Weakly Edge-Pancyclicity of Locally Twisted Cubes*

Meijie Ma^a Jun-Ming Xu^{b†}

^aDepartment of Mathematics, Zhejiang Normal University

Jinhua, 321004, China

^bDepartment of Mathematics, University of Science and Technology of China

Hefei, 230026, China

Abstract The locally twisted cube LTQ_n is a newly introduced interconnection network for parallel computing. As a variant of the hypercube Q_n , LTQ_n has better properties than Q_n with the same number of links and processors. Yang, Megson and Evans [Locally twisted cubes are 4-pancyclic, Applied Mathematics Letters, 17 (2004), 919-925] showed that LTQ_n contains a cycle of every length from 4 to 2^n . In this note, we improve this result by showing that every edge of LTQ_n lies on a cycle of every length from 4 to 2^n inclusive.

Keywords Cycle, Locally twisted cubes, Pancyclicity, Edge-pancyclicity

AMS Subject Classification: 05C38 90B10

1 Introduction

The architecture of an interconnection work is usually represented by a connected simple graph G=(V,E), where the vertex-set V is the set of processors and the edge-set E is the set of communication links in the network. The edge connecting two vertices x and y is denoted by (x,y). A graph G is weakly pancyclic if it contains cycles of all lengths from 4 to |V| in G. The pancyclicity is an important measurement to determine if a topology of network is suitable for an application where mapping rings of any length into the topology of network is required. Large amount of related work appeared in the literature [3, 4, 5]. Vertex-pancyclicity and edge-

^{*}The work was supported by NNSF of China (No.10271114).

[†] Corresponding author: xujm@ustc.edu.cn

pancyclicity are two stronger pancyclic properties. A graph G is weakly vertex(edge)-pancyclic if, for each vertex(edge) and any integer l ranging from 4 to |V|, there is a cycle of length l containing the vertex(edge). It is clear that a weakly edge-pancyclic graph is also a weakly vertex-pancyclic graph. Vertex-pancyclicity and edge-pancyclicity of some graphs have been discussed [6, 7, 8].

The hypercube network Q_n has proved to be one of the most popular interconnection networks since it has a simple structure and is easy to implement. As a variant of Q_n , the locally twisted cube LTQ_n , proposed by Yang et al [1], has many properties superior to Q_n . For example, LTQ_n has about half of the diameter of Q_n [1]. In particular, Yang et al [2] proved that LTQ_n contains a cycle of length from 4 to 2^n . In this note, we improve this result by showing the following theorem.

Theorem Every edge of LTQ_n lies on a cycle of every length from 4 to 2^n inclusive for n > 2.

The proof of the theorem is in Section 3. In Section 2, the definition and basic properties of LTQ_n are given.

2 Locally Twisted Cubes

An *n*-dimensional locally twisted cube $LTQ_n (n \ge 2)$, proposed first by Yang *et al* [1], has 2^n vertices. Each vertex is an *n*-string on $\{0,1\}$. Two vertices $x = x_1 x_2 \dots x_n$ and $y = y_1 y_2 \dots y_n$ are adjacent if and only if one of the following conditions are satisfied.

- (1) There is an integer $1 \le k \le n-2$ such that
 - (a) $x_k = \bar{y}_k$ (\bar{y}_k is the complement of y_k in $\{0, 1\}$),
 - (b) $x_{k+1} = y_{k+1} + x_n$, and
 - (c) all the remaining bits of x and y are identical.
- (2) There is an integer $k \in \{n-1, n\}$ such that x and y differ only in the k^{th} bit.

