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Abstract
In this paper, first we introduce the concept of a connected graph
homomorphism as a homomorphism for which the inverse image of
any edge is either empty or a connected graph, and then we concen-
trate on chromatically connected (resp. chromatically disconnected)
graphs such as G for which any x(G)-colouring is a connected (resp.
disconnected) homomorphism to K ).
In this regard, we consider the relationships of the new concept to
some other notions as uniquely-colourability. Also, we specify some
classes of chromatically disconnected graphs such as Kneser graphs
KG(m,n) for which m is sufficiently larger than n, and the line
graphs of non-complete class II graphs.
Moreover, we prove that the existence problem for connected homo-
morphisms to any fixed complete graph is an NP-complete problem.

Index Words: graph colouring, connectivity, uniquely-colourable
graphs.
1 Introduction

Graph homomorphism problems have been considered from many different
aspects [4, 5, 6]. It is well known that in general it is a hard problem to

1 Correspondence should be addressed to daneshgar@sharit.ac.ir.
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decide whether there exists a homomorphism from a given graph G to a
given graph H. In this paper we consider a variant of this problem in which
we impose some connectivity restrictions on the inverse images of the edges
(for some other variants e.g. see [2]). In this regard, we not only prove that
despite this new restriction the problem is still NP-complete, but also we
show that the new concept is closely related to some other well studied
areas in graph theory such as uniquely-colourable graphs.

Moreover, we consider chromatically disconnected graphs such as G for
which any x(G)-colouring is a disconnected homomorphism to K, and
we show that there are many interesting chromatically disconnected graphs
as Kneser graphs KG(m,n) for which m is sufficiently larger than n, and
the line graphs of non-complete graphs of class II, where, the latter case
can be considered as an extension of a result of S. Fiorini about uniquely-
colourable graphs [1]. We also formulate a couple of problems related to
the subject.

Throughout the paper the word graph is used for the concept of a finite
simple graph. A homomorphism o from a graph G to a graph H is a
map o : V(G) — V(H) such that uv € E(G) implies o(u)o(v) € E(H).
Notations Hom(G, H), Hom"(G,H) and Hom®(G, H) denote the sets of
ordinary, onto (vertices) and onto-edges homomorphisms from G to H,
respectively. In the rest of the paper we always assume that the graph
H appearing in the range of a homomorphism does not have any isolated
vertex. Note that this implies Hom®(G, H) C Hom" (G, H).

Let m,n be positive integers such that m > 2n. The notation [m] stands -
for the set {1,2,---,m}, and ([’,’:]) stands for the collection of all n-subsets

of [m). The Kneser graph KG(m,n) has the vertex set ([’:]), in which
A is connected to B if and only if AN B = §. It is well known that
x(KG(m,n)) =m —2n+ 2.

2 Connected graph homomorphisms

In this section we introduce the concept of a connected graph homomor-
phism and we present some basic results.

Definition 1. A graph homomorphism ¢ € Hom(G, H) is said to be
k-connected if for any two adjacent vertices z and y in V(H) the sub-
graph induced on the subset o~ 1(z) Uo~1(y) C V(G) is either empty
or a k-connected graph. The space of connected graph homomorphisms
o : G — H is denoted by Hom¢(G, H), where we omit the subscript k
when k£ =1. )

It is an easy observation that for any x-chromatic graph G, if we have
Hom¢ (G, K,) # 0 then k < 3.
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A basic example of a connected homomorphism is the (unique) colouring
of a x-chromatic uniquely vertex colourable graph G. Moreover, since

Hom®(G, K ,) € Hom(G, K, ;,) = Hom*(G, K )

holds for any graph G, we have the following generalization of a result in
(10, 12] for the minimum size of uniquely vertex colourable graphs, which
essentially has the same proof.

Proposition 1. For any x-chromatic graph G, if Hom®(G, K, ) # 0 then
|EG)| = (x - DIV(G)| - (3)-

The following definition can be considered as a generalization of the above
properties of uniquely vertex colourable graphs.

Definition 2. A x-chromatic graph G is called chromatically k-connected
if any x-colouring of G' as a homomorphism to K is k-connected.

Dually, a x-chromatic graph G is called chromatically k-disconnected if none
of the x-colourings of G as homomorphisms to K, are k-connected. [

It is easy to see that if there exists a homomorphism ¢ € Hom"(G, H) where
G is chromatically connected, then H is also a chromatically connected
graph. In what follows we introduce a couple of concrete examples.

