ON CONNECTED COLOURINGS OF GRAPHS

Amir Daneshgar

Department of Mathematical Sciences Sharif University of Technology P.O. Box 11365-9415, Tehran, Iran daneshgar@sharif.ac.ir

Hossein Hajiabolhassan

Department of Mathematics Shahid Beheshti University P.O. Box 19834, Tehran, Iran hhaji@sbu.ac.ir

Navid Hamedazimi

Department of Mathematical Sciences Sharif University of Technology P.O. Box 11365-9415, Tehran, Iran nazimi@mehr.sharif.ac.ir

Abstract

In this paper, first we introduce the concept of a connected graph homomorphism as a homomorphism for which the inverse image of any edge is either empty or a connected graph, and then we concentrate on chromatically connected (resp. chromatically disconnected) graphs such as G for which any $\chi(G)$ -colouring is a connected (resp. disconnected) homomorphism to $K_{\chi(G)}$.

In this regard, we consider the relationships of the new concept to some other notions as uniquely-colourability. Also, we specify some classes of chromatically disconnected graphs such as Kneser graphs KG(m,n) for which m is sufficiently larger than n, and the line graphs of non-complete class II graphs.

Moreover, we prove that the existence problem for connected homomorphisms to any fixed complete graph is an NP-complete problem.

Index Words: graph colouring, connectivity, uniquely-colourable graphs.

1 Introduction

Graph homomorphism problems have been considered from many different aspects [4, 5, 6]. It is well known that in general it is a hard problem to

¹Correspondence should be addressed to daneshgar@sharif.ac.ir.

decide whether there exists a homomorphism from a given graph G to a given graph H. In this paper we consider a variant of this problem in which we impose some connectivity restrictions on the inverse images of the edges (for some other variants e.g. see [2]). In this regard, we not only prove that despite this new restriction the problem is still NP-complete, but also we show that the new concept is closely related to some other well studied areas in graph theory such as uniquely-colourable graphs.

Moreover, we consider chromatically disconnected graphs such as G for which any $\chi(G)$ -colouring is a disconnected homomorphism to $K_{\chi(G)}$, and we show that there are many interesting chromatically disconnected graphs as Kneser graphs KG(m,n) for which m is sufficiently larger than n, and the line graphs of non-complete graphs of class II, where, the latter case can be considered as an extension of a result of S. Fiorini about uniquely-colourable graphs [1]. We also formulate a couple of problems related to the subject.

Throughout the paper the word graph is used for the concept of a finite simple graph. A homomorphism σ from a graph G to a graph H is a map $\sigma: V(G) \longrightarrow V(H)$ such that $uv \in E(G)$ implies $\sigma(u)\sigma(v) \in E(H)$. Notations $\operatorname{Hom}(G,H)$, $\operatorname{Hom}^{\mathsf{v}}(G,H)$ and $\operatorname{Hom}^{\mathsf{e}}(G,H)$ denote the sets of ordinary, onto (vertices) and onto-edges homomorphisms from G to H, respectively. In the rest of the paper we always assume that the graph H appearing in the range of a homomorphism does not have any isolated vertex. Note that this implies $\operatorname{Hom}^{\mathsf{e}}(G,H) \subseteq \operatorname{Hom}^{\mathsf{v}}(G,H)$.

Let m, n be positive integers such that $m \geq 2n$. The notation [m] stands for the set $\{1, 2, \dots, m\}$, and $\binom{[m]}{n}$ stands for the collection of all n-subsets of [m]. The Kneser graph KG(m, n) has the vertex set $\binom{[m]}{n}$, in which A is connected to B if and only if $A \cap B = \emptyset$. It is well known that $\chi(KG(m, n)) = m - 2n + 2$.

2 Connected graph homomorphisms

In this section we introduce the concept of a connected graph homomorphism and we present some basic results.

Definition 1. A graph homomorphism $\sigma \in \operatorname{Hom}(G,H)$ is said to be k-connected if for any two adjacent vertices x and y in V(H) the subgraph induced on the subset $\sigma^{-1}(x) \cup \sigma^{-1}(y) \subseteq V(G)$ is either empty or a k-connected graph. The space of connected graph homomorphisms $\sigma: G \longrightarrow H$ is denoted by $\operatorname{Hom}_k^c(G,H)$, where we omit the subscript k when k=1.

