PACKING THREE-VERTEX PATHS
IN 2-CONNECTED CUBIC GRAPHS
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ABSTRACT. We show that every 2-connected cubic graph of order n > 8 ad-
mits a Pa-packing of at least [?—’l'] vertices. The proof is constructive, imply-
ing an O(M (n)) time algorithm for constructing such a packing, where M (n)
is the time complexity of the perfect matching problem for 2-connected cubic

graphs.

1. INTRODUCTION

Generalized matching problems have been studied in a wide variety of contexts [1,
3,4,6,11]. For a fixed graph H, an H-packing in a graph G is defined as a sub-
graph F' C G such that each connected component of F' is isomorphic to G. The
maximum H -packing problem consists in determining an H-packing of maximum
order in the input graph. In particular, in the maximum Ps-packing problem we
seek a cover of as many vertices of a graph as possible using vertex-disjoint copies
of the 3-vertex path.

A lot of attention has been given to the maximum P;-packing problem in dif-
ferent subclasses of cubic (3-regular) graphs. Let us recall that a graph G is said
to be k-connected if there does not exist a set of k — 1 vertices whose removal
disconnects the graph. In 1985, Akiyama and Kano made a conjecture concerning
P3-packing in 3-connected cubic graphs, which still remains unproved.

Conjecture (Akiyama and Kano [1]). Every 3-connected cubic graph of order
divisible by three admits a perfect Ps-packing, i.e. a Ps-packing on all its vertices.

A partial positive answer to this problem was obtained by Kaneko et al. [5] who
established that every connected n-vertex claw-free graph having at most two end-
blocks (in particular, a 2-connected claw-free graph) has a maximum Ps-packing
on 3{ % | vertices. Another result related to Akiyama and Kano’s conjecture was
obtained in 2004 by Kelmans and Mubayi [7] who established the existence of a
P;-packing of at least [3‘,&] vertices for all cubic graphs. In this paper our main
result is as follows.
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Theorem 1. Every 2-connected cubic graph of order n > 8 has a Ps-packing of
at least [32] vertices.

The proof is based upon the idea of adding edges from G to a Cy-free 2-factor of
G until each of the connected components of the obtained subgraph of G has a
P;-packing of the required cardinality — this we shall discuss in the next section.
Since the proof is constructive, it directly implies an —lgi-approximation algorithm
for the maximum P;-packing problem, which is discussed in Section 3.

2. PROOF OF THEOREM 1

2.1. Notation and definitions. Given a graph G, its vertex set is denoted by
V(G), and its edge set by E(G). By degg(v) we denote the degree of a vertex
v € V(G) in graph G. The k-vertex cycle is denoted by Cj, while the k-vertex
path is denoted by Py. For a given set of integers S, the notation Cyes describes
a graph isomorphic to any k-vertex cycle such thatk € S.

The symbol ¢(G) is used to denote the size of the maximum P3-packing in G

relative to the order of G, that is:

V(M)

V)’

where M spans the set of all Ps-packings in G. Hence, the claim of Theorem 1
can clearly be restated as follows: For every 2-connected cubic graph G with
VG > 8 0(G) 2 3

Let A and B be vertex-disjoint connected subgraphs of graph G. We say that
A and B are adjacent in G if there exist vertices v; € V(A) and v; € V(B) such
that e = {v1,v2} is an edge of G, e € F(G). For adjacent subgraphs we define
the operation of connection of subgraph A to subgraph B by means of edge e,
which leads to the new subgraph A~ B of G, formally defined as follows:

V(A~B) =V (A)uV(B);
E(A~B) = E(A)U E(B) U {e}.

A connected component of a graph which is isomorphic to a cycle is called a
cycle component. Let us recall that a spanning subgraph F' of a given graph G is
called a 2-factor if deg-(v) = 2 forall v € V(F'), or equivalently, if all connected
components of F' are cycles. A special case holds if a 2-factor is restricted to
have no cycle components C3 — then such a factor is called C3-free. A graph
H is called (2, 3)-regular if degy (v) € {2,3} for all v € V(H). A spanning
(2, 3)-regular subgraph is called a (2, 3)-factor. The subgraph of G induced by
set of vertices U C V(G) is denoted by the symbol G[U].

2.2. Outline of approach. In our considerations we will make use of a result of
Kawarabayashi er al. [6] who proved that every 2-connected cubic graph G has a
Cs-free 2-factor. Given 2-connected cubic graph G of order at least n > 8, let F’
be such a Cs-free 2-factor. Bearing in mind the ratio %, we observe that only the
connected components of F' isomorphic to cycles Cy, C5 or Cg are problematic;

¢(G) = max
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clearly, all other cycles C,¢(4 5,8} of F admit a Ps-packing of at least [ELVJHC'_zll]
vertices. For the proof we will therefore use a modification of factor F'. Such a
spanning subgraph H C G will be the (2, 3)-factor described by Theorem 2 (see
Fig. 1(c) for an illustration). In Subsection 2.4 we will then show that o(H) > %.

