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This paper deals with a connection between the universal circuits
matrix [10} and the crossing relation [1,5]. The value of the univer-
sal circuits matrix obtained for &, where w is an arbitrary feedback
function that generates de Bruijn sequences, forms the binary ma-
trix that represents the crossing relation of w. This result simplifies
the design and study of the feedback functions that generate the de
Bruijn sequences and allows us to decipher many informations about
the adjacency graphs of another feedback functions. For example, we
apply these results to analyze the Hauge-Mykkeltveit classification of
a family of de Bruijn sequences [4].

1. Introduction

One of useful tools for a design of stream ciphers are periodic binary
sequences defined by feedback functions. Very important are the ones with
maximal period, that is equal 2% when the corresponding feedback function
has k arguments. We call them the de Bruijn sequences of order k ([3]).

The difficulties with finding of a simple algorithm generating each of
22"7'—k de Bruij jn sequences are one of the guarantee of a relative safety of
stream ciphers based on such sequences. If a feedback function does not
define sequences with maximal period then it defines an undirected graph
(called the adjacency graph) each of the spanning trees of which determines
a de Bruijn sequence. Many known algorithms generate de Bruijn sequences
after modification of a chosen feedback function according to one of the
spanning trees of its adjacency graph. A useful tool to study the adjacency
graphs is universal circuit matriz [10], that is, a mapping, the arguments
of which are the feedback functions while the values — matrices, the rows
of which, generate the vector space of the adjacency graphs. There is
an effective way to obtain the values of the universal circuits matrix, and
consequently the spanning trees of the adjacency graphs [7].

Generally, the spanning trees of the adjacency graph of one of the feed-
back functions do not suffice for obtaining all de Bruijn sequences. If one of
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the de Bruijn sequences of order k is known then the others can be obtained
with help of a binary relation defined by the sequel of segments of length
k — 1. These relations, discovered by Cohn and Lempel [1], and studied
by Latko [5], we call the crossing relations. An arbitrary crossing relation
determines all feedback functions that generate the de Bruijn sequences of
given order.

The main result of this paper establishes a simple connection between
the universal circuits matrix and the family of crossing relations. For an
arbitrary feedback function w that generates a de Bruijn sequence, it is suf-
ficient to transform the universal circuits matrix, using Gaussian operations
only, to the form in which its value obtained for the feedback function &
forms the characteristic matrix of the crossing relation of w. This allows us
to decipher many informations about the feedback functions. In particular,
it has been shown that the fundamental circuits as well as the fundamental
cut-sets of an adjacency graph a spanning tree of which determines w are
represented by families of rows of the binary representation of the crossing
relation of w. Thereby we can easily establish the other spanning trees of
this adjacency graph and the corresponding de Bruijn sequences. We also
present a few remarks about Hauge-Mykkeltveit classification of de Bruijn
sequences [4].

2. The feedback functions
Let F* be the family of total functions : {0, 1}* — {0,1} such that

(21) (P(xl,l’g,...,xk)%(P(i'l,.’CQ,...,xk),

for each (x;,...,z¢) € {0,1}%, (21 = 21 + 1 in GF(2) ). Each function
from F* will be called a feedback function.

Each feedback function ¢ defines the family of 2% infinite sequences
s1, 82, ...such that

(2.2) (s1,..-,8%) € {0, 1}* and  sk4i = @(si,. .., Sktio1) fori > 1.

It follows from (2.1) that each of the sequences is periodic, that is, there
exists p € {1,.. ., 2} such that s;4p = s; for i > 1. Thereby we represent
them as circuits of the directed graph By, called the de Bruijn graph of order
k, that consists of the elements of {0, 1}* as the vertices, where the vertex
(v1,v2,...,vx) is [ollowed by the vertices (vy,...,vk,0) and (vz, ..., v, 1).
Each feedback function ¢ determines a maximal subgraph Bi[p] of Bx
composed of disjoint directed circuits in which the vertex v = (v1,..., vk)
is followed by v/ = (va,..., vk, @(v)). The graph Bi[g] is said to be the
factor of By corresponding to .