It is an easy observation that for any χ -chromatic graph G, if we have $\operatorname{Hom}_{k}^{c}(G, K_{\chi}) \neq \emptyset$ then $k \leq \frac{\delta(G)}{\chi - 1}$.

A basic example of a connected homomorphism is the (unique) colouring of a χ -chromatic uniquely vertex colourable graph G. Moreover, since

$$\operatorname{Hom^c}(G,K_{\mathbf{x}(G)})\subseteq\operatorname{Hom}(G,K_{\mathbf{x}(G)})=\operatorname{Hom^e}(G,K_{\mathbf{x}(G)})$$

holds for any graph G, we have the following generalization of a result in [10, 12] for the minimum size of uniquely vertex colourable graphs, which essentially has the same proof.

Proposition 1. For any χ -chromatic graph G, if $\operatorname{Hom}^{c}(G, K_{\chi}) \neq \emptyset$ then $|E(G)| \geq (\chi - 1)|V(G)| - {\chi \choose 2}$.

The following definition can be considered as a generalization of the above properties of uniquely vertex colourable graphs.

Definition 2. A χ -chromatic graph G is called *chromatically k-connected* if any χ -colouring of G as a homomorphism to K_{χ} is k-connected. Dually, a χ -chromatic graph G is called *chromatically k-disconnected* if none of the χ -colourings of G as homomorphisms to K_{χ} are k-connected.

It is easy to see that if there exists a homomorphism $\sigma \in \text{Hom}^{\mathbf{v}}(G, H)$ where G is chromatically connected, then H is also a chromatically connected graph. In what follows we introduce a couple of concrete examples.

Example 1. Some chromatically connected graphs

Clearly, any uniquely vertex colourable graph is chromatically connected [10]. It is interesting to ask whether chromatically connectedness imposes any restriction on the number of colourings of a graph. To show that a chromatically connected graph may admit a relatively large number of colourings, consider the graph $K_3 \square P_n$, the cartesian product of K_3 and the path P_n on n vertices. Note that this graph is a *planar* chromatically connected graph with 2^{n-1} different 3-colourings up to permutation of the colours.

3 Chromatically disconnected graphs

We begin by the following proposition as a basic result.

Proposition 2. Let G be a χ -chromatic graph and $\mathrm{Hom^c}(G,K_{\chi}) \neq \emptyset$. If $\chi > \frac{\Delta(G)}{2} + 1$ then $|V(G)| \leq \frac{\chi(\chi - 1)}{2\chi - \Delta(G) - 2}$.

Proof. Let $\sigma \in \operatorname{Hom^c}(G, K_{\chi})$ and also let C_i 's be the colour-classes of σ . Without loss of generality, assume that $|C_1| = m$ is the size of the smallest

colour-class and let E_i be the edge-set of the induced subgraph on $C_1 \cup C_i$. Since, $\sigma \in \operatorname{Hom^c}(G, K_{\mathfrak{p}})$ we have $|E_i| \geq |C_1| + |C_i| - 1$. Hence,

$$\sum_{i=2}^{\chi} |E_i| \ge (\chi - 2)m + |V(G)| - (\chi - 1).$$

On the other hand, we have $\Delta(G)m \geq \sum_{i=2}^{\chi} |E_i|$ and consequently,

$$m \ge \frac{|V(G)| - \chi + 1}{\Delta(G) - \chi + 2}.$$

Moreover, by hypothesis and the fact that $\chi m \leq |V(G)|$, we have

$$|V(G)| \le \frac{\chi(\chi - 1)}{2\chi - \Delta(G) - 2}.$$

In the next theorem the graph Prism is the Cartesian product of K_3 and K_2 . Also, \mathcal{D} is the class of all graphs obtained by excluding one edge from the complete graph K_n for any $n \geq 3$.

Corollary 1. Consider a graph $G \notin \mathcal{D}$ that is not isomorphic to the Prism. If $\chi(G) = \Delta(G)$ then G is chromatically disconnected.