2.3. Construction of (2, 3)-factor H C G.

Theorem 2. Every 2-connected 3-regular graph G has a (2,3)-factor H C G
and a vertex partition V(G) = Vg U Vp, Vs N Vp = 0, such that:

(1) All the connected components of H[Vp) are isomorphic to paths from the
set { Py, Ps, Ps}; these are known as pendant paths.

(2) All the connected components of H|Vs] are isomorphic to graphs from
the set {Ct¢{3,4,5,8}1 Cs ~ CE6{4,5,8}5 Cs ~ Cy€{4,8}’ 04 ~ C4 ~ 04},
these are known as supporting components,

(3) The set of all remaining edges, Ec = E(H)\ (E(H[Vs])U E(H[Vp])),
connects each end-vertex of a pendant path to a vertex of some supporting
component in such a way that for every vertex of any supporting compo-
nent, there is at most one such edge incident to it.

Proof. First, consider the following approach which creates an auxiliary factor
F C G (an example is shown in Fig. 1(b)). Initially F, is an arbitrary C3-free
2-factor of G, and throughout the process F' remains a spanning subgraph of G.

Step (1). Let C5 be an arbitrarily chosen 5-vertex cycle component of F C G.

(a) If Cs is adjacent in G to a cycle component C¢ 4,58} of F, then connect
Cs to Cy, obtaining a new component Cs ~C,, of F.

(b) Otherwise, the considered cycle Cs is called pendant, and graph F' is not
modified at this point.

Step (2). Let Cg be an arbitrarily chosen 8-vertex cycle component of F C G.

(c) If Cs is adjacent in G to a cycle component C ¢ (4,8) of F, then connect
Cs to C,, obtaining a new component Cg~ C;, of F.

(d) Otherwise, the considered cycle Cs is called pendant, and graph F is not
modified at this point.

Step (3). Let Cy be an arbitrarily chosen 4-vertex cycle componentof F C G.

(e) If C4 is adjacent in G to another 4-vertex cycle component of F, then
connect Cj to this component, thus obtaining a new 8-vertex component
of F' denoted by Cy~Cy.

(e.1) If there exists a cycle component C of F isomorphic to C; and ad-
jacent to C4y ~ Cy in G, then connect Cy ~ Cj4 to C, obtaining
component Cy ~ C; ~ Cy of F (notice that this notation disregards
which of the two 4-vertex cycles is connected to C).

(e.2) Otherwise, the considered component Cy ~ C, is called pendant,
and graph F is not modified at this point.
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() If (e) does not hold, then the considered cycle Cj is called pendant, and
graph F is not modified at this point.

The above procedure is executed as follows. First, Step (1) is iterated until all
cycle components Cs in F' disappear or become pendant; next, Step (2) is iter-
ated until all components Cg in F disappear or become pendant; finally, Step (3)
is iterated until all components Cy4 in F' disappear or become pendant. All con-
nected components of F' created in Steps (1)-(3) which are not pendant are called
supporting. Thus, all components of F' belong to one of the groups:

— pendant components isomorphic to graphs from the set
{C4,C5,Cs,C4~Cy},

— supporting cycle components Cy¢(3 4,58}
— supporting components isomorphic to graphs from the set

{Cs~Czcia,5,8): Ca~Cyea,8y, Ca~Cy~Cy}.

Now, we perform an additional step of the algorithm to obtain the desired factor
H from the factor F'. This is achieved by transforming pendant components of F'
into pendant paths in H. Note that by definition of Steps (1)-(3) of the procedure,
if an edge of G has exactly one end-vertex in some pendant component of F', then
it must have its other end-vertex in a supporting component of F. Moreover, we
make the following simple observation.

Proposition 2.1. Let C € {C4,Cs,Cs,Cy ~ Cy} be a subgraph of 2-connected
3-regular graph G 2 C, |V(G)| > 8. Then there exists a Hamiltonian path
(niva...vv(cy) in G[V(C)], and some two vertices z1,z2 € V(G) \ V(C),
such that the path Pc = (z1v1v2 ... vy (c)|T2) belongs to graph G, Pc C G.

Step (4). In the final step of the algorithm, each pendant component C of F is
replaced by the corresponding path Pc in accordance with Proposition 2.1. Since
pendant components are connected by edges of G to supporting components only,
this step can be performed simultaneously for all pendant components of F'. The
newly obtained spanning subgraph of G is called H.

