) is a cyclic partial (K3 +¢,2)-GDD of
type 1* in which there is a base block containing differences 2 and 4. The
difference leave L is 2{4s+1,...,4s+ (k—1)/2} (note that L =@ if k = 1).

By Lemma 2.13 arrange each two differences in L with three different
infinite points. That is to say that the graph (Z; U {c0},...,00%}, L) can
be decomposed into (K3 +e)-blocks where w = 3(k—1)/2. Then by Lemma
2.15 we get a (K3+e,2)-GDD of type 1*u! for any integer u = 2j+3(k—1)/2
where 0 < j < 3|B|. This handles the case of u > 3(k - 1)/2 and u =
—(t —5)/2 (mod 4).

For t = 8s+1, it handles all case of u < [3(¢ —1)/2] and u = 2 (mod 4).

For t = 8s + 3, it handles the case of 3 < u < |3(t —1)/2] and u =
1 (mod 4). For u =1, it follows by Lemma 3.5.

For ¢t = 8s + 5, it handles the case of u > 6 and » = 0 (mod 4). For
u = 0,4, by Lemma 3.1 there is a (K3+e,2)-GDD of type 134(5+u)!. Then
by Lemma 2.3 fill in the long group of the GDD with a (K3 +e,2)-GDD of
type 15u! from Lemma 3.2 when u = 0, or from Appendix A when u = 4.

For ¢ = 8s + 7, it handles the case of v > 9 and v = 3 (mod 4). For
u = 3, by Lemma 3.1 there is a (K3 + €,2)-GDD of type 18410 (s > 0).
Then by Lemma 2.3 fill in the long group of the GDD with a (K3 + ¢,2)-
GDD of type 173! from Appendix C. For u = 7, by Lemma 3.1 there is a
(K3+e,2)-GDD of type 18914! (s > 1). Then by Lemma 2.3 fill in the long
group of the GDD with a (K3 +¢,2)-GDD of type 177! from Appendix C.
A (K3 + ¢,2)-GDD of type 157! comes from Appendix C. °
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Lemma 3.8 Lett > 3 be odd, v =1 (mod 2) and u < 3(t—1). Then there
is a (K3 +€,2)-GDD of type 2'u!.

Proof Let t = 4s + i where 1 = 1,3. Then 2t = 8s + 2i. We repeat each
base block in Lemma. 3.6 twice and denote the resultant base blocks as B.

Case 1: t = 43+ 1. When s > 1, we delete one base block B = (a, b, 0)-
1 from B so that AB* = {1,a,b,c}, and denote the resultant base blocks
as B still. When s = 1, take B = (1,4,0)-3. Then (2, {{i,t+i}:0 <
i <t —1}, B) is a cyclic partial (K3 + e,2)-GDD of type 2! with difference
leave L = {1,a,b,c} if s > 1, or L = {1,2,2,4} if s = 1 (in this case let
a =b =2 and ¢ = 4). Note that there is a base block of B with two odd
differences. By Lemmas 2.7 and 2.9 we can arrange the differences in L
with w different infinite points where w =1, 5.

w=1:(a,b,0)-001, {22, U {001}, {1}),

w=35: (Z2CU{°°%’°°'-’-}$ {c})7 (thU{OOQ,Oog}, {b})a (ZztU{Oof, 005};
{a}), (Z2:U{o0s}, {1}).

That is to say that the graph (Za U {c03,...,002},L) can be decom-
posed into (K3 + e)-blocks where w € {1,5}. By Lemma 2.15 we get a
(K3+e,2)-GDD of type 2'u! for any integer u = 2i+w where 0 < i < 3|B|
and w € {1,5}. It handles the case of u > 1.

Case 2: t = 45+ 3. When s > 1, we choose one base block (e, b,0)-1
from B and change it into (a,b,0)-(4s + 2). When s = 1, change B into
(1,3,0)-4, (6,4,0)-3. We denote the resultant base blocks as B still. It
is easy to see that (Za, {{i,t +1i} : 0 < i < t-—1},B) is a cyclic partial
(K3+e,2)-GDD of type 2 with difference leave L = {1,4s+1,4s+1, 4s+2},
in which there is a base block having two odd differences. By Lemmas 2.7
and 2.9 we can arrange the differences in L with w different infinite points
where w = 1,5 as Case 1.

That is to say that the graph (Zs; U {ocf,...,002}, L) can be decom-
posed into (K3 + e)-blocks where w € {1,5}. Then by Lemma 2.15 we get a
(K3 +e,2)-GDD of type 2'u! for any integer u = 2i+w where 0 < i < 38|
and w € {1,5}. This handles the caseu > 1. For s =0, a (K3+e¢,2)-GDD
of type 23u! is listed in Appendixes A and B. °

Lemma 3.9 Let u = (¢t — 5)/2 (mod 4) and v < 9(t — 1)/2. Then there
erists a (K3 + e,2)-GDD of type 34! for t = 3,5,7,9,11,13,15,23,31.

Proof Case 1: t = 9 and v = 2 (mmod 4). Take the base blocks B:
2(3,11,0)-1, 2(6,13,0)-5, 2(10,12,0)-4. Then (Zo7, {{#,9+ 4,18 +i} : 0 <
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i < 8},B) is a cyclic partial (K3 + €,2)-GDD of type 3°. The difference
leave L is . By Lemma 2.15 we get a (K3 + e,2)-GDD of type 3%°u! for
any integer u = 25 where 0 < j < 18. This handles the case of v < 36 and
u = 2 (mod 4).

Case 2: t = 3,11 and v = 3 (mnod 4). For ¢ = 3, take the base block B:
(1,2,0)-4. The difference leave L is {2,4}.

For t = 11, take the base blocks B: 2(1, 10,0)-7, 2(3, 15, 0)-6, 2(2, 16, 0)-
4, (5,13,0)-8. The difference leave L is {5,13}.

In each case, (Za, {{i,t +4,2t+i} : 0 < i < t-1},B)is a cyclic
partial (K3 + e,2)-GDD of type 3¢ with difference leave L. By Lemma
2.13 arrange the differences in L with three different infinite points. That
is to say that the graph (Z3, U {003, 003,002}, L) can be decomposed into
(K3 + e)-blocks. By Lemma 2.15 we get a (K3 + e,2)-GDD of type 3tu!
for any integer u = 2j + 3 where 0 < j < 3|B|. This handles the case of
3<u<9(t—-1)/2and v =3 (mod 4).

Case 3: ¢t = 5,13 and u = 0 (mod 4). For t = 5, take the base blocks
B: (6,2,0)-3, (3,4,0)-7, (6,7,0)-2. The difference leave L is 0.

For ¢ = 13, take the base blocks B: 2(2,9,0)-4, 2(15,18,0)-17, 2(10, 11,
0)-12, (5,19,0)-6, (5,19, 0)-16, (16,8,0)-6. The difference leave L is 0.

In each case, (Z3, {{i,t +1,2t+14} : 0 < i <t —1},B) is a cyclic partial
(K3 +e,2)-GDD of type 3* with difference leave L, in which there is a base
block having the differences 2 and 4. By Lemma 2.15 we get a (K3 +e,2)-
GDD of type 3*u! for any integer u = 2j where 0 < j < 3|B|. This handles
the case of 0 < v < 9(¢ - 1)/2.