Proof. For any $\sigma \in \operatorname{Hom^c}(G, K_{\chi})$, by $\chi(G) = \Delta(G)$ and Proposition 2 we have

$$|V(G)| \le \frac{\Delta(G)(\Delta(G)-1)}{\Delta(G)-2}.$$

If $\Delta(G) \geq 5$ then we have $|V(G)| < \Delta(G) + 2$ which implies that $|V(G)| = \Delta(G) + 1$. Also, for both of the cases $\Delta(G) = 4$ and $\Delta(G) = 3$ we have $|V(G)| \leq 6$.

Note that for any connected colouring σ , the degree of any vertex that appears as a colour-class of size one must be equal to |V(G)|-1. Hence, for the case $\Delta=4$ we have $|V(G)|=\Delta(G)+1=5$, and for the case $\Delta=3$ we have either |V(G)|=6 or $|V(G)|=\Delta(G)+1=4$.

It is easy to check that the case $\Delta(G)=3$ and |V(G)|=6 reduces to a graph isomorphic to the Prism. Consequently, for the rest of the cases we should have $|V(G)|=\Delta(G)+1$ when $\Delta(G)\geq 3$. But it is easy to see that in these cases one of the colour-classes is of size two and all other colour-classes must be of size one. This clearly reduces the possible cases to the graphs in \mathcal{D} .

Corollary 2. The set \mathcal{D} can be described as follows,

$$\mathcal{D} = \{G \mid \chi(G) = \Delta(G) \& G \text{ is uniquely vertex colourable}\}.$$

In what follows we consider some other interesting classes of chromatically disconnected graphs.

Theorem 1. If m is sufficiently larger than $n \geq 2$, then the Kneser graph KG(m,n) is chromatically disconnected.

Proof. Assume that KG(m,n) admits a connected χ -colouring $\sigma \in \operatorname{Hom}^{\mathsf{c}}(KG(m,n),K_{\chi})$ with the set of colour-classes

$${C_i \mid 1 \le i \le m - 2n + 2 = \chi}.$$

It was proved by Hilton and Milner [8] that if X is an independent set of KG(m,n) of size greater than

$$\binom{m-1}{n-1}-\binom{m-n-1}{n-1}+1,$$

then for some $a \in [m]$,

$$\bigcap_{A\in X}A=\{a\}.$$

Therefore, since $\binom{m-1}{n-1} - \binom{m-n-1}{n-1} + 2 = O(m^{n-2})$, there exists an integer t(n) such that if $m \geq t(n)$, then there are two colour-classes C_i and C_j for which the following inequalities hold,

$$|C_i| \ge \frac{|V(KG(m,n))|}{\chi} > \binom{m-1}{n-1} - \binom{m-n-1}{n-1} + 1,$$
 (1)

$$|C_j| \ge \frac{|V(KG(m-1,n))|}{\chi - 1} > \binom{m-2}{n-1} - \binom{m-n-2}{n-1} + 1.$$
 (2)

On one hand, by Hilton and Milner theorem [8] and Equation 1, there exists an integer $a \in [m]$ such that,

$$\bigcap_{A \in C_i} A = \{a\}.$$

Hence, for any subset A with $a \in A \subseteq [m]$ we should have $A \in C_i$ (or otherwise σ will become a disconnected homomorphism).

Consider the graph $KG(m,n) - C_i \simeq KG(m-1,n)$ where again, Hilton and Milner theorem [8] and Equation 2, imply that there exists an integer $b \neq a$ such that,

$$\bigcap_{B\in C_{j}}B=\{b\}.$$

Choose $T \subset [m]$ with $|T| = n \geq 2$ and $\{a,b\} \subseteq T$. Then since T should represent a vertex of C_i and is not adjacent to any vertex in C_j , the homomorphism σ should be disconnected, which is a contradiction.

Existence of small chromatically disconnected Kneser graphs such as the Petersen graph and the above theorem are good motivations for the following problem.

Problem 1. Is it true that any non complete Kneser graph is chromatically disconnected?

It is known that any graph of class II (i.e. $\chi'(G) = \Delta(G) + 1$) other than K_3 is not uniquely edge-colourable [1, 3]. The next theorem is a result that extends this fact in terms of connectivity of colourings.

Theorem 2. If G is a class II graph and G is not a complete graph, then the line graph L(G) is chromatically disconnected.