After Step (4), all connected components of H are composed of supporting com-
ponents of F' possibly interconnected by pendant paths of 4, 5 or 8 vertices. This
naturally implies a definition the partition V' = Vg U Vp, and the sought claims
(1), (2) and (3) clearly hold. O

2.4. Proof of bound o(H) > 3.

Theorem 3. Let H be any (2,3)-regular graph on vertex set V. = Vs U Vp
Sulfilling claims (1), (2) and (3) of Theorem 2. Then o(H) > %.

Without loss of generality we will assume that H is a connected graph (otherwise
our proof that o(H') > & holds for each connected component H' of H, hence
also o(H) > £).
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Fig. 1. (a) Solid and dashed lines: graph G. Solid lines: triangle-free 2-factor
F = {C4,C5,Cs5,Cs,Cr0} of G. (b) Auxiliary spanning subgraph F' after Steps
(1)-(3): we have two supporting components, Cyo and Cs ~ Cs, and two pendant
cycles, Cyq and Cs. (c) The final graph H C G after Step (4): cycles C4 and
C’s are replaced with the relevant Hamiltonian paths (in G) and double-connected
to supporting components; the resulting vertex partition V(G) = Vs U Vp, where
Vs = V(Cro) UV (Cs~Cs) and Vp = V(Py) UV (Ps).

Now, for each supporting component S C H[Vs], define k(S) as the number
of edges from E¢ connecting S to end-vertices of pendant paths from H[Vp). If
for some S we have k(S) = 0, then clearly

H =5 € {Cig(3,4,58),Cs~Crec{a,58}, Coa~Cye(ag}, Ca~Cs~Cy}

and the bound o(H) > % is easy to verify. Moreover, notice that the value of g
cannot increase if we replace a pendant path Pg by a pendant path Ps;. Thus we
may assume that each supporting component in graph H is adjacent to at least one
pendant path, and all pendant paths are P, (4 5)-

A supporting component S C H([Vs] will be called deficient if it has few con-
necting edges, namely, 3k(S) < [V(S)|. As will be shown later, proving that
o(H) > 3 is easy if H has no deficient components. Suppose however that H
has deficient components {5}, S2,...,S}. With each such component we as-

sociate a positive number called its deficiency d; = |V (S;)| — 3k(S;). We will
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eliminate the deficiencies one-by-one through local modification of edges, form-
ing a sequence of graphs H = H®, H!, H?, ..., H' fulfilling the following formal
characterisation.

Property. Graph H'® is a graph with vertex set V = V(H) and an associated
partition V = Vi U V§ U VEU V], such that:

(1) Forall1 <i <, o(H*) < o(H*™).

(2) H' is the disconnected union of three graphs:

Hi = HV{|u Hi[Va] U H[VE U V).

(3) Graph H'|V{| is a set of isolated vertices.

(4) Graph Hi[V4] is a set of connected components isomorphic to the path
P

(5) Graph H[V U V] is (2, 3)-regular and has no connected components
of order 8.

(6) All the connected components of Hi[V}] are isomorphic to paths from the
set { Py, Ps}; these are known as pendant paths.

(7) All the connected components of H'[V{] have at least 2 vertices; these
are known as supporting components.

(8) The set of edges EL = E(HY)\(E(H'[VE))UE(H?[V}))) connects each
end-vertex of a pendant path with exactly one vertex from some support-
ing component; moreover, the two ends of a path Py are never connected
to the same vertex of some supporting component.

(9) Each connected component of H'(VEUV}] contains at least one pendant
path.

(10) The following condition is fulfilled:

l
. 8 . .
6p' — V3l + 51V51 - 121V 2 = 3 dj,
where p' is the number of pendant paths in H°.

2.4.1. Example. Before we proceed any further with the details of the proof, let us
provide some intuition and an outline of our technique using an example. Consider
the initial graph H = H° shown in Fig. 2(a). In the first step, we replace some
edges of the supporting cycle Co, obtaining the new graph H = H! presented
in Fig. 2(b). Likewise, the supporting component Cs ~ Cs is replaced in H! to
obtain the new graph H?, Fig. 2(c). Note that any P3-packing on « vertices in H?
(see e.g. Fig. 2(f)) can be easily converted into a P3-packing on o vertices in H?,
and a P; packing on o vertices in H! can be converted into a P3-packing on o
vertices in H? (Fig. 3), only through the local replacement of the arrangement of
paths.