Case 4: t = 7,15,23,31 and v = 1 (mod 4). For t = 7, take the base
blocks B: 2(5,2,0)-4, 2(9, 10,0)-8. The difference leave L is {6, 6}.

For ¢t = 15, take the base blocks B: 2(8,12,0)-2, 2(1, 22, 0)-19, 2(6, 20, 0)-
18, 2(5,16,0)-13, 2(7,17,0)-9. The difference leave L is {3, 3}.

For ¢t = 23, take the base blocks B: 2(2, 21, 0)-4, 2(1, 34,0)-25, 2(10, 32,
0)-24, 2(11,27,0)-6, 2(12, 29,0)-30, 2(7,20,0)-15, 2(8, 26,0)-14, 2(3, 31, 0)-
9. The difference leave L is {5,5}.

For ¢t = 31, take the base blocks B: 2(4, 18,0)-2, 2(3, 23,0)-36, 2(1, 46, 0)-
33, 2(21, 40,0)-24, 2(16, 41,0)-27, 2(15,43, 0)-44, 2(17, 30, 0)-6, 2(12, 38,0)-
39, 2(7,29,0)-11, 2(32,37,0)-10, 2(8,42,0)-9. The difference leave L is
{35,35}.

In each case, (Za, {{7,t +4,2t+7}:0 < i < t-1},B)is a cyclic partial
(K3 +¢€,2)-GDD of type 3! with difference leave L, in which there is a base
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block having the differences 2 and 4. By Lemma 2.13 we can arrange the
differences in L with three different infinite points. That is to say that the
graph (Z3; U {00}, 003,003}, L) can be decomposed into (K3 + e)-blocks.
By Lemma 2.15 we get a (K3 + €,2)-GDD of type 3'u! for any integer
u =25 +3 where 0 < j < 3|B|. This handles the case of 5 < u < 9(t —1)/2.
For u = 1, there is a (K3 + ¢,2)-GDD of type 37210 by Lemma 3.5. By
Lemma 2.3 fill in the long group of the GDD with a (K3 + ¢,2)-GDD of
type 331! from Lemma 3.1. °

Lemma 3.10 Let u = (t — 5)/2 (inod 4) end u < 21(t — 1)/2. Then there
exists a (K3 + e,2)-GDD of type T'u! fort=3,5,7,9, 11, 13, 15, 17, 19,
21, 23, 29, 31.

Proof Case 1: t = 9,17and v = 2 (1nod 4). For ¢t = 9, take the base blocks
B: 2(2,15,0)-4, 2(3,29,0)-20, 2(7,24,0)-16, 2(10,21,0)-12, 2(1, 31, 0)-25,
2(5,28,0)-19, 2(8, 22,0)-6. The difference leave L is 0.

Fort = 17, take the base blocks B: 2(4, 36, 0)-2, 2(3, 29, 0)-24, 2(7, 52, 0)-
49, 2(10,21,0)-25, 2(1, 31,0)-13, 2(5,28,0)-33, 2(8, 22,0)-35, 2(9, 59, 0)-6,
2(18,58,0)-41, 2(20,57,0)-42, 2(16, 55, 0)-43, 2(12, 56,0)-47, 2(15, 53,0)-
48, 2(19, 46, 0)-54. The difference leave L is 0.

Case 2: t = 3,11,19and u = 3 (mod 4). For ¢t = 3, take the base blocks
B: (2,7,0)4, (2,10,0)-1, (1,8,0)-4. The difference leave L is {5, 10}.

For ¢t = 11, take the base blocks B: 2(2, 6, 0)-36, 2(3, 35, 0)-25, 2(5, 34, 0)-
23, 2(7,31,0)-19, 2(8,28,0)-18, 2(9, 30,0)-16, 2(10,27,0)-15, (1,38, 0)-26,
(12,26, 0)-13, (1, 14,0)-38. The difference leave L is {12,37}.

For t = 19, take the base blocks B: 2(2, 14, 0)-4, 2(1, 61, 0)-39, 2(3, 35, 0)-
40, 2(5, 34,0)-41, 2(7, 31,0)-42, 2(8, 28, 0)-45, 2(9, 30,0)-13, 2(10, 37,0)-51,
2(11,66,0)-36, 2(22,65,0)-54, 2(15, 64, 0)-50, 2(16,63,0)-56, 2(18,62,0)-
58, 2(23,48,0)-17, 2(26, 59, 0)-53, (46,52,0)-6. The difference leave L is
{46,52}.

Case 3: ¢ = 5,13,21,29 aud v = 0 (inod 4). For ¢t = 5, take the base
blocks B: 2(1,17,0)-12, 2(3, 14, 0)-8, (2,6, 0)-13, (2,9, 0)-4, (6, 13,0)-9. The
difference leave L is §.

Fort = 13, take the base blocks B: 2(1, 45, 0)-9, 2(3,43, 0)-17, 2(7,42, 0)-
18, 2(15, 31,0)-19, 2(8,41,0)-21, 2(10, 38,0)-22, 2(11, 36, 0)-5, 2(12, 32,0)-
27, 2(14,37,0)-29, (2,6,0)-24, (4, 34,0)-2, (6, 30,0)-34. The difference leave
Lis 0.

For t = 21, take the base blocks B: 2(4, 34, 0)-2, 2(1, 45, 0)-39, 2(3, 43,
0)-47, 2(15, 31,0)-50, 2(8,41,0)-51, 2(10, 38, 0)-22, 2(11, 36, 0)-24, 2(12, 32,
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0)-27, 2(14, 37,0)-48, 2(5, 73, 0)-53, 2(9, 71, 0)-56, 2(7, 72,0)-58, 2(13, 70, 0)-
59, 2(17,69,0)-61, 2(19, 54, 0)-64, (66, 60, 0)-46, (26, 55, 0)-66, (18, 67, 0)-60,
(26,55, 0)-46, (18,67,0)-6. The difference leave L is 0.

For t = 29, take the base blocks B: 2(2,6,0)-74, 2(1,45,0)-75, 2(15,
31, 0)-81, 2(8, 41, 0)-82, 2(10, 38,0)-83, 2(11, 36,0)-84, 2(12, 32, 0)-88, 2(5,
73, 0)-42, 2(7,72,0)-90, 2(13, 70, 0)-59, 2(18,67,0)-91, 2(17, 69, 0)-61, 2(19,
54, 0)-64, 2(22,101,0)-92, 2(24,100,0)-63, 2(27, 80,0)-94, 2(39, 89,0)-95,
2(26,86,0)-96, 2(46,93,0)-97, 2(48,78,0)-98, 2(34, 85,0)-99, 2(3,43,0)-55,
2(9, 71, 0)-66, (56,77,0)-21, (14,37,0)-77, (14,37,0)-56. The difference
leave L is §.

Case 4: ¢t = 7,15,23,31 and v = 1 (mod 4). For t = 7, take the base
blocks B: 2(2,15,0)-4, 2(1, 24,0)-10, 2(3, 22, 0)-9, 2(8, 20, 0)-6, 2(11, 16, 0)-
17. The difference leave L is {18,18}.