Proof. Let G be a class II graph, $\sigma \in \operatorname{Hom^c}(L(G), K_{\Delta(G)+1})$ and let σ' be the corresponding edge-colouring of G. Note that the subgraph induced on any two colour-classes of σ' in G is either a path or a cycle.

Consider a vertex v of G with degree d_v . If A is the set of colours appearing on the edges incident to v, then the graph induced on the colours $c_1 \in A$ and $c_2 \notin A$ is a path with the end-vertex v for any such colours c_1 and c_2 . Hence, the number of two-coloured paths with end-vertex v is $d_v(\Delta(G) + 1 - d_v)$. On the other hand, the number of end-vertices of all paths appearing as the induced subgraphs of pairs of colours in σ' is at most $2\binom{\Delta(G)+1}{2}$ and consequently,

$$\sum_{\mathbf{u} \in V(G)} d_{\mathbf{u}}(\Delta(G) + 1 - d_{\mathbf{u}}) \le 2\binom{\Delta(G) + 1}{2}.$$

Note that the minimum of any term in the left-hand-side is $\Delta(G)$ and this is possible only when d_u is equal to 1 or $\Delta(G)$. This shows that $|V(G)| = \Delta(G) + 1$ and since σ is connected, the degree of any vertex should be equal to 1 or $\Delta(G)$.

Also, for any vertex $v \in V(G)$ we have $d_u > 1$, since $|V(G)| = \Delta(G) + 1$ and G is a graph of class II. Therefore, G should be a complete graph on an odd number of vertices.

On the other hand, one can consider the case of chromatically critical graphs and note that any non-complete critical graph is not chromatically connected. Hence, we formulate the following problem.

Problem 2. Characterize all chromatically disconnected critical graphs.

4 Algorithmic considerations

Our main result in this section is to prove that the following decision problem is NP-complete.

Problem: CONnCOL

Given: A graph G and an integer $n \geq 3$.

Question: Does there exist a connected homomorphism $\sigma \in \text{Hom}^c(G, K_n)$?

We proceed by considering the basic case n=3.

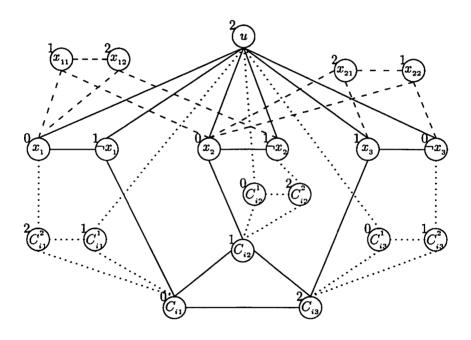


Figure 1: Portion of the graph G_{ϕ} for the clause $(x_1 \vee \neg x_2 \vee \neg x_3)$ (see Theorem 3).

Theorem 3. CON3COL is NP-complete.

Proof. The proof is a modified version of the standard reduction used to prove the NP-completeness of 3-COL from NAESAT (e.g. see [9]). In what follows we express the details.

We are given a set of clauses $\phi = (C_1, \dots, C_m)$, each with three literals,

involving the variables x_1, \ldots, x_t , and we are asked whether there is a truth assignment on the variables such that no clause has all literals *true* or all literals *false*. On the other hand, we shall construct a graph G_{ϕ} and argue that it admits a connected 3-colouring if and only if ϕ admits such an NAE truth assignment.

First, we describe the structure of G_{ϕ} and then we prove that such a construction is actually a polynomial time many-to-one reduction from NAE-SAT to CON3COL. The vertex set of G_{ϕ} is defined as follows:

$$V(G_{_{\boldsymbol{\sigma}}})\stackrel{\mathrm{def}}{=}\{u\}\cup V_{_{1}}\cup V_{_{2}}\cup V_{_{3}}\cup V_{_{4}}$$

where,

- $V_i \stackrel{\text{def}}{=} \{x_i \mid 1 \le i \le t\} \cup \{\neg x_i \mid 1 \le i \le t\},$
- $V_2 \stackrel{\text{def}}{=} \{x_{i,i} \mid 1 \le i \le t-1 \& 1 \le j \le 2\},$
- $V_3 \stackrel{\text{def}}{=} \{C_{i,i} \mid 1 \le i \le m \& 1 \le j \le 3\},$
- $V_4 \stackrel{\text{def}}{=} \{C_{ii}^k \mid 1 \le i \le m \& 1 \le j \le 3 \& 1 \le k \le 2\}.$

Now, we describe the edges as follows (see Figures 1).