Looking at graph H2, we see that it has a 12-vertex subset V2 consisting of 4
connected components isomorphic to Ps, a single isolated vertex forming subset

100



(a) . (b) .
supporting pendantcycle G5 ... replacing

o—e—¢ cycle Cyg § o=0=0 cycle Cyy

o supporting
pendant cycle C; component C; ~Cy

d
©

replacing
component Cs~ Csg

(e)

Fig. 2. (a) The original graph H = H°. (b) Replacement of edge set of supporting
graph S = Cyo with graph S] = C, and two Ps-components results in graph
H', (c) Replacement of edge set of supporting graph Sz = Cs ~ Cs with graphs
83 = C3, 83 = P3, two Ps-components and one isolated vertex results in graph H?2,
(d) Replacement of pendant paths Py and path Ps with 1-vertex and 2-vertex paths,
respectively, results in graph H*. (e) In graph H*, there exists a P3-packing with at
least [EM:'—’)-[] = 10 vertices. (f) In graph H?2, there exists a Ps-packing with at
least 10 + 6 + 12 = 28 vertices.
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Fig. 3. P;-packing with at least 28 vertices in graph H.

Vi, a 9-vertex subset VE (in the form p? = 2 paths, a path P; and a path P),
and finally 10 vertices in the set V2. The graph H2(VZ U V}3] is clearly a (2, 3)-
regular graph on 10 + 9 = 19 vertices. It can be turned into the (2, 3)-regular
graph 13-vertex graph H* by removing exactly 3 vertices from both of its pendant
paths (Fig. 2(d)). However, we know [8] that any (2, 3)-regular graph without
connected components of order 5 admits a Ps-packing on at least a -f} part of its
vertices, hence H* has a P;-packing on at least [3 - 13] = 10 vertices, Fig. 2(e);
the packing shown here is in fact slightly larger. From this, by replacing the 3
vertices previously removed from the pendant paths, we obtain a packing on at
least 10 + 6 = 16 vertices in H2[VZ U VZ|. Augmenting this with a perfect
packing on H?2[V2] gives a packing on at least 16 + 12 = 28 vertices in H?,
Fig. 2(f). As stated earlier, this can easily be transformed into a P3-packing on
at least 28 vertices in graph H, Fig. 3. Since graph H has 32 vertices, we obtain
o(H) > B > £, as expected.

2.4.2. General approach. We need to show three facts: that graph H° = H ful-
fills the Property, that graphs H', 1 < i <1, can be constructed in accordance with
the Property, and that o( H') > 11 Then the proof of the Theorem is complete,
since we obtain:
9

o(H) =o(H°) 2 o(H') 2 ... 2 o(H") 2 TR
Lemma 2.2. Graph H® = H fulfills the Property.
Proof. Putting V§ = Vs, VR = Vp, VP = VP = 0, we see that clauses (2)-(9)
of the Property are immediately satisfied by definition of H and by the earlier
assumptions. Only clause (10) remains to be shown; that is, for graph H we need
to show that:

i
> d; > |Vs| - 6p,

3=1
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where p is the number of pendant paths of H. Note that by definition, for a
supporting component S C H{Vs] we have |V(S)| — 3k(S) < 0if S is not
deficient, and |V'(S)| — 3k(S) = d; if S = S is a deficient component. Thus, we
may write:

(IV(S8;)] — 3k(S;5))

S -

v EM~

S (V) -3K(S) = Vs -3 S k(S

SCHIVs) SCH(Vs)

where S spans all supporting components in H[Vs]. Since 2p = 5~ scH(vs) k(S)
by a trivial analogue of the handshaking lemma, the claim follows directly. O

Lemma 2.3. Forall 1 < i <1, graphs H* can be constructed in accordance with
the Property.

Proof. First, using the incremental notation dz* = z¢ — z¢~1, the required clause
(10) of the Property may be rewritten as follows:
(10 6dp* — O|VE| + 38|V5| — 126]VF| > d; = k(S:) — 3|V(S:)).

In the proposed construction each of the graphs H* will always be formed from
H*~! by a local replacement of edges within supporting component S; and pen-
dant paths adjacent to it, only. This means that the number of edges from E% !
adjacent to S; in H'~! is still equal to k(.S;). The modification of H~! used
to obtain H* depends on the structure of component S; and the arrangement of
adjacent edges in H*~1. We need to consider the following cases, remembering
that d; = |V(S;)| — 3k(S;:) > 0:

(A) Si = Cig(3,4,5,8}»