For ¢t = 15, take the base blocks B: 2(2, 34,0)-4, 2(1, 24, 0)-28, 2(3, 22, 0)-
29, 2(8,20,0)-31, 2(11,16,0)-17, 2(9, 52,0)-27, 2(10, 51, 0)-6, 2(7,49, 0)-36,
2(13,48,0)-37, 2(14, 47,0)-38, 2(21, 46, 0)-39, 2(18, 44, 0)-40. The difference
leave L is {50, 50}.

For t = 23, take the base blocks 8: 2(2, 64, 0)-4, 2(1, 80, 0)-68, 2(3, 22, 0)-
29, 2(8, 20,0)-54, 2(11, 16,0)-55, 2(9, 52,0)-53, 2(10, 51, 0)-6, 2(7, 49, 0)-65,
2(13,48,0)-66, 2(14,47,0)-38, 2(18, 44, 0)-67, 2(15, 78,0)-70, 2(21, 77,0)-71,
2(27,58,0)-72, 2(17,57,0)-73, 2(28,60,0)-74, 2(34, 59, 0)-76, (36,75, 0)-30,
2(37,61, 0)-45. The difference leave L is {50, 50}.

For ¢ = 31, take the base blocks B: 2(2, 84, 0)-4, 2(1, 80, 0)-81, 2(3, 22, 0)-
83, 2(8,20,0)-6, 2(11,16,0)-86, 2(9,52,0)-87, 2(10, 51, 0)-64, 2(7, 49, 0)-88,
2(13,48,0)-67,2(14,47,0)-90, 2(18, 44, 0)-89, 2(15, 78, 0)-70, 2(21, 77, 0)-71,
2(17,57,0)-73, 2(28, 60, 0)-74, 2(34, 59, 0)-76, 2(36, 75, 0)-94, 2(37, 61, 0)-95,
2(23,108,0)-96, 2(30,99,0)-98, 2(46,91,0)-100, 2(29,97,0)-101, 2(27, 92,
0)-102, 2(53,107,0)-103, 2(38, 104,0)-106, 2(50, 105, 0)-58. The difference
leave L is {72,72}.

In each case, (Z7;, {{#,t +4,...,6t+17} :0< i< t—-1},8)is a cyclic
partial (K3 + e,2)-GDD of type 7! with difference leave L, in which there
is a base block having the differences 2 and 4. For Cases 2 and 4, we need
to deal with the differences in L. By Lemma 2.13 arrange the differences
in L with three different infinite points. That is to say that the (Z; U
{oo?, 002,003}, L) can be decomposed into (K3 +e)-blocks. By Lemma 2.15
we get a (K3 + e,2)-GDD of type 7'u'. This handles all the case except
for (K3 + ¢,2)-GDDs of types 7'1! where t = 7,15,23,31. By Lemma 2.3
fill in the long group of a (K3 + €,2)-GDD of type 7°-322! from Lemma
3.1 with a (K3 +e,2)-GDD of type 731! from Lemma 3.1. °
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Lemma 3.11 Lett > 3 be odd, u = (t—5)/2 (mod 4) and u < 3g(t—1)/2.
Then there exists a (K3 + e,2)-GDD of type gtu! for g=3,7.

Proof The conclusion follows by Lemmas 3.9 and 3.10 when 3 <t < 15 if
g =3, or when 3 <t <23if g =7. Next we consider the case of ¢ > 17 if
g=3,0ort>25ifg=7. Lett=28m+1iand s =gm wherei =1,3,5,7.
Then gt = 8s + gi and s > 6. We repeat the following base blocks twice
and denote the resultant base blocks as B:

(48 — §, 28+ j +1,0)-(25 — 25) for j = 2,3,...,5 — 3: (48,25 + 1,0)-3s,
(45— 1,25+ 2,0)-(3s + 1), (35 + 2,35 — 1,0)-1, (23,25 — 2,0)-4.

Delete the base blocks having the differences congruent to 0 (mod ¢) from
B and denote the resultant base blocks as By. Noting that the last base
block can not been deleted, then (Zg, {{i,t+%,...,(g—1)t+i}: 0<i < t—
1}, By) is a cyclic partial (K3+e, 2)-GDD of type g* satisfying the condition
in Lemma 2.15. The difference leave L is Do U2D;, where Dy contains the
differences not congruent to 0 (mod t) and appearing in the deleted base
blocks of B and Dy = {4s+1,...,4s + (gi — 1)/2} \ {0,¢,...,(g — 1)t}.
Noting that AB contains at most g — 1 differences congruent to 0 (mod )
which appear in different base blocks, then we have |Dg| < 3(9 — 1). By
Lemma 2.13 arrange each two differences in L with three different infinite
points respectively. That is to say the graph (Z, U {o0f,...,00%}, L) can
be decomposed into (K3 + e)-blocks where w < (3gi + 99 — 12)/2. Then
by Lemma 2.15 we get a (K3 + ¢,2)-GDD of type g‘u! for any integer u =
2n +w where 0 < n < 3|B|. This handles the case of u > (3gi + 99— 12)/2.

Next we prove the case of u* < (3¢i + 9¢ — 16)/2 and u* = (¢t —
5)/2 (mod 4) inductively.

Case 1. t=1,3,5(mod 8)if g=3,0ort=1,3 (mod 8) if g= 7.

For g = 3, there are (K3 +e¢,2)-GDDs of types gtu! for t = 3,5,9,11,13
by Lemma 3.9. For g = 7, there are (K3 + e,2)-GDDs of types g'u! for
t=3,9,11,17,19 by Lemma 3.10.

Suppose that there exists a (K3 + e,2)-GDD of type g'~3u! for u <
(3gi +9g—16)/2and u = (t —5)/2 (mod 4) where ¢t > 17if g=3,0rt > 25
if g = 7. Then there is a (K3 + ¢,2)-GDD of type g*~8u! for any integer
u < 3g(t—9)/2 and u = (1 — 5)/2 (mod 4). It is not difficult but tedious to
check that u*+8g < 3g(t—9)/2 and u* < |21g/2]. By Lemma 2.3 fill in the
long group of a (K3 + e, 2)-GDD of type g*~8(8g + u*)! with a (K3 +e,2)-
GDD of type g®(u*)! from Lemma 3.1. We obtain a (K3 + ¢,2)-GDD of
type g'(u*)!, as required.

Case 2. t=7(mod 8)if g=3,0rt=5,7 (mod 8) if g=7.
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For g = 3, there are (K3 +e,2)-GDDs of types gtu’ for t = 7,15,23,31
by Lemma 3.9. For g = 7, there are (X3 + e,2)-GDD:s of types glu! for
t=15,7,13,15,21,23,29,31 by Lemma 3.10.

Suppose that there exists a (K3 + €,2)-GDD of type g'~'6u! for u <
(39 +99 — 16)/2 and u = (¢t — 5)/2 (mod 4) where ¢t > 37. Then there
is a (K3 + €,2)-GDD of type ¢g*~'%u! for any integer u < 3g(t — 17)/2
and v = (¢t — 5)/2 (mod 4). It is not difficult but tedious to check that
u* + 169 < 3g(t — 17)/2 and u* < |459/2). By Lemma 2.3 fill in the long
group of a (K3 + e,2)-GDD of type g'~1%(16g + u*)! with a (K3 + e,2)-
GDD of type g'%(u*)! from Lemma 3.1. We obtain a (K3 + e,2)-GDD of
type g*(u*)!, as required. °

Lemma 3.12 Let t > 3 be odd end g = | (mod 4) where ! = 1,2,3 and
g > 5. Then there is a cyclic partial (K3 + €,2)-GDD of type g* satisfying
the conditions in Lemma 2.15 with difference leave L, in which there is an
odd difference in L and |L| = I(t - 1).