Figure 2.1. The de Bruijn graph B3 and the factor Bs[a]
with a(z), 2, 23) = z) + 29 + 3

Note that ¢: {0,1}* — {0,1} is a feedback function if and only if
(2.3) ez, 2, ..., xk) = 21+ (0, 2, . . ., k),

where + is the addition in GF(2). Then for ¢ € F* and X C {0,1}*}
the function ) x, defined by

(2.4) wix(x1,x2,...,zk) = p(z1,22, ..., Tk) + xx(T2, ..., T)

(xx is the characteristic function of X), is the feedback function too. This
implies that for an arbitrary fixed ¢ € F* we have

(2.5) F = {px: X € {0,1}51}

permitting to observe changes in a factor of the de Bruijn graph caused
by the modifications of the values of the corresponding feedback function.
The basis for applications of this property is the case when X consists of
one element. To present this case assume that (v,v), is the sequence of
consecutive vertices in the circuit of Bgly], from the vertex followed v to
the vertex v.
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Figure 2.2. Factors Bs{oy(11}] and Ba|ay{00,10,11}]

2.1. Theorem. (8] Let v € F* and v = (v1,va,...,v&) € {0,1}%. If
& = (9, v2,...,v) does not occur in (v,v), then for u = (vy,...,vc) we
have:

(Ve = (9,9)p(v,v)y and b occurs in (v, V) yquy

while (v',v")gy., = (v',v')y iff neither v nor ¥ occurs in (v, v"),, for
v’ € {0,1}*\ {v,9}. n

Theorem 2.1 establishes a natural order in F*. Let — C F* x F* be
the binary relation such that for arbitrary feedback functions ¢ and ¢ we
have ¢ — v if and only if there exists u € {0, 1}¥~! such that:

(2.6) ¥ =ifu)»

(2.7) the vertices v = (0,usg, ..., ux) and & = (1, uo, ..., ux) are in dif-
ferent circuits of Bylp).

Let — be the reflexive and transitive closure of — . Then = forms
a partial order in F*. Some properties of this order have been presented
in [6,11]. In particular, the maximal elements ol F k ordered by = are the
feedback functions, the factors of which forms Hamiltonian circuits in de
Bruin graph, while the minimal ones are the [eedback functions, the factors
of which consist of circuits where none of them contains the (z1, zo,. .., zk)
and (&), z2, ..., Zx) in the same circuit [9].
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Figure 2.3. The adjacency graphs Q, and Qay,,.,

For the complete characteristic of this order it is convenient to exploit
the notion of the adjacency graph of a feedback function. For each ¢ € F*
let {0, 1}*/¢ be the partition of {0, 1}* composed of the sets each of which
consists of the vertices of a circuit of Bi[p]. The undirected graph Q,, with
A € {0,1}*/¢ as the vertices and with e € {0,1}%~! as the edges: an edge
e=(e1,...,e-1) is incident to A if and only if A contains (0,e¢,...,ex—1)
or (1,e1,...,ex—1), is called the adjacency graph of . Let Q,[D)] be the
subgraph of Q. composed of the vertices of Q,, and the edges from D C
{0,1}*~1. The following theorem establishes the fundamental connection

between the relations ¢ = ¢, ;5 and the the subgraphs Q,[D] of Q..

2.2. Theorem. Let p € F*. For each D C {0,1}* ! we have:
» = @yp ifand only if Qu[D] is the graph without circuits.

Proof. Necessity. Let us suppose that ¢ = wjp. Because of (2.6)
and (2.7) we see that if D = {d} then ¢ — ¢4 if and only if Q,[{d}]
is not a loop, that is, it does not form a circuit. Thercby, it follows
from the definition of = that for an arbitrary D C {0,1}*! there ex-

ists an order dy, . .., dr, of the elements of D such that ¢ = ¢y (q, .. 4} and
Qo[{d:, ..., d:}] does not contain any circuit, for each i € {1,...,m}. This
completes the proof of necessity.

Sufficiency. If Q,[D] has not any circuits then for each ¢ € D we
have ¢ = py(e) and Qy,,., [P\ {e}] has not any circuits too. This implies

¢ = @yp. ]

For the function a, the factor of which is presented in Figure 2.1, we
have a — ajj113, and @ 5 a)(00,10,11}- (Compare with Fig. 2.2.)



3. The Hamiltonian functions and the crossing relation

Each feedback function ¢ € F* such that B[] forms in By a Hamilto-
nian circuit we will call a Hamiltonian function. The set of all Hamiltonian
functions will be denoted by H*. It is well known (3] that there exists
92*~'~k Hamiltonian functions. Theorem 2.3 implies that the spanning
trees of the adjacency graph of a feedback function establish a family of
Hamiltonian functions. Generally, this family does not contain all Ilamil-
tonian functions. But it appears that each Hamiltonian function contains
the information about the others. In order to read this information it is
sufficient Lo construct a binary relation in the set {0,1}*~1. It is defined

by the order of the vertices: (0,2, ...,zk), (1,Z2,...,Zk), (O,y2,- -, Yk),
(1,92, - .., yk) of Bk in the corresponding Hamiltonian circuit. To this pur-
pose let & = (%1, 22, ...,zk) for z = (z1,22,..., k).