- For each $1 \le i \le t$, vertices x_i and $\neg x_i$ along with the vertex u form a triangle.
- For each $1 \le i \le t$, vertices x_i , x_{i1} and x_{i2} form a triangle.
- For each $1 \leq i \leq t-1, \, x_{i1}$ is adjacent to x_{i+1} and x_{i2} is adjacent to $\neg x_{i+1}$
- For each clause C_i $(1 \le i \le m)$, the vertices C_{i1}, C_{i2} and C_{i3} form a triangle.
- For each clause C_i $(1 \le i \le m)$, the vertex C_{ij} is connected to the vertex in V_i that represents the negation of the jth literal of C_i for any $1 \le j \le 3$.
- For each vertex C_{ij} , corresponding to the *j*th literal in the *i*th clause, the vertices C_{ij}^1 , C_{ij}^2 and C_{ij} form a triangle.
- For all $1 \le i \le m$ and $1 \le j \le 3$, the vertex C_{ij}^1 is adjacent to u and the vertex C_{ij}^2 is connected to the vertex in V_1 that represents the jth literal of C_i .

This completes the description of G_{ϕ} and it is easy to see that $|E(G_{\phi})|=21m+8t-5$ which implies that the construction can be simulated in polynomial time. In the rest of the proof we check that this construction defines a many-to-one reduction.

On one hand, we prove that if G_{ϕ} admits a 3-colouring then ϕ is a satisfiable instance of NAESAT (note that this is essentially more than what we need since we do not assume that the 3-colouring is a connected colouring of G_{ϕ}). To see this, assume that G_{ϕ} admits a 3-colouring σ with colours in $\{0,1,2\}$, where we interpret the colour 0 as the truth value False and the colour 1 as the truth value True. Without loss of generality we may assume that $\sigma(u)=2$, and consequently, all vertices in V_1 take their colours in $\{0,1\}$. Since each pair of vertices $\{x_i, \neg x_i\}$ form a 2-clique, we may consider the truth assignment σ_{ϕ} induced by $\sigma|_{V_1}$. By considering the edges between V_1 and V_3 , and the fact that for each clause C_i the vertices C_{i1} , C_{i2} and C_{i3} form a 3-clique, it is easy to see that σ_{ϕ} is a valid truth assignment for ϕ that also satisfies the NAE condition.

On the other hand, assume that ϕ is a satisfiable instance of **NAESAT**, and we shall show that G_{ϕ} admits a connected 3-colouring. For this, let σ_{ϕ} be a valid truth assignment for ϕ and consider the 3-colouring σ for G_{ϕ} defined as follows:

- $\sigma(u)=2$.
- Since σ_{\bullet} satisfies the NAE condition, without loss of generality, we let C_{i1} be a False literal, and C_{i2} be a True literal in the *i*th clause C_{i} , and we define,

$$\sigma(C_{i1}) = 0$$
, $\sigma(C_{i2}) = 1$ and $\sigma(C_{i3}) = 2$.

- If $\sigma(C_{ij}) = 2$, we let $\sigma(C_{ij}^1)$ be the truth value, and $\sigma(C_{ij}^2)$ be the negation of the truth value, of the *j*th literal in C_i . Otherwise, if $\sigma(C_{ij}) \neq 2$, we let $\sigma(C_{ij}^1)$ be the negation of the truth value of the *j*th literal in C_i and $\sigma(C_{ij}^2) = 2$.
- For each $1 \le i \le t-1$, if $\sigma_{\phi}(x_i) = \sigma_{\phi}(x_{i+1})$ then we let $\sigma(x_{i1})$ be the truth value of $\neg x_i$ and $\sigma(x_{i2}) = 2$. Otherwise, we let $\sigma(x_{i1}) = 2$ and we let $\sigma(x_{i2})$ be the truth value of $\neg x_i$.

It is easy to check that σ is a proper 3-colouring of G_{ϕ} . In the rest of the proof we show that σ is a connected 3-colouring of G_{ϕ} .