Proof Let g = 4k+! wherel =1,2,3. Defined; =0if1 <i < (t+1)/2, or
2if (t+1)/2<i<t-1.Let § = {{i,t+1,...,(g—1)t+i}: 0 <i < t—1}.

When k is even and ¢ > 5, we repeat the following base blocks twice
and denote the resultant base blocks as B:

(2kt — i — jt,kt +1i+ jt,0)-(kt —2i —=2jt+1—9;) wherel1 <i<t—-1
and 0 € j < (k—4)/2 (note that the number of the base blocks in this part
is(t—-1)(k—2)/2ifk>4,0r0if1 <k <3);

((3k/2+ 1)t —4,(3k/2—1)t+14,0)-(2t —2i +1—§;) where 1 <i <t - 3;
(3kt/2 +2,3kt/2 — 2,0)-2, (2kt + 1,2kt + 2,0)-(3kt/2 + 1).
When t = 3, let B consist of the following base blocks:

2(6k —i— 35,3k +i+ 35,0)-(3k — 21 — 65 + 1 — 4;) where i = 1,2 and
0 < j < {k—4)/2 (note that the number of the base blocks in this part is
E-2i{k>4,0r0if1<k<3);

(9k/2 + 2,9k/2 — 2,0)-2; (9k/2 + 1,9k/2 + 2,0)-(9k/2 — 2); (9k/2 +
1,9%/2 — 1,0)-5; (5,4,0)-(9%/2 — 1).

Then (Zg,G,B) is a cyclic partial (K3 + ¢,2)-GDD of type g* satis-
fying the conditions in Lemma 2.15. When ¢ > 5, the difference leave L
is 2{3,3kt/2 — 1,2kt + 3,...,2kt + (It — 1)/21\2{2kt + ¢} if [ = 1,3; or
2{3,3kt/2 1,2kt +3,...,2kt + t — 1} if ] = 2. When ¢ = 3, the difference
leave L is 2{6k +1,6k+2} if | = 2; or L = 2{6k +1, 6k + 2,6k +4} il | = 3;
or L =2{6k+1}ifl=1.
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When k is odd and ¢ > 5, we repeat the following base blocks twice and
denote the resultant base blocks as B:

(2kt — i — jt,kt +1 + 5t,0)-(kt —2i — 2jt +1—4;) where 1 <i<t-1
and 0 < j < (k — 3)/2 (the number of the base blocks in this part is
t-1(k-1)/2ifk>3,0or0if k =1,2);

((3k + 1)t/2 —4,(3k — 1)t/2 +1,0)-(t — 2 + 1) where 1 < i < (£ — 5)/2
(the number of the base blocks in this part is (t — 5)/2);

((3kt + 3)/2, (3kt — 1)/2,0)-4, (2kt + 1,2kt + 2,0)-(3kt + 1)/2.
When ¢ = 3 and k > 3, take B as the following base blocks:

2(6k — 1 — 35,3k + i+ 35,0)-(3k — 2¢ — 6j + 1 — &;) where i =1,2 and
j < (k - 5)/2 (the number of the base blocks in this part is k — 3 if
5,0or0if 1 <k <4);

2((9% + 7)/2, (9% — 7)/2,0)-8, (9% + 5)/2, (9% + 1)/2,0)-4, (9 — 1)/2,
(9% — 5)/2,0)-4; ((9k + 1)/2, (9% — 1)/2,0)-5; (9% + 5)/2, (9% — 5)/2,0)-1.

When ¢t = 3 and k = 1, take B={(5,4,0)-2, (5,4, 0)-2}.

Then (Z,4,G, B) is a cyclic partial (K3 +e,2)-GDD of type g satisfying
the conditions in Lemma 2.15. When ¢t > 5, the difference leave L is
2(3, (3kt — 3)/2,2kt + 3,...,2kt + (It — 1)/2\2{2kt + t} if | = 1,3; or
2{3,(3kt-3)/2,2kt+3,...,2kt +t—1} if | = 2. When t = 3, the difference
leave L is 2{6k+1,6k+2} if | = 2; or L = 2{6k+1,6k+2,6k+4} ifl = 3;
orL=2{6k+1}ifl=1. °

0<
k>

Lemma 3.13 Suppose thatt is odd and g =l (mod 4) wherel =1,2,3 and
g>5. Let 3l(t —1)/2 < u < 3g(t —1)/2 such that u = 3l(t — 5)/2 (1nod 4)
ifl =1,3, oru=1 (mod 2) ifl = 2. Then there is a (K3 + ¢,2)-GDD of
type gtul.

Proof Let g = 4k + ! where [l = 1,2,3. By Lemma 3.12 there is a cyclic
partial (K3 + e,2)-GDD of type gt (Zg4t,G, B), with the difference leave L
such that |L| = I(¢ — 1) and L contains an odd difference.

When g = 4k + ! and u = 3!(t — 5)/2 (mod 4) where ! = 1,3: by
Lemma 2.13 arrange each two differences in L with three different infinite
points respectively. That is to say that the graph (Zy U {oo1,...,00%}, L)
can be decomposed into (K3 + e)-blocks where w = 3I(t — 1)/2. Then
by Lemma 2.15 we obtain a (K3 + €,2)-GDD of type g'u! for any integer
u = 2i+3l(t—1)/2 where 0 < 7 < 3|B|. It handles the case of u > 3l(t—1)/2.
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When ¢ = 4k + 2 and u = 1 (mod 2): choose four differences d;, d»,
d3, dy from L such that d; is odd. By Lemmas 2.9 and 2.13 the graphs
(ZgrU{o01}, {d1}), (Zge U {001,003}, {d2}), (Zge U {003,003}, {d3}), (Zge U
{003,002}, {ds}) can be decomposed into (K3 + e)-blocks. By Lemma 2.13
arrange each two differences in L\ {d), da, d3, d4} with three different infinite
points. That is to say that the graph (Z, U {o0,...,00%}, L) can be
decomposed into (K3 + e)-blocks for w = 3t — 4. Then by Lemma 2.15 we
obtain a (K3 + e, 2)-GDD of type gtu® for any integer u = 2i + 3t — 4 where
0 < i < 3]B|. This handles the case of u > 3t — 4. o

Lemma 3.14 Let g, t and u be positive integers satisfying Condition (II).
Then there exists a (K3 + e,2)-GDD of type gtu'.

Proof The conclusion follows when g = 1,2,3,7 by Lemmas 3.7, 3.8, 3.11.
Next we divide the problem with ¢ > 5 and g # 7 into three cases.