For w € H* let x,, be the binary relation in {0, 1}*~! such that for
arbitrary elements u = (uy, ..., uk—1) and v = (v1,...,vk-1) of {0, 1}571,
ifz = (0,u1,...,uk-1) and y = (0,vy,...,vk-1) then (u,v) € %, if and
only if either

(z,1)0 = (z, WY ), (2, Dl 2w

or

(.’I:, I)w = (Z, g)w(ga i‘)u(is y)w(y! I)cw

Of course (u,v) € X, if and only if (v,u) € Xu.

In a sequence (z, z),, each element of {0,1}*~! appears twice. Write
the elements of (z, z)., on a circle and join the points with the same element
of {0,1}*~! with line. Then (u,v) € x,, if and only if the lines that join
two points with » and two points with v crossed. Thereby u and v are said
to be w-crossed.

Let X, be the characteristic function of X,,, that is the function defined
on {0,1}*~! x {0,1}*~! as follows

(w,v) 1, il{u,v) € Xu,

u,v) =

w 0, otherwise.

We represent. X, as the binary matrix with the rows and columns ordered
by an order of {0,1}*~!, usually lexicographically. Then X, is a sym-
metric matrix. Sometimes we will identify the sct {0,1}*~! with the sct
{0,1,...,25" =1} by the bijection (z1,...,Ze-1) = 12572+ 4 x4, 20,
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Figure 3.1. The family H*



000 001 010 011 100 101 110 111
w /0 0 0 0 0 0 0 0}
c1]| O 0 1 0 1 0 0 0
oic| O 1 0 1 1 1 1 0
oin| O 0 1 0 0 0 1 0
wo| 0 1 1 0 0 0 0 O
w}] 0 0 1 0 0 0 0 O
ol o 0 1 1 0 0 0 o0
111 k 0O 0 o0 o0 o0 0 0 0 /

Figure 3.2. The matrix representation of x,, with w; {rom Figure 3.1

A relation x,, is connected with theorem 2.1. Note that (u,v) € x,, if
and only if
Wiy} @ and Wi} = Wyfue)-

This implies that wj{, v} is also a Hamiltonian functions. Thereby x,,
determines all Hamiltonian functions that differ in minimal number of ar-
guments from w. In order to establish the other Hamiltonian functions
let us assume that for each A C {0,1}*~! by X, [A] we denote the ma-
trix obtained from X, by deleting the rows and columns corresponding to
{0,1}%-1\ A.

3.1. Theorem. [1] For each w € H* and for each X C {0,1}¢~1 we
have wyx € H* if and only if X = 0 or the matrix X,[X] is nonsingular.
In particular, wy(; ;3 is a Hamiltonian function if and only if the element
z;; of X, is equal to 1. |

It follows from the above theorem that if we determine lor a Hamilto-
nian function all nonsingular submatrices A,,[X] ol A, then we determine
all remaining Hamiltonian functions. In particular, the nonzero elements
of X, directly indicate some of the Hamiltonian [unction. [t is casy to
prove that apart from the rows corresponding to (0...0) and (1...1) each
of the others contains at least one element equal to 1. Since the matrix
is symmetric and its main diagonal consists of zeros, we can directly ob-
tain at least 25! — 3 new Hamiltonian [unctions, however, not more than
1424 - 4271 -3 =(2%5"2_1).(2%"! - 3). For ecach of them we can
construct the new matrix of the crossing relation, and basing on it — new
Hamiltonian functions.

3.2. Example. Note that X, [X] with X = {0,1}*~1\ {000,111}
is nonsingular (Fig. 3.2). Thereby wijx € H*. One can observe that
W1;|x = W§.
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4. Universal circuits matrix of the adjacency graphs

The adjacency graphs of the feedback functions can be partially de-
scribed by two vector spaces over G['(2): the cut-set space CUTY{y), defined
as the smallest vector space generated with the family of characteristic func-
tions of the cut-sets of Q,, and the circuit space CI/R(p), defined as the
smallest vector space generated with the family of characteristic functions
of the circuits of Q,. (Cf. [2, Chapter 6].) For example, the Hauge-
Mykkeltveit classification of de Bruijn sequences has been essentially based
on some automorphisms of CIR(), where ¥(z1, z9, ..., zx) = z, [4, Lemma
4].

For each ¢ € F* the vector space CUT(yp) is generated by the family
of functions h: {0,1}%~! — {0, 1} such that

h(ela- '-1ek—l) = XA(O;els'"tek—l)+XA(I=CI:---ack—~l)

for A € {0,1}*/¢ and it follows from [2, Chapter 7] that dim CUT(y) =
1{0, 1}*/¢| — 1, since Q,, is easily seen to be connected, and dim CIR(p) =
26=1 41 — |{0,1}*/¢|, because the spaces CIR(p) and CUT(p) are or-
thogonal complements. Note that ¢ — ¥ implies CUT() C CUT{y) and
CIR(p) C CIR{y), but not conversely.