According to the above definition, it is not difficult to see that LTQ_n can be recursively defined as follows. LTQ_2 is a graph consisting of four vertices labelled with 00, 01, 10, and 11, respectively, connected by four edges (00,01), (00,10), (10,11) and (01,11). For $n \geq 3$, LTQ_n is constructed from two disjoint copies of LTQ_{n-1} by adding 2^{n-1} edges as follows. Let LTQ_{n-1}^0 denote the graph obtained by prefixing the label of each vertex of one copy of LTQ_{n-1} with 0, let LTQ_{n-1}^1 denote the graph obtained by prefixing the label of each vertex of the other copy of LTQ_{n-1} with 1, and connect each vertex $x = 0x_2x_3 \dots x_n$ of LTQ_{n-1}^0 with the vertex $1(x_2+x_n)x_3 \dots x_n$ of LTQ_{n-1}^1 by an edge, where '+' represents the modulo 2 addition. For short, we denote $LTQ_n = L \oplus R$, where $L \cong LTQ_{n-1}^0$ and

 $R \cong LTQ_{n-1}^1$ and call edges between L and R cross edges. Moreover, we write a cross edge as (u_L, u_R) , where $u_L \in L$ and $u_R \in R$.

We use LTQ_{n-2}^{ij} to denote the (n-2)-dimensional locally twisted cube which is a subgraph of LTQ_n induced by the vertices labelled $ijx_3 \ldots x_n$. We say an edge of LTQ_n to be critical if it is an edge in LTQ_{n-1}^i with one endpoint in LTQ_{n-2}^{i0} and the other in LTQ_{n-2}^{i1} for $i \in \{0,1\}$.

Lemma 1 Let $LTQ_n = L \oplus R$ with $n \geq 3$. If $(u_L, v_L) \in E(L)$ is a critical edge of LTQ_n , then $(u_R, v_R) \in E(R)$ is also a critical edge of LTQ_n , where u_R and v_R are the neighbors of u_L and v_L in R, respectively.

Proof Suppose that $(u_L, v_L) \in E(L)$ is a critical edge of LTQ_n and, without loss of generality, assume that $u_L = 00u_3u_4...u_n$. We have $v_L = 01(u_3 + u_n)u_4...u_n$, $u_R = 1(0 + u_n)u_3u_4...u_n$ and $v_R = 1(1 + u_n)(u_3 + u_n)u_4...u_n$. By definition of LTQ_n , u_R and v_R are adjacent, hence (u_R, v_R) is a critical edge in R.

Note that if $LTQ_n = L \oplus R$, then, for any two adjacent u_L and v_L in L, their neighbors u_R and v_R in R are not always adjacent in R, and vice versa. However, it is clear from Lemma 1 that if (u_L, v_L) is a critical edge, then their neighbors u_R and v_R in R must be adjacent in R, and vice versa. Thus, the vertices u_L, v_L, v_R, u_R, u_L form a 4-cycle. Critical edges play an important role in the proof of our theorem. A cycle in LTQ_n is called a 2-critical if it contains at least two critical edges. It is easy to see that every vertex in LTQ_n is incident with a critical edge and every cross edge lies on a 2-critical cycle of length four.

Lemma 2 If the length of a cycle is greater than 2^{n-2} in the subgraph LTQ_{n-1}^0 of LTQ_n for $n \ge 4$, then it must be a 2-critical cycle.

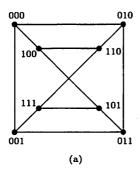
Proof Note that the (n-2)-dimensional crossed cube LTQ_{n-2}^{0j} for $j \in \{0,1\}$ has only 2^{n-2} vertices. Since any cycle in LTQ_{n-2}^{00} or in LTQ_{n-2}^{01} has length at most 2^{n-2} , any cycle of length greater than 2^{n-2} in LTQ_{n-1}^{01} must contain vertices in both LTQ_{n-2}^{00} and LTQ_{n-2}^{01} and so contain at least two critical edges between LTQ_{n-2}^{00} and LTQ_{n-2}^{01} . ■

3 Proof of Theorem

In this section, we give the proof of Theorem stated in Introduction.

Proof We prove the theorem by induction on $n \ge 2$. The theorem is true for n = 2.