Example 1. Some chromatically connected graphs

Clearly, any uniquely vertex colourable graph is chromatically connected
[10). It is interesting to ask whether chromatically connectedness imposes
any restriction on the number of colourings of a graph. To show that
a chromatically connected graph may admit a relatively large number of
colourings, consider the graph K,OP,, the cartesian product of K, and
the path P, on n vertices. Note that this graph is a planar chromatically
connected graph with 2"~ different 3-colourings up to permutation of the
colours. [ )

3 Chromatically disconnected graphs

We begin by the following proposition as a basic result.

Proposition 2. Let G be a x-chromatic graph and Hom®(G,K ) # 0. If
x> 23 +1 then [V(G)] < XU

Proof. Let o € Hom®(G, K, ) and also let C,’s be the colour-classes of o.
Without loss of generality, assume that |C,| = m is the size of the smallest
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colour-class and let E, be the edge-set of the induced subgraph on C, UC;.
Since, o € Hom®(G, K ) we have |E,| > |C,| +|C;| — 1. Hence,

X
YIE|2 (x-2m+|V(G)| - (x - 1)-

=2

X
On the other hand, we have A(G)m > ZlE‘I and consequently,

t=2
VG| -x+1
D> —_—
™2 AG) —x +2

Moreover, by hypothesis and the fact that xm < |V(G}|, we have

x(x —1)
V(G| £ -G =3

In the next theorem the graph Prism is the Cartesian product of K, and
K,. Also, D is the class of all graphs obtained by excluding one edge from
the complete graph K, for any n > 3.

Corollary 1. Consider a graph G & D that is not isomorphic to the
Prism. If x(G) = A(G) then G is chromatically disconnected.

Proof. For any ¢ € Hom®(G, K, ), by x(G) = A(G) and Proposition 2

we have
A(G)(A(G) - 1)
A(G) -2 )

If A(G) > 5 then we have |V(G)| < A(G) + 2 which implies that [V(G)| =
A(G) + 1. Also, for both of the cases A(G) = 4 and A(G) = 3 we have
[V(G)| <6.

Note that for any connected colouring o, the degree of any vertex that
appears as a colour-class of size one must be equal to |V(G)| — 1. Hence,
for the case A = 4 we have |V(G)| = A(G) +1 = 5, and for the case A =3
we have either |V(G)| =6 or |[V(G)| = A(G) + 1 =4.

It is easy to check that the case A(G) = 3 and |V(G)| = 6 reduces to a
graph isomorphic to the Prism. Consequently, for the rest of the cases we
should have |V(G)| = A(G) + 1 when A(G) > 3. But it is easy to see that
in these cases one of the colour-classes is of size two and all other colour-
classes must be of size one. This clearly reduces the possible cases to the
graphs in D. [ |

V(G <
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Corollary 2. The set D can be described as follows,
D={G | x(G)=A(G) & G is uniquely vertex colourable}.

In what follows we consider some other interesting classes of chromatically
disconnected graphs.

Theorem 1. If m is sufficiently larger than n > 2, then the Kneser graph
KG(m,n) is chromatically disconnected.

Proof. Assume that KG(m,n) admits a connected x-colouring o €
Hom®(KG(m,n), K, ) with the set of colour-classes

{C; | 1<i<m-2n+2=x}.

It was proved by Hilton and Milner (8] that if X is an independent set of
KG(m,n) of size greater than

m-—1 _ m—-n-—1 +1
n—1 n-—1 !

then for some a € [m],

() A= {a}.
Aex
Therefore, since (7-}) — (™7"7") + 2 = O(m"~2), there exists an integer

t(n) such that if m > ¢(n), then there are two colour-classes C; and C; for
which the following inequalities hold,

ez HESmals (02]) - ("2 ) o
o3 WG L, (m=2) _(m=no2) g

On one hand, by Hilton and Milner theorem [8] and Equation 1, there exists
an integer a € [m] such that,

() A= {a}.

A€C,

Hence, for any subset A with « € A C [m] we should have A € C, (or
otherwise o will become a disconnected homomorphism).
Consider the graph KG(m,n) — C; ~ KG(m — 1,n) where again, Hilton
and Milner theorem (8] and Equation 2, imply that there exists an integer
b # a such that,

ﬂ B = {b}.