4.1. Example. For a(z1, 22, 23) = 21+ 2 +x3 (See Fig. 2.1 and 2.3)
we have CIR(a) = {go,91} and CUT(a) = {ho, hy, ha, ha, ha, hs, he, h7},
where

00 0 0

01 0 1

10 0 1

11 0 V]
z  ho(z) hi{z) ho(z) ha(z) ha(z) ha(z) he(z) hr(x)
00 0 1 0 0 1 1 0 1
01 0 0 1 0 1 0 1 1
10 0 0 1 0 1 0 1 1
11 0 0 0 1 0 1 1 1

Note that CIR(a) C CIR{ay(11y) and CUT{ay(113) C CUT(a).
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There exists a simple tool for description of the adjacency graphs of the
feedback functions and the corresponding vector spaces. Let us consider a
total function f: {0,1}* — {0, 1} such that

(4.1) fzy, . ze) = f(:cg,...,:zk,cp(:zl,...,xk)).

If we set f(.‘l)],...,.’l.‘k) = fo(xl,...,l‘k_])'*'fl(xl,...,l‘k_l) -xx in GF(2)
then the above equality has the form:

folxr,. . Te—1) + Solza,...,zk) +

(4.2)
fl(mls'~':xk’l)'zk + f](x'Za"’rxk) ":0(1:1:3’52:-“:-'5!:) =0:

which may be considered as a system of 2k linear equations with the un-
knowns fo(u) and fi(u) for u € {0,1}*"'. By linear transformations of
(4.2) we obtain the following system of linear equations dealing only with
the unknowns f){u):

(100,21, ..., ze—2) + filz1,. .., Tk-2,0) +

Nz, zk—2) + fi(zr,.., Te-2,1) = 0,
for (z1,...,%k-2) € {0, 1} 2\ {(1,.... D}

0(0,0,...,0)- [1(0,...,0) = 0;

(4.3) .
T f](.’l)1,...,$k_2,()) + jl(IE],...,.'I:],.’I:]) + S}P((),...,O)-i-

Sg(zl, e Tk-2,0) + S:,(:::;, ey Zg-2,0) = 0,
for (z1,...,zk-2) € {0, 1}*72\ {(0,...,0)};

L 00,1,...,1)- Al,...,1) = 0

where

S;(ul,---,ulc—l)=

k-3
Zfl(ti . 'ltvuls .. '3u'k~i>~2) ['\o(ti tl . '1t1 Uy - ~7uk—t—2) + uk—i—~1]a
i=0

fort e {0, 1} and (ul,...,uk,.l) € {0, l}k*l.

4.2. Theorem. [10] For cach p € F* the rows of the coefficient
matrix of (4.3) generate the vector space CIR(g). "

12
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Figure 4.1. An illustration of Theorem 4.2: the graph Qg
and the matrix Uy)(¥) for 9(zy, 29, 23, 24) = 2.

The coefficient matrix of (4.3) depends on the values ¢(0,0,...,0),
©(0,0,...,1),...,0(0,1,...,1) of . Thereby, Theorem 4.2 establishes the
mapping that assigns each of ¢ € F* a circuits matrix of Q. This mapping
will be called the universal circuit matriz of order k and denoted by Uiy
We assume that the i-th column of U; corresponds to the edge (z3, ..., zx)
where z; - - -z forms the binary representation of i. Because this column
depends only on the values of (0, 2, .. ., Zg) il is convenient Lo replace
each (0, xy,...,z¢) by the term 7; and each 1 4 (0, z, ..., zx) by 7.

4.3. Example. For k£ =1 we have

0o 1 0 0o 1 0 O 0

( 0o 1 1 1 0 1 0 O

O 0 1 0 1 1 1 0O

U = v 0 0 O O 0 0 O

= T T 1 0 7 75 1 0 !

7 1 ™ 0 73 0 0 O

7 1 0 1™ T4 0 7 O

\0 0 0 0 0 0 0 =

where 79 = ©(0000), 71 = ©(0001),...,77 = @(0111) and % = =; + 1 for
i€{0,1,...,7}. A value of Uy is presented in Figure 4.1.
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If w € H* then Ux(w) is a nonsingular matrix. Thereby, applying
Lo its rows the Gaussian transformations, we can obtain the identity ma-
trix. Let U, be the matrix which we obtain as the result the simultane-
ous transformations on Ujj(w) and Uj;, when the i-th column of Uy, for
1 € {0, 1,...,2571 — 1}, is assumed to be a matrix over GF(4) with the
elements 0, 1, 73, ;. The matrix U, is said to be the canonical form of the
ungversel circuits matriz with respect to w. One can observe that for each
w € H* and for each ¢ € F* the rows of U, () generate the vector space
CIR{p). Thereby, the matrix U,, forms another mapping of F* onto family
of circuits matrices of the adjacency graphs of the feedback functions.