(B) S; =Cs~Cj and k(S,) S {1,2},

(C) S;i =Cs5~Cs and k(S;) € {1,2,3},

(D) S; = Cs~Cgand k(S;) € {1,2,3,4},

(E) S; =Cg~Cyand k(S) € {1 2, 3}

(F) S; = Cg~Cgand k(S;) € {1,2,3,4,5},

G) S;=0Cy ~Cy~Cyand k(S,) € {1, 2, 3}
First, consider Case (A), S; = Ci¢(34,5,8)- Suppose for a moment that d; = 1;
then ¢ = 3k(S;) + 1, which means that by the pigeon-hole principle some three
successive vertices vy, vz, v3 of the cycle S; are not connected to pendant paths,
and thus of degree 2 in H*~1. We will remove these vertices from S;, replacing
it by a cycle C;_3 and an isolated path P3. Let vp and v4 be their neighbours in
Si, i.e. (vov1vav3v,) form a path. Graph H* is now formally defined with edge
set E(H") = E(H*) U {{vo,v4}} \ {{vo,v1}, {vs, va}}, and vertex subsets

\{’Ul,vz,vg} V3 = V'_ U {vl,vz,vg} Vl = Vz_l V' = Vl—

Graph H ¢ clearly fulfills clauses (2)- (9) of the Property. It is easy to see that clause
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(1) is also fulfilled, actually as the equality o(H*) = o(H*~1). To write clause
(10%), it suffices to observe that §p* = §|V{| = 0, §|V| = 3, and 6|VE| = -3.

The more general case of arbitrary d; > 0 is handled similarly, only then we
have to repeat the procedure [%i'l times, obtaining a new cycle Ct—-sr%i] and [%i]
new isolated paths P3. The values in clause (10°) are then as follows: §p' =
8|Vifl = 0, 8|V4| = 3[4, and §|V§| = —3[% 1, siving:

660 — BIVE| + So1V5) — 1261V = 1115 >

which completes the proof of Case (A).

Cases (B)-(G) are solved using similar, somewhat more complex transforma-
tions which sometimes also modify sets V} and V; some of them are discussed
in the Appendix. a

Lemma 24. o(H') > 5.

Proof. Consider a P3-packing M = M, U M, in graph H' formed as follows.
Graph H*[V}] is a set of paths P, so it admits a perfect packing M, on all its
vertices,
V(M,) = V3.

To obtain a Ps-packing M, in H'[VE U VL], consider the graph H* formed by
removing exactly 3 vertices from each pendant path (that is, replacing all pendant
P4 and P; by P; and P, respectively). Note that H* is a well defined graph
by the additional condition in clause (8) of the Property. Since H![VE U V}] was
(2, 3)-regular by clause (5), H* is also clearly (2, 3)-regular. Moreover, by clauses
(5), (7) and (9), it is easy to see that no connected component of H* has exactly 5
vertices. The authors [8] have shown that a (2, 3)-regular graph without connected
components of order 5 always fulfills o( H*) > %, so H* admits a P3-packing M*
such that

3.3
WV(M*)| 2 7IV(H )I=Z(|Vs'I+IV£|—3P’)-

Using packing M*, by appropriately reinserting a path P; into each of the p'
pendant paths of H*, we obtain an appropriate P3-packing M, in H'[V} U V)

) 3
|V (My)| = |V(M*)| + 3p' > Z(|Vsl*| +|Vhl+ph).
For the whole packing M = M, U M, in H*, we obtain:
3
V(M) = |V(Ma)| + [V(Ms)| = |V5| + Z(Ws’l + Vel + ).

This gives a lower bound on the ratio o( H'):
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V()| [Vl + 2(Vs] + Vel + ')

o(HY) > >

)2 ) 2 Wi+ Vi + VA + V3
9 Lpt - Vg + §IVE| - 12|V]| - |V
11t T O VI + VAL IVRD

So, it remains to be shown that 11p' — |VE|+ §|V#| - 12|V}| - |V}| > 0. However,
by clause (10) of the Property we have:

6p! — V31 + 31Vil - 121V{1 > 0,
and since no pendant path can have more than 5 vertices:
5p' — |V > 0.
Adding together the last two inequalities completes the proof. O

3. NOTES ON THE ALGORITHM

Let us recall that Kirkpatrick and Hell [3] have established that the perfect
H-packing problem is NP-complete for any connected graph H with at least three
vertices (thus implying the NP-hardness of the maximum Ps-packing problem).
Recently the authors [9] have shown the NP-hardness of the problem even for the
class of planar bipartite cubic graphs (which also implies 2-connectivity). There-
fore, finding the maximum P;-packing for the class of graphs considered in this
paper may be considered computationally hard, which justifies a search for ap-
proximation algorithms.