BGC’.
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Choose T' C [m] with |T| = n > 2 and {a,b} C T. Then since T' should
represent a vertex of C; and is not adjacent to any vertex in C;, the homo-
morphism ¢ should be disconnected, which is a contradiction. ]

Existence of small chromatically disconnected Kneser graphs such as the
Petersen graph and the above theorem are good motivations for the follow-
ing problem.

Problem 1. Is it true that any non complete Kneser graph is chromatically
disconnected ?

It is known that any graph of class II (i.e. x'(G) = A(G) + 1) other than
K, is not uniquely edge-colourable [1, 3]. The next theorem is a result that
extends this fact in terms of connectivity of colourings.

Theorem 2. IfG is a class Il graph and G is not a complete graph, then
the line graph L(G) is chromatically disconnected.

Proof. Let G be a class II graph, 0 € Hom®(L(G), K 4,,,) and let o’
be the corresponding edge-colouring of G. Note that the subgraph induced
on any two colour-classes of ¢’ in G is either a path or a cycle.

Consider a vertex v of G with degree d,. If A is the set of colours appearing
on the edges incident to v, then the graph induced on the colours ¢, € A and
¢, € Ais a path with the end-vertex v for any such colours ¢, and c,. Hence,
the number of two-coloured paths with end-vertex v is d,(A(G) +1—d,).
On the other hand, the number of end-vertices of all paths ap(pearmg as
the induced subgraphs of pairs of colours in ¢’ is at most 2 G+
consequently,

) du(A(G)+1—du)52(A(G2)+l).

wEV(G)

Note that the minimum of any term in the left-hand-side is A(G) and
this is possible only when d, is equal to 1 or A(G). This shows that
|[V(G)| = A(G) + 1 and since o is connected, the degree of any vertex
should be equal to 1 or A(G).

Also, for any vertex v € V(G) we have d, > 1, since |V(G)| = A(G) +1
and G is a graph of class II. Therefore, G should be a complete graph on
an odd number of vertices. |

On the other hand, one can consider the case of chromatically critical
graphs and note that any non-complete critical graph is not chromatically
connected. Hence, we formulate the following problem.

Problem 2. Characterize all chromatically disconnected critical graphs.
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4 Algorithmic considerations

Our main result in this section is to prove that the following decision prob-
lem is NP-complete.

Problem: CONnCOL
Given: A graph G and an integer n > 3.
Question:  Does there exist a connected homomorphism ¢ € Hom®(G, K, )?

We proceed by considering the basic case n = 3.

Figure 1: Portion of the graph G, for the clause (z, V -z, V -z,) (see
Theorem 3).

Theorem 3. CON3COL is NP-complete.

Proof. The proof is a modified version of the standard reduction used
to prove the NP-completeness of 3-COL from NAESAT (e.g. see [9]). In
what follows we express the details.

We are given a set of clauses ¢ = (C,,...,C ), each with three literals,
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involving the variables z,,...,z,, and we are asked whether there is a truth
assignment on the variables such that no clause has all literals ¢rue or all
literals false. On the other hand, we shall construct a graph G, and argue
that it admits a connected 3-colouring if and only if ¢ admits such an NAE
truth assignment.

First, we describe the structure of G, and then we prove that such a con-
struction is actually a polynomial time many-to-one reduction from NAE-
SAT to CON3COL. The vertex set of G, is defined as follows:

V(G,) ¥ {u}uV, UV, UV, UV,

where,

def

oV, = {z,|1<i<t}u{-z, |1<i<Lt},

eV, ¥z, |1<i<t-1&1<5<2),
eV, ¥(C,|1<i<sm&1<j<3),

eV, ¥ (C|1<i<m&1<j<3&1<k<2)
Now, we describe the edges as follows (see Figures 1).

- For each 1 <i < t, vertices z; and —z, along with the vertex u form
a triangle.

- For each 1 < ¢ < ¢, vertices z;, z;, and z,, form a triangle.

- Foreach1<i<t-1,z, is adjacent to z
-z

.1 and z,, is adjacent to

i+l

For each clause C; (1 < i < m), the vertices C,,,C,, and C,, form a
triangle.

For each clause C; (1 < i < m), the vertex C,; is connected to the
vertex in V. that represents the negation of the jth literal of C, for
any1<j <3

- For each vertex C;, corresponding to the jth literal in the ith clause,
the vertices C:j , Ci and C;; form a triangle.