4.4. Example. For k =4 and w, defined in Figure 3.1 we have

/001001000
01110100
00101110
10000000

Uawt)=17 7 1 0 1 0 1 0
11000000
10011000
\0 0 0000 O0 1/

and after transformations Upsj(w1) and Ujy; we obtain

-

cccooccocd

T 19 0 17 0 0 O
T Fo Ta T4 T 16 O

0 7 ™ 0 0 7 O
1 o1 0 7 0 0 O

0 7 0O 0 = 0 O

0 7 7 0 0 7 O

0O 0 0 0 0 0 )

—

The matrix U,, forms the canonical form of Uy; with respect to wy. Note
that any of the elements of the main diagonal of U,,, is neither zero nor one.
Moreover, the main diagonal corresponds to truth table of wy, that is to
the binary vector (w(0,0,0,0),w,(0,0,0,1),...,«1(0,1,1,1}). Il we have
w1 (0, T2, T3, x4) = 1 then the corresponding term in the main diagonal has
the form 7, otherwise, it is equal to 7.
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4.5. Proposition. In each column of U,, we have:

(a) the termn that appears in the main diagonal (the main term of the
column) is neither zero nor one;

(b) each of the other terms of the column is either zero or the complement
of the main term.

Proof. Because U, (w) is the identity matrix, each of the elements that
appears in the main diagonal is equal to one, thereby the corresponding
terms of U, are non zero. On the other hand, for each feedback function
@ the matrix U, () is a circuits matrix of Q,. The matrix U,(w) is the
identity one because each edge of Q,, forms a loop. If we take ¢ = wy (.}, for
an arbitrary e € {0,1}%~!, then we obtain the matrix U,,(w;(c}) that differs
with the identity matrix only in the column corresponding to e. Then each
row of U, (w(e)) differs with the corresponding rows of identity matrix at
most in the element that appears in the e-th column. In particular, because
e is not a loop in Qy,,,, the row of Uy, (wy{e}) corresponding Lo ¢ must be
zero. It shows that in each of the columns of U, the main term is neither
zero nor one, which proves (a). The statement (b) immediately follows from
(a) and the assumption that U, (w) is the identity matrix. ]

4.6. Theorem. For each w € H* we have U, (&) = X,,.

Proof. The matrix U, (w) is the identity one. This means that in s-th
column of U, the main term has the form 7, if w(s) = 1, or 75, if w(s) = 0.
Each of the other terms in this column is either zcro or the complement of
the main term. Thereby the matrix U, (@) has ones only beyond the main
diagonal in each place where the matrix U, has nonzero terms. Becausc
of Theorem 3.1, we must prove that the element u;; of U, (@) is equal to
1 if and only il w5 € H¥. To this purpose, note that the columns of
Uw(wyi,53) are identical with the corresponding columns of the identity
matrix U, (w), except the i-th and j-th columns that are identical with the
corresponding columns of U,,(@). Thereby U, (w(; ;}), as a circuits matrix
of wy(s 5}, is nonsingular if and only if wy(; ;3 € H*, that is if and only if
u;; = 1 and u;; = 1, which completes the proof. [

4.7. Corollary. Let w € H* and let U, = (uij). We have
wigiy) € H* ifand only il g, € {7;,%},

for different 7 and j from {0,1,...,2% ' — 1}, n
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Because of Theorem 4.6 and Proposition 4.5 we can show a simple
transformation each of X, on U,. An algorithm can be based on the foi-
lowing observation.

4.8. Corollary. Let w € H* and let (L;;) with i€ {0,...,25 ' -1}
and j € {0,...,25"! — 1} be the matrix such that the elements of the
j-th column of which are defined as follows: if w(0,z2,...,z¢) = 1, where
Zy -+ Tk is the binary representation of j, then

Tjs lf‘l=]
tij= Tjs nh:;é] anqu(i,j)=1,
0, ifi # 7 and X,(i,5) =0,

else
75, ifi=7],
tij = Tj, ifi# 3 and X,(4,3) =1,
0, ifi# 7 and X,(1,7) =0,
Then U, = (ti;). "

4.9. Example. We shall illustrate Corollary 4.8 with the construction
of U, where wg has been defined in Figure 3.1, beginning from

0000000 0)
00001 100
00000100
L, _l00000 110
“~“1o0 1000100
01111010
00010100
\0 0 0000 0 0/

Let

(do,dy,...,d7) = (we(0,0,0, 0), we(0,0,0,1),. .,we(0,1,1,1))
=(1,1,1,1,0,0,0,1).