Case 1: g =4k +1, u = 3(t — 5)/2 (mod 4) and u < 3g(¢t — 1)/2. By
Lemma 3.13 we can restrict our attention to u < 3(¢ ~ 1)/2 — 2. There
are (K3 + e,2)-GDDs of types 221! (k > 1) and 2'u! by Lemmas 3.1
and 3.8. Apply Lemma 2.4 to a (K3 + ¢,2)-GDD of type 2%*1! by using
(K3+e,2)-GDDs of types 2tu! and 1'u! from Lemma 3.7. We then obtain
a (K3 +e,2)-GDD of type g'u'.

Case 2: g =4k +2,u =1 (mod 2) and v < 3g(t — 1)/2. By Lemma
3.13 we can restrict attention to u < 3(¢£ —1). There are (K3 +¢,2)-GDDs
of types 22¥2! (k > 1) by Lemma 3.1 and 2'u! by Lemma 3.8 for any
integer u < 3(t—1) and v =1 (mod 2). Apply Lemma 2.4 to a (K3 +e¢, 2)-
GDD of type 222! with a (K3 + ¢,2)-GDD of type 2'u!. We then get a
(K3 + €,2)-GDD of type gtul.

Case 3: g =4k + 3, u = (¢t — 5)/2 (mod 4) and u < 3g(¢t — 1)/2.
By Lemma 3.13 we can restrict attention to u < 9(t — 1)/2. There are
(K3 + e,2)-GDDs of types 4¥3! (k > 2) and 4'u! by Lemma 3.1. Apply
Lemma 2.4 to a (K3 +€,2)-GDD of type 4*3! by using (K3 +e,2)-GDDs
of types 4'u! and 3'u! from Lemma 3.11. We then get a (K3 + e,2)-GDD
of type g'u'. °

From Lemmas 3.1, 3.5 and 3.14, we can obtain the following theorem.

Theorem 3.15 The necessary conditions as in Lemma 1.1 for the exis-
tence of a (K3 + €,2)-GDD of type g*u® are also sufficient.
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4 The existence of a (K3 + ¢,4)-GDD of type
t,1
gu

In this section, we will deal with the existence of a (K3 +e¢,4)-GDD of type
gtu!l. First by Lemma 1.1, we know that the necessary conditions for the
existence of a (K3 + e,4)-GDD of type g'u! are equivalent to one of the
following conditions:

Case 1': g%(t — 1)/2 + gtu = 0 (mod 2) and u < [3g(t — 1)/2], and
when t =2, u > [g/2];

Case 2': ¢g°t(t — 1)/2 + gtu = 1 (mod 2) and u < [3g(t — 1)/2], and
when t =2, u > [¢/2].

Lemma 4.1 Let g®t(t — 1)/2 + gtu = 0 (mod 2), u < |3g(t - 1)/2], and
when t =2, u > [g/2]. Then there exists a (K3 + e,4)-GDD of type g'u'.

Proof It follows immediately from Lemma 2.6 and Theorem 3.15. °

Next we mainly deal with Case 2'. For the sake of convenience, we
classify it as follows when g, ¢t and v are all positive and ¢ > 2.

(I') g =1 (mod 2), ¢ = 2 (nod 4) and u < [3g(t — 1)/2], and when
t=2,u2>[g/2];

(II')g=1(mod 2),t =1 (mod 2), v = (¢ +1)/2 (nod 2) and u <
[3g(t - 1)/2].

First observe that any (K3 + e)-block contains four different points, it
follows that there is not a (K3 + e,1)-GDD of type 11! or 13 for A =
0 (mod 4).

Lemma 4.2 Let g = 1 (mod 2), [¢/2] < u < |3¢/2) and g > 1. Then
there is a (K3 + e,4)-GDD of type g*ul.

Proof We form the required GDD on point set X = Zsy U {001,...,00,}
and group set G = {{0,2,...,2¢9 — 2},{1,3,...,2¢g — 1}, {oo1,...,004}}.
Let E = D3y N {0,2,...,29 — 2}. By Lemma 2.12 we can decompose
(Z2g U{oo?, 002}, {9, 9}) and (ZayU{c0}}, {9, 5,d}), d € 4(D2, \ (EU{g})),
into (K73 + €)-blocks, and say K. By Lemma 2.7 we can decompose {Z2, U
{003, ,00i,}, {d:}) into (K; + e)-blocks, where d; € [4(Ds, \ (EU {g,d}))]U
{d,d,d} for 1 < i < 2m where m € {0,1,...,g9 — 2}, and say K> (note that
K> =0 if m =0). By Lemma 2.9 (Z5, U {00}, }, {d;}) can be decomposed
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into (K3 +e)-blocks, where d; is the remaining difference in 4(D», \ £), and
say K3. It is not difficult to assure that each infinite point appears four
times in all those graphs. We can calculate out that the total number of
different infinite points is m + (g + 1)/2 where m € {0,1,...,9 — 2}. Then
(X,6,K1UK2UK3) is a (K3 +e€,4)-GDD of type g?u! where [g/2] < u <
|39/2] — 1. For u = |3g/2], we only need change {Za, U {00}},{g,9,d})
into (Zag U {00}, 002}, {g,9}) and (Z24 U{003, 003}, {d}) and let m = g — 2,
then proceed as above. °

Lemma 4.3 Let t = 2 (mod 4), 4 < v < [3(t —1)/2) and t > 2. Then
there ezists a (K3 + e,4)-GDD of type 1'u!

Proof Lett=8k+jforj=2,6,X=2,G={{i}:0<i<t-1}.

Suppose that (X,G,B) is a cyclic partial (K3 + e,4)-GDD of type
18%+J with the difference leave L. For each base block B, the graphs
(Z,U{003, 003}, AB*), (Z,U{003,...,00%}, AB*) can be decomposed into
(K3 + e)-blocks by Lemma 2.14. Hence for any By, B> € B, the graphs
(Zy U{ool, 003}, AB} UABY), (Z,U{o0],...,008}, AB} UABY) can also
be decomposed into (K3 + e)-blocks. Similarly, if AB} and ABJ con-
tain two odd differences, the graph (Z, U {o0f,...,00}},AB} UABS) can
be decomposed into (K3 + e)-blocks. So it is not difficult to obtain a
(K3 + e,4)-GDD of type 1'u! where u = 2i +w, 0 < i < 3||B]/2], as long
as (Z, U {o0},...,00L}, L) can be decomposed into (K3 + e)-blocks, too.

We repeat the following base blocks four times and denote the resultant
base blocks as B: (4dk—1i,2k+i+1,0)-(2k—2i) fori =0,1,...,k—1 (note
that B=0if k = 0).

When j = 2, we delete two base blocks By, B2 from B and denote the
resultant base blocks as B still. Then (X, G, B) is a cyclic partial (K3 +e, 4)-
GDD of type 13%+J with the difference leave L = AB} UAB} U4{4k + 1}
ifj=2orL =4{4k+ 1,4k +2,4k+3}if j = 6 It is not difficult
but tedious to check that (Z; U {o0%,...,00%}, L) can be decomposed into
(K3 +e)-blocks where w = 4, 5,6, 7 by Lemmas 2.7, 2.9 and 2.12. From the
above conclusion, we get a (K3 +¢€,4)-GDD of type 1*u! whereu >4. o

Lemma 4.4 Let t =2 (mod 4) and 0 < u < |3(t —1)/2), t > 2. Then
there exists a (K3 + €,4)-GDD of type 1'ul.