For n = 3, by the symmetric property of LTQ_3 (see Fig. 1), we only need to show that the theorem holds for the edge $e \in \{(000,001),(010,000)\}$.



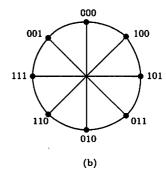


Figure 1: (a) An ordinary drawing of LTQ_3 (b) a symmetric drawing of LTQ_3

All cycles of lengths from 4 to 8 containing (000,001)(labelled by underlines) and (010,000)(labelled by overlines) are as follows.

- (1) length 4: $(000, 001, 011, \overline{010, 000})$;
- (2) length 5: $(000,001,111,110,\overline{010,000})$;
- (3) length 6: $\langle \overline{000,001}, 111, 101, 011, \overline{010,000} \rangle$;
- (4) length 7: $\langle \overline{000,001}, 111, 101, 100, 110, \overline{010,000} \rangle$;
- (5) length 8: $(000,001,111,110,100,101,011,\overline{010,000})$;

Hence, the theorem is true for n = 3.

Assume now that the theorem is true for all $3 \le k < n$. Let e be any edge of LTQ_n and let ℓ be any integer with $4 \le \ell \le 2^n$, where $n \ge 4$. To complete the proof of the theorem, we need to show that e is contained in a cycle of length ℓ by considering two cases according as e is a cross edge or not.

Case 1. The edge e is not a cross edge. Then the edge e is in L or R. Without loss of generality, we may assume e is in L.

If $4 \le \ell \le 2^{n-1}$, by the induction hypothesis, there exists a cycle of length ℓ in $L \subset LTQ_n$ that contains e.

Suppose that $2^{n-1}+1 \le \ell \le 2^{n-1}+3$. By the induction hypothesis, there exists a cycle C of length $2^{n-1}-3$ in L containing e. For $n \ge 4$, we have $2^{n-1}-3 > 2^{n-2}$, and so C is a 2-critical cycle by Lemma 2. Thus, we can choose a critical edge (u_L,v_L) in C different from e. Then the neighbors of u_L,v_L are u_R,v_R in R with $(u_R,v_R) \in E(R)$ by Lemma 1. By the induction hypothesis, there exists a cycle C' of length $4 \le \ell' \le 6$ in R containing (u_R,v_R) . Thus $P' = C' - (u_R,v_R)$ is a path between v_R and u_R in R. Let $P = C - (u_L,v_L)$. Then P containing e (see Fig. 2 (a)).

Suppose that $2^{n-1} + 4 \le \ell \le 2^n$. Let $\ell' = \ell - 2^{n-1}$. Then $4 \le \ell' \le \ell' \le \ell'$

 2^{n-1} . By the induction hypothesis and Lemma 2, there exists a 2-critical cycle C of length 2^{n-1} in L containing e. We can choose a critical edge (u_L, v_L) different from e. Without loss of generality, let u_R and v_R be the neighbors of u_L and v_L , respectively. Then u_R and v_R are adjacent in R. Let $P = C - (u_L, v_L)$. Obviously e lies on P. By the induction hypothesis there exists a cycle C' of length ℓ' in R that contains (u_R, v_R) . Let $P' = C' - (v_R, u_R)$. Then $P + (v_L, v_R) + P' + (u_R, u_L)$ is a cycle of length ℓ in LTQ_n and contains e (see Fig. 2 (b)).

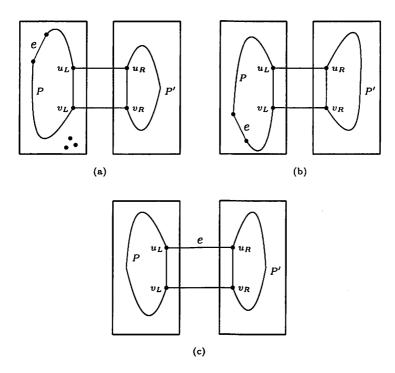


Figure 2: Illustrations for the proof of Theorem

Case 2. The edge e is a cross edge between L and R. We may assume $e = (u_L, u_R)$ and $u_L = 0u_2u_3 \dots u_n$. Then $u_R = 1(u_2 + u_n)u_3 \dots u_n$

The cycles of length 4 and 5 containing e are as follows.