Forall1<i<mand1l<j<3, the vertex C’ is adjacent to u and

the vertex C is connected to the vertex in V, that represents the jth
literal of C,.
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This completes the description of G, and it is easy to see that |E(G,)| =
21m + 8¢ — 5 which implies that the construction can be simulated in poly-
nomial time. In the rest of the proof we check that this construction defines
a many-to-one reduction.

On one hand, we prove that if G, admits a 3-colouring then ¢ is a satisfi-
able instance of NAESAT (note that this is essentially more than what we
need since we do not assume that the 3-colouring is a connected colouring
of G,). To see this, assume that G, admits a 3-colouring o with colours
in {0,1,2}, where we interpret the colour 0 as the truth value False and
the colour 1 as the truth value True. Without loss of generality we may
assume that o(u) = 2, and consequently, all vertices in V, take their colours
in {0,1}. Since each pair of vertices {z;, —z; } form a 2-clique, we may con-
sider the truth assignment o, induced by o], . By considering the edges
between V, and V,, and the fact that for each clause C,; the vertices C;,,C,,
and C;, form a 3-clique, it is easy to see that o, is a valid truth assignment
for ¢ that also satisfies the NAE condition.

On the other hand, assume that ¢ is a satisfiable instance of NAESAT,
and we shall show that G, admits a connected 3-colouring. For this, let
o, be a valid truth assignment for ¢ and consider the 3-colouring o for G,
defined as follows:

- o(u)=2.
-VveV, o) =a,(v).

- Since o, satisfies the NAE condition, without loss of generality, we
let C;, be a False literal, and C,, be a True literal in the ith clause
C,, and we define,

0(C,,)=0, 6(C,)=1and o(C,;) =2.

- If o(C,;) = 2, we let a(C:’_) be the truth value, and a(C:j) be the
negation of the truth value, of the jth literal in C,. Otherwise, if
a(C,;) # 2, welet a(C:,.) be the negation of the truth value of the
jth literal in C, and o(C],) = 2.

- Foreach1<i<t-1,ifo,(z;,) =0,(z,,,) then we let o(z,,) be the
truth value of -z, and o(z,,) = 2. Otherwise, we let (z,,) = 2 and
we let o(z,,) be the truth value of —z,.

It is easy to check that o is a proper 3-colouring of G,. In the rest of the
proof we show that o is a connected 3-colouring of G, .

o We show that the graph G, induced on the set of vertices with colours
in {0,1} is connected.
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First, note that the subgraph induced on V(G,,) N (V, UV,) is con-

nected. Also, each vertex of type C;,, C;, or CZ is connected to one
of the vertices in V, by the definition of G .

On the other hand, a vertex of type C:j is adjacent to both of the

vertices C;; and Cf’., while we know that in any case exactly one of
these vertices take its colour from {0,1} in the colouring o.

o We show that the graph G, induced on the set of vertices with colours
in {0,2} is connected (a similar proof holds for the case {1,2}).
By the colouring procedure, it is easy to check that any vertex v € V,
with o(v) = 2 is adjacent to two vertices in V| with different colours
in {0,1}. Hence, the subgraph induced on V(G,,) N ({v} UV, UV,)
is connected.
Also, by the colouring procedure and the definition of G, since

o(C,,) = 0 we know that a(Cfl) = 2 and the vertex adjacent to
C?, in V, has the colour 0.
On the other hand, the 2-clique formed by C_; and C; is connected
to u through C:z. Similarly, since C,; is connected to both C;, C,,,
the vertex in {C:a, C‘.zs} whose colour is 0 is connected to the rest of
this subgraph.

u

As a corollary we have,

Theorem 4. For any n > 3 CONnCOL is NP-complete.

Proof. Construct a new graph G; by considering the same graph G, of
Theorem 3 and adding a (n — 3)-clique that is joined to G, i.e. each vertex

of this clique is adjacent to all vertices of G,. It is easy to see that G;
introduces the necessary polynomial reduction. | |

We naturally formulate the following problem in connection with the main
result of [7].

Problem 3. Is the following problem NP-complete ?

Problem: CONHCOL
Constant: A non-bipartite simple graph H.
Given: A graph G.
Question: Does there exist a connected homomorphism ¢ € Hom®(G, H)?
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