Proof Use induction on ¢. When ¢ = 6, the lemma follows by Lemma
4.3 and Appendixes A and B. Suppose that the lemma is true for ¢t — 4
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where ¢ > 10. We then know that there is a (K3 + e,4)-GDD of type
1t-4(4+wu)! for u < 3. By Lemma 2.3 fill in the long group of the GDD with
a (K3 +e,4)-GDD of type 14u! from Lemma 4.1. We obtain a (K3 + e, 4)-
GDD of type 1'u! for u < 3. By Lemma 4.3 the lemma is true for integer
t. °

Lemma 4.5 Let g = 1 (mod 2), t = 2 (mod 4), 0 < u < |39(t - 1)/2],
and if t = 2 then u > [g/2] where (g,t,u) # (1,2,1). Then there ezists a
(K3 + e,4)-GDD of type g'u!.

Proof The conclusion follows by Lemma 4.4 when g = 1. We will deal
with the case of g > 3.

Let ¢t = 41 + 2. The conclusion follows by Lemma 4.2 when ! = 0. Next
we consider ! > 0. We first deal with the case of [¢/2] < u < [3g(t —1)/2].
By Lemma 4.1 there is a (K3 + e,4)-GDD of type (2g)**!z! where 0 <
2 < 6gl. By Lemma 4.2 there is a (K3 + ¢,4)-GDD of type g°w' where
[9/2] < w < |39/2). Then apply Lemma 2.2 to get a (K3 + ¢,4)-GDD of
type g‘u' where [g/2] <u < |3g(t —1)/2].

Next we consider the case of 0 < u* < |g/2]. When t > 6, there are
(K3+e,4)-GDDs of types g'~*(4g +u*)! and g* (u*)! from Lemma 4.1. By
Lemma 2.3 fill in the long group of the first GDD with a (K3 +e,4)-GDD
of type g% (u*)!.

When ¢ = 6 and g > 63, it is well known that there exists a TD(7, g)
(for example, see [6]). Give weight 1 to the points of the first six groups
and a weight 0 or 1 to the points of the last group. Apply Fundamental
Construction to get a (K3 + e,4)-GDD of type g®(u*)! where 0 < u* <
lg/2). The input (K3 + e,4)-GDDs of types 1° and 161! are from Lemma
44.

When ¢t = 6 and g < 61, we prove it inductively. For g = 1, there
is a (K3 + e,4)-GDD of type 15(u*)! by Lemma 4.4. For g = 3, apply
Lemma 2.5 to a (K3 + e,4)-GDD of type 1° to get a (K3 + e,4)-GDD of
type 3%. A (K3 + e,4)-GDD of type 31! comes from Appendix B. Then
there is a (K3 + €,4)-GDD of type 3%(u*)! for 0 < u* < |g/2]. Suppose
that the lemma is true for the case y < ¢/, that is to say that there is a
(K3 + e,4)-GDD of type g°2! for admissible z. Next we deal with the
case of group type (g')é(u*)!. We can choose «, b, k so that ¢’ = ak + b
and (K3 + e,4)-GDDs of types a*b!, a®(u*)! and b%(u*)! exist by Lemma
4.1 and by induction. This can be done: when § < g’ < 15, take a = 2,
k=[g'/2) and b= 1; when 17 < ¢’ <61, take a = 4, k = [(¢' — 5)/4] and
b=5if¢' =1 (mod 4),or b=7if ¢ =3 (mod 4)). Then apply Lemma
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2.4 to get a (K3 + €,4)-GDD of type (¢')!(u*)*. °

Lemma 4.6 Let n be odd, B, and B> be (K3 + e)-blocks so that AB} =
{a,b,2,4} and n/2 ¢ AB;} UABF. Then the graph (Z, U {oof, o0f, ...,
004}, ABf UABYT) can be decomposed into (K3 + e)-blocks for w = 1,3,5.

Proof Forw = 1,let ABs = {¢,d, e, f}, change B; and B> into (001, 2,0)-
a, (001 y 4) O)“b’ (001 yCy 0)'d1 (ml )€, 0)'!‘

For w = 3, by Lemma 2.10 {Z,, U {001,002}, {2,4}) can be decomposed
into (K3 + e)-blocks. By Lemma 2.13 (Z,, U {00}, 003, 0%}, {a,b}) can be
decomposed into (K3 + €)-blocks. By Lemma 2.14 make a change to the
infinite points of {(Z,U{0c0?, 002}, ABy ) so that (Z,,U{co;, 002,003}, ABY)
can be decomposed into (K3 + €)-blocks. That is to say that (Z, U {co?,
004, cod}, ABf UABY) can be decomposed into (K3 + e)-blocks.

For w = 5, by Lemma 2.10 {Z, U {001,002},{2,4}) can be decom-
posed into (K3 + e)-blocks. By Lemma 2.13 make a change to the in-
finite points of (Z,, U {003, 003,003}, {a,b}) so that (Z, U {003, 003, 002,
005}, {a,b}) can be decomposed into (K3 + e)-blocks. By Lemma 2.14
make a change to the infinite points of (Z,, U {003,...,002}, ABT) so that
(Z, U {003, 003,003, 003,002}, ABF) can be decomposed into (K3 + e)-
blocks. That is to say that (Z,U{oof, 003, 00}, 00}, 008}, AB}t UABY) can
be decomposed into (K3 + e)-blocks. °

Lemma 4.7 Let gt be odd, (Z,:,G, B) be a cyclic partial (K3 +e,4)-GDD
of type g* with difference leave L where G = {{i,t +14,...,(g — 1)t +i} :
0 £ i < t—1}, in which there exists one base block B € B such that
2,4 € AB*. If the graph (Zg U {00},...,00%}, L) can be decomposed into
(K3 + e)-blocks, then there exists a (K3 + e,4)-GDD of type g*u' for any
integer u =2l + 1+ w where 0 <1 < 3||B|/2] - 1.

Proof Let!=3k+ j where j =0,1,2and 0 < k < ||B/2|] — 1. Without
loss of generality, let AB* = {a,b,2,4}.

For j = 0, choose 2k + 2 base blocks from B, say B,By,...,Bag41-
By Lemma 4.6 arrange the differences of B and B with 1 (or 3 if j = 1;
or 5 if j = 2) different infinite points, saying the resultant collection of
(K3+e)-blocks, K;. By Lemma 2.14 (Z, U{o0} , ..., 0% }, ABF UAB}, ),
i=2,4,...,2k can be decomposed into (K3+e)-blocks, say K». Denote the
(K3+e)-blocks generated by other base blocks and (Z,,U{o0},..., 00} }, L)
as K3. All infinite points form a group R,. It is easy to see (Z,, U R,,GU
R,, Ky UK>UKj3) is a (K3 + €,4)-GDD of type g'u! for any integer u =
214+ 1+w where 0 <! < 3[|8|/2] - 1. o
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Lemma 4.8 Let gt be odd, (Z4:,G,B) be a cyclic partial (K3 +e,2)-GDD
of type g with difference leave L where G = {{i,t +1,...,(g — 1)t +1} :
0 < i <t -1}, in which there exists one base block B € B such that
2,4 € AB*. If the graph (Zg U {o03,...,00%}, L) can be decomposed into
(K3 + e)-blocks, then there exists a (K3 + e,4)-GDD of type g'u' for any
integeru =21+ 1+ w where 0 <1 < 3|B| - 1.