We make the construction in two steps.
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o We replace the elernents of the main diagonal of X,,,, consisting of
zeros, with the elements of the vector (do + 7o, dy + 71,...,d? + 77),
respectively.

Putting 0+ % =7fand 1+ # =7 fori € {0,1,...,7} we obtain

(To 0 0 0 0 0 0 0)

0n 0 0 1 1 0 0
0 0/ 0 0 1 0 0
0 0 0 7z 0 1 1 0
0 1 0 0 7 1 0 0
01 1 1 1 4% 1 0
0 0 0 1 0 1 # 0

\0 0 0 0 0 0 0 =/

e In each of the columns we replace each of the ones with the term
complementary to the main term of the column.

Now we obtain the final matrix

0 7 7o 73 T4 75 Tg
0 6 0 = ;
\0 0 0 0 0 0 0 7

[0 0 0 0 0 0 0 0\

0 nn 0 0 m™ 75 0 0

0 0 7 0 0 75 0 0

U, = 0 0 0 K] 0 75 76 0
L0 oFH 0 0 FH o5 00
0

0

This matrix can be easily transformed on U, lor cach of «w € H1.

The mapping Uy has been directly defined by (4.3) which docs not
bring to light too much informations about the circuits of the adjacency
graphs of feedback functions. Theorem 4.6 establishes a basic connection
between the universal circuits matrix and the family of the crossing rela-
tions of the Hamiltonian functions. This discloses a kind of an information
bounded up with a canonical form of Uy, which is discussed in the next
two sections.
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5. The matrix U, and the problem ¢ = w

For a Hamiltonian function w and a feedback function ¢ such that
0 > w, if Q,[D) forms the spanning trec of Q, such that w = ¢p then

we will write ¢ 5.

5.1. Theorem. Let w € H*. If ¢ B & then the nonzero rows of
U, () represent the fundamental circuits of Q, with respect to Q,[D] or
loops.

Proof. Because of Theorem 4.2 the nonzero rows of U, () represents
circuits of @, and we must only prove that they form the set of fundamental
circuits with respect to Q,,[D]. To this purpose note that the matrix U,, ()
differs with the identity matrix U,(w) only on the columns corresponding
to the branches of Q,[D]. Thereby, in each of the nonzero rows of Q.
the nonzero elements are in the columns corresponding to the branches of
Qw|D) or in the main diagonal. Let R. be the row of U, () corresponding
to an edge e of Q.

If e € D then the common clement of IR, and the main diagonal is
equal to zero, because in U,(w) it is equal to one. Thereby, cach of the
other elements of R, is equal to zero, otherwise R, represents the circuit of
Q. composed of branches of a spanning tree, which is impossible.

If e ¢ D then the common element of R, and the main diagonal is equal
to one and represents a chord of Q.[D] while the other nonzero elements
represent branches of Qu[D]. In this case R, represents a fundamental
circuit of Q, or a loop, if e is the unique edge in this circuit. [

5.2. Corollary. Let w be a Hamiltonian function. For each feedback

function @ the relation ¢ L & holds if and only il the rows of U,(¢)
corresponding to the elements of ) are zero vectors. ]

5.3. Theorem. If ¢ 5, ) then the matrix which consists of the rows
of U, (@) that correspond to the elements of the set D is the fundamental
cut-set matrix of @, with respect to Qy[D).

Proof. Let us set U, = (ul), Uu(p) = (ufj) and Uy(p) = (u).
For each branch d of QD] let {d,cy,...,cm} be the cut-set of @, that
contains d. Then ¢y, ..., ¢, are the chords Q. each of which cstablishes
one of the fundamental circuits containing d. It follows from Theorem 5.1
that

o _ {1, fori€ {c1,....¢m},
Yid = 0, otherwisc,
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and ufj = 0 for all 3. On the other hand, we have

t, fori€{ci,...,cm},
ulg =<1, fori=d,

0, otherwise,

where t € {7q4, 74} is a nonzero term, and Theorem 4.6 implies that u], # 0
if and only if uj; # 0. Thereby we have

9

WP = 1, forje{dcy,...,em}s
4 0, otherwise.

This means that (ufl,. ..,qu,,_,) is a cut-set vector of Q. ]

5.4. Corollary. For each ¢ € F* we have CUT(p) C CIR(). |

Let us sel A7 = / + &,. The matrix A contains full information
about all feedback functions ¢ such that ¢ = w.