The algorithm implied by the proof presented in Section 2 clearly provides
an 131-approximation of the optimal Ps-packing in the considered graph. It can
roughly be divided into the following steps:

(1) Find a C3-free 2-factor F' C G,

(2) Construct H C G using factor F;

(3) Construct graphs H = H°, H', ..., H' from graph H;

(4) Construct graph H* from H';

(5) Find a P3-packing in H* on at least 3|V (H*)| vertices;

(6) Convert the packing in H* into an appropriate packing in H C G.
The procedures used in Steps (2)-(4) and (6) are explicitly described in the paper
and may all be implemented with a runtime of O(n) for a graph G on n vertices.
Step (1), i.e. determining a Cs-free 2-factor in G using the approach from [6],
requires that a perfect matching be found in G; this can be achieved in O(n log* n)
time [2]. Finally, Step (5) can also be performed using an O(n) procedure [8].
Summing up, we obtain the following theorem.

Theorem 4. There exists an O(n log® n) time %-approximation algorithm for the
maximum Ps-packing problem in an n-vertex 2-connected cubic graph.

105



(a)

Fig. 4. The construction of graph G; from i copies of graph Das.

4, FINAL REMARKS

Let parameter g(G) describe the best possible asymptotical lower bound on the
size of a P-packing for a graph family G, i.e.

= ki i G).
Q(g) ngrt:o GGQ:}T\I/[(GHZn Q( )

The authors [10] established that % <o(9) < % for the family G of connected

cubic graphs. When the family G is restricted to 2-connected graphs, then Theo-
rem 1 gives o(G) > %. Consider now the 2-connected cubic graph G; shown in
Fig. 4(c), for any ¢ > 3. One can check that it has |V (G;)| = 261 vertices, and
that there are at most 24: vertex-disjoint 3-vertex paths in G, thus o(G;) < %

Consequently, we may write the following theorem.

Theorem 5. For the family G of all 2-connected cubic graphs, we have

9 12
11 <o(9) < 3

This means that although we do not as yet know the precise values of parameter
0(G) either for connected cubic graphs or for 2-connected cubic graphs, these two
numbers are most certainly different. The value of g(G) for 3-connected cubic
graphs is probably still another number; note that a weaker version of Akiyama
and Kano's Conjecture can be stated as follows: for the family G of all 3-connected
cubic graphs, we have p(G) = 1.

A survey of known results concerning the maximum Ps-packing problem in
different classes of subcubic graphs is given in Table 1.
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Graph class connected ref. 2-connected ref. 3-connected  ref.

subcubic 3fs *
(2, 3)-regular 3/4 [8] 34 *
cubic €(117/152; 4/5) [10] € (9/11; 12/13) Thm. 5 €{911;1) *

Table 1. Asymptotic lower bounds on the ratio of vertices contained in a maximum
Ps-packing, for different classes of subcubic graphs. Simple corollaries and observa-
tions are marked with asterisks.
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APPENDIX — PROOF OF LEMMA 2.3, CASES (B)-(G)

Lemma 2.3. Forall 1 < i <1, graphs H' can be constructed in accordance with
the Property.

Proof. Let us recall that the considered cases are as follows; for simplicity of
notation, we simply write S = S; and k = k(S;):

(A) S = Cig(3a,58)

B) S=Cs~Csandk € {1,2},

(C) S=Cs~Csandk € {1,2,3},

(D) S=Cs~Csgand k € {1,2,3,4},

(E) S = Cg~C4 andk € {1,2,3},

(F) S=Cs~Cgandk € {1,2,3,4,5},

(G) §=Cy~Cy~Cyand k € {1,2,3}.
Cases (B)-(G) may be solved using the approach approach from Section 2.4. For
improved clarity, the relevant replacements are illustrated in figures. Their analy-
sis is very straightforward and will only be presented in detail for chosen exem-

plary cases.

Case (B): S = Cs ~ C4. If k = 1 then the relevant replacements are illustrated
in Fig. 5, while for the case £ = 2 the relevant replacements are illustrated in
Fig. 6. The applied transformation depends on the arrangement of the k con-
necting edges; we confine ourselves to the discussion of cases from Fig. 5(a) and
Fig. 6(c).

As the first selected case, we shall discuss in detail the replacement in Fig. 5(a).
W.lo.g. assume C5 = (viv2v3v4v5), Cy = (vgurvgwg), E(S) = E(Cs) U
E(C4) U {{vs,v6}},and lete = {z,v;} be an edge from EZ ! incident to vertex
v1 € V(Cs) (see Fig. 7). In order to obtain H* from Hi~!, the edge set of S is
replaced by the following:

— the edge set of the new supporting subgraph S’, where
V(S’) = {'Ul, V2, '113}, and E(SI) = {{vla v2}a {’02, 1)3}, {'03,1)1}};
— two isolated paths Ps, (v4vsvs) and (v7ugug).
It is easy to see that clauses (2)-(9) of the Property are satisfied by the new graph.
For clause (10%), note that 8p* = §|V{| = 0, §|V4| = 6, 6|Vi| = —6,d; = 6.
Thus all we need to prove is clause (1), i.e. o( H'~1) > o(H?).