Proof It is easy to see that (Zy,G,B U B) is a cyclic partial (K3 + e, 4)-
GDD of type g* with difference leave LUL. Since {Zy U {007,...,00%}, L)
can be decomposed into (K3 + e)-blocks, (Z, U {oof,...,008}, LUL) can
also be decomposed into (X3 + e)-blocks. Then by Lemma 4.7 we obtain
a (K3 + €,4)-GDD of type g*u! for any integer v = 2! + 1 + w where
0<!<3|BJ-. o

Lemma 4.9 Lett be odd, u= (t+1)/2 (mod 2) and u < 3(t—1)/2. Then
there exists a (K3 + e,4)-GDD of type 1tul.

Proof Lett=8s+1 wherei =1,3,5,7. By the proof of Lemma 3.7 and
Lemma 4.8 we can handle the case of u > 3(i — 1)/2 + 1.

For t = 8s+ 1, it handles the case of 1 < u < 3(¢t —1)/2 and u
1 (mod 2).

For t = 8s + 3, it handles the case of 4 < v < 3(¢t — 1)/2 and u
0 (mod 2). For u = 0, it follows by Lemma 4.4. For v = 2, by Lemma 2.3
fill in the long group of a (K3 + €,4)-GDD of type 185! from Lemma 4.1
with a (K3 + e,4)-GDD of type 132! from Appendix A.

For t = 85+ 5, it handles the case of 7 < v < 3(t — 1)/2 and u =
1 (mod 2). For u = 1, it follows by Lemma 4.4. For u = 3,5, by Lemma
2.3 fill in the long group of a (K3 + €,4)-GDD of type 1%(5 + u)! from
Lemma 4.1 with a (K3 + ¢,4)-GDD of type 15u! from Appendix B.

For t = 8s + 7, it handles the case of 10 < u < 3(t — 1)/2 and u =
0 (mod 2). For u = 0, it follows by Lemma 4.4. For v = 2,4,6,8, by
Lemma 2.3 fill in the long group of a (K3 + €,4)-GDD of type 135(7 + u)!
from Lemma 4.1 with a (K3 + e,4)-GDD of type 17u! from Appendix C.
o

Lemma 4.10 Let u = (¢ + 1)/2 (mod 2) and v < 9(t — 1)/2. Then there
exists a (K3 +e,4)-GDD of type 3*u! fort =3, 5, 7,9, 11, 13, 15, 23, 31.

Proof Case 1:t =1 (mod 4). By the proof of Lemma 3.9 and Lemma
4.8, we can handle the case of » > 1 and v = 1 (mod 2).



Case 2: ¢t = 3 (mod 4). By the proof of Lemma 3.9 and Lemma 4.8, we
can handle the case of u > 4 and u = 0 (mod 2). For u = 0, it follows by
Lemma 4.5. For u = 2, by Lemma 2.3 fill in the long group of a (K3 +e,4)-
GDD of type 3:7311! from Lemma 4.1 with a (K3 + ¢,4)-GDD of type
332! from Appendix B. o

Lemma 4.11 Letu = (¢t +1)/2 (mod 2) and u < 21(¢ — 1)/2. Then there
exists a (K3 + e,4)-GDD of type T'u! fort =3, 5,7, 9, 11, 13, 15, 17, 19,
21, 23, 29, 31.

Proof Case 1:t =1 (mod 4). By the proof of Lemma 3.10 and Lemma
4.8, we can handle the case of u > 1 and ¥ = 1 (mnod 2).

Case 2: ¢t = 3 (mod 4). By the proof of Lemma 3.10 and Lemma 4.8,
we can handle the case of u > 4 and u = 0 (mod 2). For u = 0, it follows by
Lemma 4.5. For u = 2, by Lemma 2.3 fill in the long group of a (K3 +e,4)-
GDD of type 7:7323! from Lemma 4.1 with a (K3 + €,4)-GDD of type
732! from Appendix B. o

Lemma 4.12 Lett > 3 be odd, u = (t+1)/2 (mod 2) and v < 3g(t—1)/2.
Then there exists a (K3 + e,4)-GDD of type g'u® for g = 3,7.

Proof The conclusion follows by Lemmas 4.10 and 4.11 when 3 <1 < 15
if g=3, 0or when 3 <t <23if g =7. Next we consider the case of t > 17
ifg=30rt>25ifg=7. Lett=8m+1%and s =gm wherei =1,3,5,7.
Then 3t = 85+ gi and s > 6. By the proof of Lemma 3.11 and Lemina 4.8,
it handles the case of u > (3g7 + 99 — 10)/2. For u < (3gi + 99 — 14)/2, we
prove it inductively as in Lemma 3.11. °

Lemma 4.13 Let g andt be odd, u = (¢t+1)/2 (mod 2) and u < 3g(t—-1)/2.
Then there exists a (K3 + e,4)-GDD of type g'ul.

Proof Let g = 4k + ! where ! = 1,3. By the proof of Lemma 3.13 and
Lemma 4.8, it handles the case of v > 3I(t —1)/2 + 1. A similar arguments

as in Lemma 3.14 can deal with the case of u < 3I(¢t —1)/2 - 1. o

From Lemmas 4.1, 4.5 and 4.13 we obtain the following theorem.
Theorem 4.14 The necessary conditions as in Lemma 1.1 for the exis-

tence of a (K3+e,4)-GDD of type g*u' are also sufficient except (g,t,u) =
(1,2,1) and (1,3,0).
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5 Conclusion
By Theorems 1.2, 3.15 and 4.14, we obtain the following theorem.

Theorem 5.1 The necessary conditions as in Lemma 1.1 for the ezistence
of a (K3 + e,A\)-GDD of type g*u' are also sufficient except (g,t,u,A) =
(1,2,1,A) and (1, 3,0, A) where A =0 (mod 4).
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Appendix A

Let X = Zg¢ U{ooy,...

ooy} and G={{i,t +i,...

Ag—In+i}:0<i<t~-1YU{{co1....

A (K3 +e,2)GDD of type g'ul (X, €, B) is constructed by listing its blocks B as below.

{mod

ou}}.