5.5. Corollary. Let w € H*. Lach row of X7 is the cut-set vector
of the adjacency graph each of the feedback functions o such that @ — w.
In particular, the row corresponding Lo d is the fundamental cut-set vector
of the adjacency graph each of the feedback functions ¢ such that ¢ LA w,
where d € D. Then the matrix that consists the rows ol X7 corresponding
to the elements of D is the fundarncntal cut-set matrix of Q, with respect

to Qu[D). =
5.6. Corollary. Let w € H*. For cach D C {0,1}*"! we have
wyp — w if and only if XZ[D] is the identity matrix of rank | D). =

5.7. Corollary. Let w e H*. If ¢ 2 . and XD = (D) is the matrix
defined as follows

o0 ifi#G e {01\ D, G e {0,157\ D,
zi;  otherwise,

then the rows of X2 that correspond to ) arc the fundamental cut-set
vectors and the others — the fundamental circuit vectors of Q, with respect

to Qy[D]. n
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Figure 5.1.

0O 1 2 3 a4 &5 6 7
01 00000 0 0)
1fo1 101000
200 111111 0
. _3[0 0110010
Xr =
a0 1101000
s/]0 0100100
slo0 0110010
7\0 0 0000O0 1)
0 1 3 53 7 2 4 6
010000000\
1fo1 000110
slo 01001 01
. slooo0o 10100
Y%= lo0001000
2011101 11
alo 100001 10
s\0 01 0010 1)
0o 1 3 5 7 2 4 6
0(10000000\
ilo1 o001 10
s{o 0100101
so_s[000 10100
“~ 7210 0001000
210 111010 0
afo 1000010
sk00100001)

An illustration of Corollary 5.7 with wy = ¥ where
I(x1, T2, 23, 24) = x1 and 1) = {000,001, 011,101, 111}.
The matrices X, and X2 differs with A, and &2 in
the order of the rows and columns,
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Let H*(p) = {w € H*:p S w}. According to Theorem 2.2 the family
H* () may be identified with the family of the spanning trees of Qe. On
the other hand, Theorem 3.1 allows us to describe the family H*(y) based
on an arbitrary feedback function from H*{p). We shall show how the
results of this section simplify this description. To this purpose, let us
assume that if X and Y are nonempty subsets of {0,1}*~! then X, [X, Y]
denotes the submatrix of &, arising by deleting the rows corresponding to
the edges from {0,1}%~!\ X and the columns corresponding to the edges
from {0,1}*"'\ Y. In the case X =Y we have X,[X, Y] = X, [X].

5.8. Theorem. Let ¢ € F* and ¢ 5w, For each nonemply set
X C {0,1}F7! we have wyx € H*{p) if and only if | X N D| = |X \ D| and
the matrix X, [X 0D, X \ D] is nonsingular.

Proof. Note that w € H*{p). According to Theorem 2.2 we have
wyx € H*{(p) if and only if there exists Dx C {0,1}%~! such that Q,[Dx]
forms a spanning tree of Q. It is known that for the spanning trees Q[ D)
and Qu[Dx] of Q, there exists the one-to-one transformation from D on
Dx such that f(d) =d for d € DN Dx and f(d) is one of the chords from
the fundamental cut-set of Q, with respect to Qu[D] which contains d for
d € D\ Dx. Thereby, the equality |X N D| = |X \ D| is necessary for
the relation wyx € H*(i). Let us consider the matrix X,,[X] and assume
that its rows and columns are ordered as follows: the first are rows (and
columns) that correspond to the elements of XN /) and next to the elements
of X\ D. Then it has the form

X“D o X\D
XD 0 A
x\xo\ AT p )’
where A = A, (X N D, X \ D]. According 1o Theorem 3.1 we have wyy €
H* () if and only if the matrix X,,[X] is nonsingular. Since X,[X N 1] is

zero matrix we see that A, [X] is nonsingular if and only if X,,[X N D, X'\ D}
is nonsingular. This completes the proof. a

5.9. Example. Let & = 4. Forw = w; and ¢ = 9 (Figure 5.1) we have
D = {000,001,011,101,111}. Then X = {001,011, 101} U {010, 100, 110}
is the greatest subset of {0,1}° established by Theorem 5.8, that is the
matrix X, [{001,011, 101}, {010, 100, 110}] is nonsingular. One can check
that Qy[{000, 010,100, 110,111}] lorms a spanning tree of Qg, thereby
wyx € H4(19)
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6. Connections to the Hauge-Mykkeltveit classification

In [4] the classification of the de Bruijn sequences based on groups of
permutations of the set {0,1}*~! has been considered. Each permutation
p: {0,1}%=1 = {0,1}*~! cstablishes the mapping from F* into F* defined
as follows. For ¢ € F* we sct