B A

Fig. 5. Cs5~Cj. The case of one connecting edge.

(
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(a): (b) (©) @ @ ) :
S YT e =

Fig. 6. Cs~Cj. The case of two pendant edges.

x r
Us Ve Vg Us 4] Vg
V1 v
) C 5 C 4 V2
vq U7 vs v3 V4 U7 vs

v3

Fig. 7. Cs~C4 with one connecting edge — the detailed analysis.

Let M be a maximum P3-packing in H*. Clearly, if {v1,v3} ¢ E(M) then M
is a P3-packing in H*~!, as E(H?) \ {v1,v3} C E(H*"!). Otherwise, keeping
in mind the definition of graph 5, there are three subcases to consider:

- if {v2,v3} € E(M), then {vy,v2} ¢ E(M),
and (M \ {vavyv2}) U {v1vovs} is a P3-packing in Hi™!;
— if {v1,v2} € E(M), then {vo,v3} ¢ E(M),
and (M \ {v1v3v2}) U {v1vavs} is a Ps-packing in H*~};
- if e € E(M), then {vq,v3} & E(M),
and (M \ {vsv17}) U {vav1z} is a Ps-packing in Hi~1,
Consequently, o( H=1) > o(H?).

As the second example, consider the replacement from Fig. 6(c). W.lo.g.
assume Cs = (vjvovauavs), Cy = (vevrusvy), E(S) = E(Cs) U E(Cy) U
{{vs,vs}}, and let {z, v} be an edge from E5 ! incident to vertex v € V(Cs),
and let {y, vs} be an edge from E& ! incident to vertex vg € V(Cy) (see Fig. 8).
In order to obtain H' from H*~!, the edge set of S is replaced by the following:

x

z Ug Yy
v V6 ] v Us
Vs Vs
- *—o—o

V¢ U7 Y9

Fig. 8. C5~Cy with two connecting edges — the detailed analysis.
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— the new supporting subgraph S’, where
V(§') = V(Cs) U {vs}, and E(S’) = E(C5) U {{vs,vs} }s
— an isolated path Pj on vertices (vgu7vg).
Once again, it is easy to see that clauses (2)-(9) of the Property are satisfied by
the new graph. For clause (10’), we observe that dp* = §|V}| = 0, 8|V{| = 3,
8|VE| = —3, d; = 3. Thus only clause (1) remains to be shown.

Let M be a maximum Ps-packing in H*. Clearly, if {vs,vs} ¢ E(M) then M
is a P3-packing in Hi~1, as E(H?) \ {vs,vs} C E(H*"1). Otherwise, keeping
in mind the definition of graph S’, there are three subcases to consider:

— if {y,vs} € E(M), then

(M \ {vsvsy, vevrvg}) U {vsvgvr, vgusy} is a Ps-packing in H'~1;
- if {v1,vs} € E(M) (and {y,vs} ¢ E(M)), then

(M \ {v1vsvs, vev7v9}) U {v1U5v6, v7Usve } is a P3-packing in H*~!;
- if {va,vs} € E(M) (and {y,vs} ¢ E(M)), then

(M \ {v4vsvs, vev7v9}) U {v4vsve, v7vsvg} is a P3-packing in Hi~1.

Consequently, o( H™1) > o(HY).

Case (C): S = Cs ~ Cs. For k = 1,2, 3, the relevant replacements and the
argumentation for the correctness of the replacements are similar to those in the
previously considered cases. We omit details and shall confine ourselves only to
a brief discussion of the replacements in Fig. 9.

Let us discuss the replacement in Fig. 9(a). Assume 051 = (v1v2v3V4Vs),
C? = (vgurvguguio), E(S) = E(C}) U E(C2) U {{vs,ve}}, let {z,v} and
{y,vs} be edges from E5 ! incident to vertices v1, v3 € V(C}), respectively, and
let {z,vo} be the edge from E5 ! incident to vertex vy € V(CZ) (see Fig. 10).
Then the performed replacement consists in removing all edges of S and edge
{z,v9}, and inserting the edges of the following:

— new supporting subgraph S,

where V(S’) = {v1,v2,v3}, and E(S’) = {{v1,v2}, {ve,v3}};
— two isolated paths P, (v4vsvg) and (v7vgvg);
- new edge {z,v3} (in EY).