Let $v_L = 0\bar{u}_2(u_3 + u_n) \dots u_n$, and $v_R = 1(\bar{u}_2 + u_n)(u_3 + u_n) \dots u_n$, then (u_L, v_L) and (u_R, v_R) are critical edges and $\langle u_L, v_L, v_R, u_R, u_L \rangle$ is a cycle of length four in LTQ_n containing e. And if $u_n = 0$

$$\langle 0u_2u_3\ldots u_n, 0u_2u_3\ldots \bar{u}_n, 1(u_2+\bar{u}_n)u_3\ldots \bar{u}_n, 1(u_2+\bar{u}_n)u_3\ldots u_n, 1(u_2+u_n)u_3\ldots u_n, 0u_2u_3\ldots u_n \rangle.$$

is a cycle of length five in LTQ_n containing e.

If
$$u_n = 1$$

$$\langle 0u_2u_3 \dots u_n, 0u_2u_3 \dots \bar{u}_n, 1(u_2 + \bar{u}_n)u_3 \dots \bar{u}_n, 1(u_2 + u_n)u_3 \dots \bar{u}_n, 1(u_2 + u_n)u_3 \dots u_n, 0u_2u_3 \dots u_n \rangle.$$

is a cycle of length five in LTQ_n containing e.

For $\ell \geq 6$, we can write $\ell = \ell_1 + \ell_2$ where $\ell_1 = 2$, $\ell_2 \geq 4$ or $\ell_1 \geq 4$, $\ell_2 \geq 4$. Consider the cycle $\langle u_L, v_L, v_R, u_R, u_L \rangle$ of length four in LTQ_n containing e. By the induction hypothesis, there exists a cycle C of length ℓ_1 in L containing (u_L, v_L) if $\ell_1 \geq 4$ and exists a cycle C' of length ℓ_2 in R containing (u_R, v_R) . Let $P = (u_L, v_L)$ if $\ell_1 = 2$ or $P = C - (u_L, v_L)$ if $\ell_1 \geq 4$; $P' = C' - (v_R, u_R)$. Then $P + (v_L, v_R) + P' + (u_R, u_L)$ is a cycle of length ℓ in LTQ_n and contains e (see Fig. 2 (c)).

By the induction principle, the theorem follows.

References

- [1] X. Yang, D.J. Evans and G.M. Megson, The locally twisted cubes, International Journal of Computer Mathematics, 82 (4) (2005), 401-413.
- [2] X. Yang, G.M. Megson and D.J. Evans, Locally twisted cubes are 4-pancyclic, *Applied Mathematics Letters*, 17 (2004), 919-925.
- [3] J. Fan, Hamilton-connectivity and cycle-embedding of Möbius cubes. *Information Processing Letters*, **82** (2002), 113-117.
- [4] W.-T. Huang, W.-K. Chen and C.-H. Chen, Pancyclicity of Möbius cubes. Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS'02) on 17-20 Dec. 2002, 591-596.
- [5] S.-C. Hwang and G.-H. Chen, Cycles in butterfly graphs, *Networks*, 35 (2), (2000), 161-171.
- [6] T. Araki, Edge-pancyclicity of recursive circulants, Information Processing Letters, 88 (2003), 287-292.
- [7] K.-W. Lih, S. Zengmin, W. Weifan, Z. Kemin, Edge-pancyclicity of coupled graphs, Discrete Applied Mathematics, 119 (2002), 259-264.
- [8] J. Fan, X. Lin and X. Jia, Node-pancyclicity and edge-pancyclicity of crossed cubes. *Information Processing Letters*, 93(2005), 133-138.