9)

A=2=
15410 (1,007,002 (3,00).2)e004 (3.4,003):0 (4,2,0)-000  (1,4,004)-2
(2.3,001)4  (1,3,004)-0 (0,3, 03)-4 (1,002,4)-2 (3.4, 02)-0
(1,3,002)2 (0,3, 004)-4 {1, 003,2)-0c0p (4, c01,0)-1 {2,003, 1)-00)
2311 (0.1,2)-3 (3,5,1)-2 (0,2,4)-3 (0,4,5)1 (001, 4,3)-1
(4,5,001)-1 (cc1,3,2)-4 (c03.0,5)-3 (0,1,007)2
2331 (007,1,0)-003  (oog,5,4)-0 (3,003,2)-1  (2,002,0)-1 (4, 001.3)-con
(1,5,002)-2 (3, 002, 1)-c03 (3,5,003)-1 (4, 001,2)-3 (o0g3,4,2)-0
(0, 5,003)-4 (0, 003, 4)-3 (3, 001, 5)-1 (2,007,1)-3 (0, 007,5)-4
A= 4=
18 (1,2,3)4  (3,0,5)}-1  (4,0,2)-1  (1,8,0}-5 (1,4,5)3
(2,1,56)-4 (4, 5,3)-1 (2,4,0)-1 {1,4,3)-0 (5,0,2)1
(1,0.4)-2  (2,3,5)-4 (5,0,1)-4 (3,4,2)-6 (3,2,0)-4
170 (2,0,1)6  (3,5,4)2  (3.4,00-6  (2,6,5)0-1  (3,6,1)4
(2,5.3)-0 (2,6,4)-1 (0, 5,6)-2 {1,5,4)-6 (0,86, 3)-1
(5,4,0)-2  (1,2,0)4  (3,6,2)01 (1,5,3)4 (1,4,6)-6
(0,4,2)-3  (0,1,3)}-5 (1,2,5)-0 (3,4,2)-56 (4,5,6)-3
(1,6,0)-5
1321 . (001.2,0)-007  (0,007.2)-1  (1,002,0)00; (0, c0g,1)-001 (2, 009, 1)-0
{1,007,2)-009 (1, 001.0)-2 2,002,1)-001 (0, cog, 2)-007
Appendix B
A (K3 + ¢,))-GDD of type gtul is constructed by listing its some blocks and some base blocks as
bhelow.
A=2
2351 . (o01.1,0)-005 {c0g,2,0)-c05 {c03,2,0)-c0q {mod 6)
(004.0,1)-2 (cog. 2, 3)-4 (cog,4.5)-0
a1l (1,3,0)00  (5,3,0)co  (mod 12)
(0,5.6)-7 (2.8, 7)1 (4.10.®)-3  (10,11,5)-4  (0,6,11)-5
(0.7.1)6 (1,2,8)-3 (2,3.9)-8 (3,10, 4)-11
3zl (c01.1,0)2  (003,5,0)-1  (mod 12 )
(0, 3, 6)-9 (1.3, 7)-10 (2.5,8)-11  {2,5,0)-9 (3.6, 1)-10
(4.7.2)-11 (8. 5,3)-9 (6.9,4)-10  (7,10,5)-11  (8,11,6)-0
(2.0, 7)1 (10, 1, 8)-2 (11,2,9)-3  (0,3,10)-4 (1,4,11)-5
A=4q=
183l {e01,1,0)-2 (00}, 2,0)-c03 (o02,1,0)-003 {002,1,0)-2 {c03.2,0)-1 (mod 5)
1551 (001,1,0)-2 (002,1,0)e004 (001,2,0)-004 (c02,2,0)-co5 (co3.1,0).c05
(004,1,0)-005  (003,2,0)-c05  (mod 5)
1821 (001,2,0)1  (1,2,0)-c0p  (3,007,0)-c02 (mod 6)
(2, c02,0)-3 (3, 09,1)-2 {4, 02, 2)-0 {5, 002, 3)-4 (0, c02,4)-1
(1,002,5)-0  (0,3,1)-4 (2.3,5)1 (2.5,4)-0
183! (001,2,0)-1  (003,2,0)-c02 (003,1.0)-002  (3,001.0)-1 (mod 6)
(2,002,0)-3 (3, c000,1)-2 (4, cog,2)-0 (5.c02,3)4 (0, 000, 4)-1
(1,203.5)-0  (0,3,1)-4 2,3,5)1 (2.5,4)-0
3321 (4,2,0kc0y  (1,2,0)-c00  (r0},4.00-c02  (c02.4,0)-007  {1,2,0)-4
3% (8,7.0)-c0  (2.4,0)00  (3,4,0)-00  (3,7.0)c0  (1,3,0)-7
(6,7,0)-6 {2,6,0)-3 (mod 185)
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3611 ;

7321 ;

{7,8,0)-1 (2,4,0)-1 (7,8,0)-00
(5.2.0)-9 (c0,9,0)5 (mod 18)
(0.5,7)-2 (1,6,8)-3 (11, 9,4)-17
(7,12,14).8 (8,15, 13)-0 (14,1,3)-16
(4,9,1)-12 (8, 10, 2)-9 (6,11,3)-5

(9,14, 6)-17
(14,1,11).0

(10, 15, 7)-8
(15, 2, 12)-17

(11, 16, 8)-10
(16, 3,13)-2

(001.:4,0)-002

{1, 6,18)-0 (2,7,17)-1
(4,2,0)-001 (1,2,0)-009
(7.8,0)-4 (2.10,0)-8

Appendix C

(3,10,0)-8

(7,4,0)-3

(5.12,10)-3
(4,2, 15)-10
(7,12, 4)-6
(12,17, 9)-16
(17, 4, 14)-16

(co2,4, 0)-00)
(5,10,0)-7

(8,4,0)-c0

(6,13, 11)-16
(3,8,0)-2
(8,13, 5)-16
(13,0,10)-17
(0,5,15)-17

(5, 10, 0)-7
(mod 9)

{K3 + ¢, A)-GDDs of types ot u! are constructed by Lemmas 2.7-2.12.

A=2=

1731

1771,

11871,

A=4
1721

1742,

1761,

1781:

(1,2,0)-3  (mod 7))
(Z7 U {03, 002}, {2})

(Z7 U (wf, 002}, (11
{27 U {o0g, 02}, {3}}

(7.6,0)-5
(27 U {00}, 002}, (31
(27 U (o0, =3}, (4}

(1,2,0)-4
(27 U {00), 002}, (2.4})

(1,2,0)-4 {mod 7)
(27 U {001, 002) . (2.4}

(Z7 U {03, c04)}. (2.4})
(27 U {co1, 002}, (2.4}
(Z7 U {03,004} {2.4}}
(Z7 U {005, 06}, {2.4})
(27 U {001,002}, {2,4})
(27 U (0%, 004}, (2})

(27 U {0}, 206}, {2})

(27 U {03, 003}, {4})

(27 U {o02. 03} (31

(27 U {02,032}, (1)
(27 U {o05. 00}, {2,4})

(7,6,0)-5 (mod 15)

(Z7 U {002, 203}, {3}
(27 U {005, 006}, {2,4}}

(1,2.0)-4 {mod 7)
(27 U {0}, w2}, (4}
(Z7 U oo}, co2}. {2})
(Z7 U {03, 04). (1D
(Z7 U (e}, 02}, (41
(Z7 U {03, 04). (1}
(27 U {0}, g}, (11
(27 v {Wf-mz)-(‘l})
(27 U {3, 004}. (11
(27 U {3, 26}, (1}

(27 U {o0f. co5}. {3}
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{(Z7 v (“E' cog}, (2})

(27 U (%, 005} (2

(27 U (3. 201}, (21

(Z7 U {003, 001}, {2}
(Z7 U {c0F. w3). (1)
(27 U {03, 1} (2]
(27 U (0], ®3). (1))
(27 U {03, 05}, (1))
(27 U {3, 01}, {2}
(27 U {o0F. 003}, (11}

(27 U {0, 005}, {(1})