(a) : (b) E

pendant £,

L Y

Fig. 9. (a) Cs~Cs. One of the cases of three pendant edges. (b) The degenerate case.
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V3 V4 U7 Vs v3 V4 U7 vs

Fig. 10. Cs~C’s with three pendant edges — the detailed analysis.

Again, it is easy to see that clauses (2)-(9) of the Property are always satisfied by
the new graph, with the exception of clause (8) which is not fulfilled in the degen-
erate case when y and z belong to the same pendant path Py (for the applicable
transformation in this case, see Fig. 9(b)). For clause (10’), note that dp' = 0,
S|V¥| = 1, 8|V§| = 6, §|VE| = —7,d; = 1. Thus all we need to prove is
clause (1).

Let M be a maximum Pj-packing in H*. Clearly, if {2,v3} ¢ E(M) then M
is a P3-packing in H*~!, as E(H*) \ {z,vs} C E(H*™!). Otherwise, there are
three subcases:

—if {‘02,’03} € E(M), then
(M \ {vovsz, v4usvg, v7vsvg }) U {vou3uy, vsvevr, vsvez}
is a P3-packing in Hi~1;
- if {y,va} € E(M), then
(M \ {yv3z, vavsvs, v7vgve }) U {yv3vy, vsvevr, vaug 2}
is a P3-packing in H*"1;
- if {z,w} € E(M), where w ¢ V(H?*) \ V(C5~Cs), then
(M \ {vazw, v4vsve, v7Usve }) U {vozw, v3v4vs, vurvs }
is a Py-packing in Hi—!.
Consequently, o(H~1) > o(H?).

Next, consider the replacement in Fig. 9(b). Assume C} = (v,v2v3v4vs),
C2 = (vsvrvsuovio), E(S) = E(CE) U E(C2) U {{vs,vs}}, let {z,v,} be the
only edge from EZ ! adjacent to S, and let Py = (vy,v12v13v14) be a pendant
path (see Fig. 11). Then the edge set of H*~1[V(S) U V(P,)] is replaced by the
following:

— the new supporting subgraph S’, where V(S’) = {v,v2,vs},
and E(S') = {{v1,v2}, {v1,vs}, {v2,v5}};
— three isolated paths Ps, (v3v11v12), (v706v10), and (vgv14v13).

It is easy to see that clauses (2)-(9) of the Property are satisfied by the new graph.
For clause (10°), note that 6p* = —1, 8|V{| = 2, §|V4| = 9, §|Vi| = -7,.d; = 1;
as a matter of fact, in this case clause (10°) is an equality. Thus all we need to
prove is clause (1).
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Fig. 11. The detailed analysis of the degenerate case.

Let M be a maximum Ps-packing in H¢. Clearly, if {v2,vs} ¢ E(M) then M
is a Ps-packing in H'~1, as E(H*) \ {vo,vs} C E(H*"!). Otherwise, there are
two subcases to consider:

- if {v1,v2} € E(M), then '
(M \ {v1v9us}) U {vov1vs} is a P3-packing in H*"1;
- if {v1,vs} € E(M), then .
(M \ {v1vsv2}) U {vav v} is a Ps-packing in Hi~1,
Consequently, o( H™1) > o(H?).

Case (D): S = C5 ~ Cs. For k = 1,2,3,4, except for the cases illustrated in
Fig. 12, the relevant replacements and the argumentation for the correctness of the
replacements are similar to those in the previously considered cases, and thus we
shall only discuss the details of the replacement from Fig. 12(a).

(a) (b)

7
pendant Py pendant Py

Fig. 12. Cs5~Cs. The case of four pendant edges.
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Fig. 13. Cs5~Cj with four connecting edges — the detailed analysis.

Let C5 = (v1v2v3vqvs), Cg = (vev7usvoviov1IvI2U13), E(S) = E(C5) U
E(C3) U {{vs, vs}}; suppose that edges from EZ ' are incident to vs, vg, v11
and vy9, and let Py = (v14v15v16v17) be a pendant path connected by the edge
{vs,v14} to S (see Fig. 13). Then the edge set of graph H' is defined as E(H*) =
E(H =)\ {{vs, v9}}. Vertex vg € VZ~! now changes roles, moving to v € V.

It is easy to see that clauses (2)-(9) of the Property are satisfied by the new
graph. Clause (1) is also trivially satisfied, since E(H®) c E(H!"!). To prove
the final clause (10°), it is enough to put 6p* = 8|V}| = §|V{| = 0, §|VE| = -1,
d; = 1; note that in this case clause (10’) is an equality.

For cases (E)-(G) the replacements and the argumentation for the correctness of
the replacements are similar to those in the cases (B)-(D); details are omitted. [
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