 We show that the graph G₀₁ induced on the set of vertices with colours in {0,1} is connected. First, note that the subgraph induced on $V(G_{01}) \cap (V_1 \cup V_2)$ is connected. Also, each vertex of type C_{i1} , C_{i2} or C_{ij}^2 is connected to one of the vertices in V_1 by the definition of G_{ϕ} .

On the other hand, a vertex of type C_{ij}^1 is adjacent to both of the vertices C_{ij} and C_{ij}^2 , while we know that in any case exactly one of these vertices take its colour from $\{0,1\}$ in the colouring σ .

We show that the graph G₀₂ induced on the set of vertices with colours in {0,2} is connected (a similar proof holds for the case {1,2}).
By the colouring procedure, it is easy to check that any vertex v ∈ V₂ with σ(v) = 2 is adjacent to two vertices in V₁ with different colours in {0,1}. Hence, the subgraph induced on V(G₀₂) ∩ ({u} ∪ V₁ ∪ V₂) is connected.

Also, by the colouring procedure and the definition of G_{ϕ} , since $\sigma(C_{i_1}) = 0$ we know that $\sigma(C_{i_1}^2) = 2$ and the vertex adjacent to $C_{i_1}^2$ in V_1 has the colour 0.

On the other hand, the 2-clique formed by C_{i2}^1 and C_{i2}^2 is connected to u through C_{i2}^1 . Similarly, since C_{i3} is connected to both C_{i2} C_{i1} , the vertex in $\{C_{i3}^1, C_{i3}^2\}$ whose colour is 0 is connected to the rest of this subgraph.

As a corollary we have,

Theorem 4. For any $n \ge 3$ CONnCOL is NP-complete.

Proof. Construct a new graph G'_{ϕ} by considering the same graph G_{ϕ} of Theorem 3 and adding a (n-3)-clique that is joined to G_{ϕ} , i.e. each vertex of this clique is adjacent to all vertices of G_{ϕ} . It is easy to see that G'_{ϕ} introduces the necessary polynomial reduction.

We naturally formulate the following problem in connection with the main result of [7].

Problem 3. Is the following problem NP-complete?

Problem: CONHCOL

Constant: A non-bipartite simple graph H.

Given: A graph G.

Question: Does there exist a connected homomorphism $\sigma \in \text{Hom}^{c}(G, H)$?

Acknowledgment

The authors wish to express their sincere thanks for the comments of an anonymous referee.

References

- [1] S. FIORINI, On the chromatic index of a graph, III: Uniquely edge-colourable graphs, Quart. J. Math. Oxford, 26 (1975), 129-140.
- [2] T. FEDER, P. HELL AND B. MOHAR, Acyclic homomorphisms and circular colorings of digraphs, SIAM J. Discrete Math., 17 (2003), 161– 169.
- [3] D. L. GREENWELL AND H. V. KRONK, Uniquely line colorable graphs, Canad. Math. Bull., 16 (1973), 525-529.
- [4] G. HAHN AND C. TARDIF, Graph homomorphisms: structure and symmetry, in Graph Symmetry, G. Hahn and G. Sabidussi, eds., no. 497 in NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer, Dordrecht, (1997), 107-167.
- [5] P. Hell, Algorithmic aspects of graph homomorphisms, in Surveys in Combinatorics (2003), C.D. Wensley, ed., no. 307 in London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2003, 239-276.
- [6] P. Hell and J. Nešetřil, Graphs and homomorphisms, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, (2004).
- [7] P. HELL AND J. NEŠETŘIL, On the complexity of H-coloring, J. Combin. Theory (B), 48 (1990), 92-110.
- [8] A.J.W. HILTON AND E.C.MILNER, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2), 18 (1967), 369-384.
- [9] C. H. PAPADIMITRIOU, Computational Complexity, Addison-Wesley Publishing Company Inc., (1994).
- [10] M. TRUSZCZYŃSKI, Some results on uniquely colourable graphs, Colloquia Math. Soc. János Bolyai, 37 (1981), 733-746.

- [11] A. VINCE, Star chromatic number, J. Graph Theory, 12(1988), 551-559.
- [12] S. J. Xu, On the size of uniquely colorable graphs, J. Comb. Theory B, 50 (1990), 319-320.
- [13] X. Zhu, Circular chromatic number, a survey, Disc. Math. 229 (2001), 371-410.