(Pp(xl:x% I ka) = ga(xlsyza . ":yk)s

where (y2,...,9) = p~'(22,...,zx) for (z1,22,...,zk) € {0,1}*. Some
of these transformations lead from Hamiltonian functions to Hamiltonian
ones. For example, each of the well known permutations of {0,1}%~!
pc(ul, ey Ukq) = (T, .. ., Ug-1) and Pr(Uyy ey Uk-1) = (uk=1y-..,u1)
transforms the family H* onto itsell. In this section we study the idea of
Hauge and Mykkeltveit with respect of the relation x,,, represented by A7,

Let ITx () be the family of the permutations g: {0,1}¢=! — {0, 1}%-!
that transforms each spanning tree of Q. onto a spanning tree of Q. For
each w € H* we have

e (w) = {p:wp € 'H"},

because, if p € (y) then [{0, 1}%/¢] = [{0,1}*/p,| and Q., does not con-
tain any nonempty spanning tree. The [amilies [Ix{w) establish a partition
of H*. This is stated with the following observation. For each p € Il {y)
we have

(6.1) He(pp) = {wpiw € HE ) ).

We shall characterize the families H* (;2,,) by a connection among the matrix
A7 and the matrices & . To this purpose for each permutation g of
{0,1}*~! and for arbitrary 25~! x 25~! binary matrices M, and M, we set
M; £ M, if and only if M; and M, differ only with the permutations of
rows and columns according to p. Morcover, for each X C {0,1}*~1 we set
Xp ={o(z) € X}.

6.1. Theorem. Let ¢ € F*. l'or cach w € H*(y) and p € 11 (p) we
have
Dy ;
if g 5 w then Pp =% wy and XD £ X-,ii".
Proof. If p € Tlk{p) then the spanning tree Q,{/)] is transformed onto
the spanning tree Q,[D,]. We shall show that o maps the set of funda-

mental circuits of Q, with respect Lo Qy[D] onto the set of fundamental
circuits of Q,, With respect to Qp, [Dp] (compare with [4, Lemma 4]) as

22



well as the set of the fundamental cut-sets of @, with respect to Qg [/),)]
onto the fundamental cut-sets of Q, with respect to Qg [Dy)].

For each fundamental circuit C = {by,..., b, c} of Q, that consists
of the branches &y, ..., b, and the chord ¢ there exist the spanning trees
Ti,..., T of Qg cach of which differs with Q,[D] only on the cdges b,
and c for i € {1,...,m}. Because the images Tf,....T& of T\,..., T\
form spanning trees of Q,,, cach of which differs with Q,,[D,] only on
the edges p(b;) and p(c) for i € {1,...,m} the image C, of C forms the
fundamental circuit of @, with respect to Qy [D,] as well as each of the
spanning trees T, ..., TE.

Note now that the construction each of the spanning trees 71,..., T,
does not change the fundamental circuit that contains the edges b; and c.
This proves that p maps the the set of the fundamental cut-sets of Q, with
respect to (), onto the set of the fundamental cut-sets of @, with respect

to Qp, [Dg]-
Because of the partition of X? stated by Corollary 5.7 the proof is
completed. n

6.2. Theorem. Let w € H*. For each p € T (w), if A2 £ XJ then
pe n“enk i (w).

Proof. Let us consider an arbitrary & € H* and let & = wyx. The
assumption A% £ &7, implies that the matrix A, [X] is nonsingular il and
only if X, [Xp] is nonsingular. Because &y, = wyix,, we have &, € HF
which implies that p € Ilg(D) for an arbitrary & € H*. Thereby, ¢ €
nwer I, (w) ]

6.3. Theorem. lor each positive k we have
ﬂ He(w) = {p: A2 £ Xy for each w € HF}.
wEHk
Proof. Il p € M, e Le(w) then for each w € H* we have w, € H.
Let A3 (u,v) = 1. Then wyy,v} € H* and (Wi{u.w))p € H*. Thereby
Wl {p(w).e() = (Wituu)e € HE
This implies that &2, (p(u), p(v)) = 1 which leads to the conclusion that
xr £ A . Then we have
(3
] Mew) C {p: X, £ X for cach w € H*}.
weHk
The inverse inclusion immediately follows from Theorem 6.2. (]
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6.4. Example. We shall show that
(] Malw) = T4 (),
wCHA
where 9(z1, 2, z3,z4) = z1. To this purpose note that for cach w € H!
either ¥ 5 w or ¥ — w. Thereby, because of Corollary 5.5 and Theorem
6.3, il p € N, ene Na(w) then p € Tl4 (@ N 11, {3). On the other hand, if
¢ = w then 114 () C M4(w). This implies that
M@ NIL@) = ) aw).
weHs

It has been proved in [4] that TI4(¥) C 14 (9). This implies the cquality
Nuere Maw) = a{). The family [14(J) has been established in [4].
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