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Abstract. In this paper, we will prove that there exist no (n,%,d]q
codes for sg*~! — (s + t)g*¥%2 — ¢¥~* < d < s¢F! — (s + t)g*? at-
taining the Griesmer bound with ¥ > 4, 1 < s < k—-2,¢t > 1 and
s+t < (g + 1)/2. Furthermore, we will prove that there exist no [n, k,d]q
codes for sq*~1 — (s +t)g*~2 — ¢¥"3+1 < d < s¢*~! — (s +t)g*~2 attaining
the Griesmer bound with £ >3,1<s<k-2,t>1lands+t<,/g-1.
The results generalize the nonexistence theorems of Tatsuya Maruta (see
[7]) and Andreas Klein (see [4]) to a larger class of code.
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1 Introduction

We denote by GF(q) the Galois field of order g. An [r,k,d]q code is a
linear code of length n with dimension k& whose minimum Hamming dis-
tance is d over GF(q). One of the central problems in coding theory is
to determine n,(k,d), the minimum value of n for which there exists an
[n, k, d],4 code for given g, k, d. As a lower bound on ny(k, d) the following
is well known .

Theorem 1.1 (The Griesmer bound — see[2], [8])
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ng(k,d) 2 gy(k,d) := .55 [d/q'1,
where [z] denotes the smallest integer greater than or equal to z.

It is known that ng(k,d) = gq(k,d) for all d, £ = 1,2 and for d >
(k=2)g"!' —(k—1)¢*2+1, k > 3 for all g (see 3], [7]). For d =
(k —2)g*~! — (k — 1)¢*—2, k > 3, S.M. Doudunekov (see [1]), R. Hill (see
[3]) and T. Maruta (see [6], [7]) have given the following theorem.

Theorem 1.2 For d = (k - 2)¢*~! = (k — 1)¢*~2, ny(k,d) > g,(k,d)
holds for q> k, k=3,4,5and ¢ >2k—-3,k> 6.

In the paper [5], the author obtained the following theorem.

Theorem 1.3 For d = mg*~! — (m + 1)¢*72, ny(k,d) > gq(k,d) holds
forl<m<k-2,q>m+2,k=3,4,5and qg>2m, k > 6.

Let C be an [n, k,d]q code with a generator matrix M. The code ob-
tained by deleting the same coordinate from each codeword of C is called
a punctured code of C. If there exists an [n + 1,k,d + 1]; code ¢’ which
gives C as a punctured code, C is called extendable (to C') and C is an
extension of C. By extension of linear codes, Andreas Klein (see [4]) has
proved the following theorem.

Theorem 1.4 There exist no [gq(k,d), k,d)q codes if ¢ > 2k~ 3,k > 4
and
(k=2)¢* ! = (k=1)g"? - ¢*" <d < (k= 2)¢*' = (k- 1)¢* 2.

Furthermore, if q > k? + k ~ 1, then there exist no [gq(k, d), k,d]q codes
with k > 3 and

(k=2)g" ' = (k=1)¢* 2= ¢*3+1 < d < (k—2)¢* ! = (k-1)¢* 2.

In this paper, we will generalize the above results and obtain the fol-
lowing Theorems.

Theorem 1.5 There exist no [gq(k,d), k,d|q codesif k > 4,1 < s < k-2,
t>1,s+t<(g+1)/2 and

sq" 7t = (s +1)¢* % — ¢ < d < sgFT! = (s + )¢t
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Theorem 1.6 There exist no [gy(k,d),k,d)q codesif k> 3,1 < s< k-2,
t>1,s+t<,/g—1and

sl — (s+1t)g" 2 —gF 3 +1<d<sgFt — (s +t)g* 2

2 Geometric preliminaries

Assume that k > 3. We denote by ¥ = PG(k — 1,q) the projective
spacc of dimension k — 1 over GF(q). A j-flat is a projective subspace of
dimension j in X. 0-flats, 1-flats, 2-flats and (k — 2)-flats are called points,
lines, planes and hyperplanes respectively. Denote by #; the number
of points in a j-flat, ie. 6; = (¢! —1)/(g — 1). We set 6_; = 0 for
convenience.

Let C be an [n, k,d], code which does not have any coordinate position
in which all the codewords have a. zero entry. The columns of a generator
matrix M of C can be considered as a multiset of n points in ¥ denoted by
M. An i-point is a point which has multipicity i in M. Let C; be the set
of i-points in X. Let 4o be the maximum number of i for which an i-point
exists in X. For any subset S of L, we define

co(S) = maz{i|SN C; # 0},
o(8) =% i 1SNCi,

where |T'| denotes the number of points in T for a subset T of ¥. De-
fine v; = maz{c(A)|Aisa jflatin L}, 1< j< k-1 Then y2=n—d
holds (see [3]). Hence we obtain the partition £ = [J}2, C; such that

Z) =n,
¢(w) €< n — d for any hyperplane 7 of X,
c(n) = n — d for some hyperplane 7 of .

Conversely such a partition & = |J;2,C; as above gives an [n,k,d|,
code in the natural way if there exists no hyperplane containing the com-
plement of Cp in X. When C attains the Griesmer bound, o, 71, * -+, Yk—3
are uniquely determined as follows.

Theorem 2.1 (see [7]) Let C be an [n, k,d], code attaining the Griesmer
bound. Then it holds that

'YJ"—'Zi:of;::dx_—u'l for0<j<k-1.
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Let a; be the number of hyperplanes = of X with ¢(n) = i. An casy
counting argument yields that

Theorem 2.2 (see [6]) If a; =0 for all i < n —d, then O,_, divides n,
and X = C, holds, where s =n/0_;.

3 Main Theorems

Let C be an [n, k, d], code attaining the Griesmer bound for d = sq*~! —
(s +t)g*2withk >4,1<s<k—-2¢t>1and s+t < (¢g+1/)2. Then
we have n = gy4(k,d) = s¢*~! — t0x_o. Let & = |J}2, C; be the partition
derived from a generator matrix of C.

Lemma 3.1 (1) vy; =s¢’ —t0;_1 for 0<j<k-1.
(2) A is a j-flat with c(A) = v; if and only if (D) = s for
0<j<k-1

Proof. (1) The results are straightforward from Theorem 2.1.

(2) Obviously it is true for j =0 or j = k£ — 1. It follows from (1) that
40 = s and v, = sq — t. Since n = (sq —t — s)fr—2 + s, then every line
| containing an s -point satisfies ¢(l) = sq —t = . Let [ be a line with
cl)=m. IfINC, =0, then y1 < (s —1)(g + 1) < sq — ¢, a contradiction.
Hence we have ¢o(l) = s.

Let A be a j-flat with ¢p(Q) =5,2<j <k —2. Then

(A)y=(m - 8)0]'_1 + 5= qu —t0;_1 =1;.
Conversely, let A be a j-flat with ¢(A)=7;,2<j<k-2. IfANCs =9,
then v; < (s —1)8; < sq’ —t0;_1, a contradiction. Hence we have that

co(A) =s. o

Lemma 3.2 Let A be a plane with c¢(A) = v, and let 1y, I be two
distinct lines on O with tg = c{ly Nl2), t; = c(li), i =1,2. Then

t, + to > sq + gqto — 2t.
Proof. The assertion follows from
v2 Sty +ta —to+ (g — 1)1 — to).

Lemma 3.3 (1) co(l) > 0 for any linel of L.
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(2) Letlbealineof ¥ witheo(l)=r,1 <1 <s. Thenc(l) =rqg—t.

Proof. (1) Suppose that there exists a line Iy included in Cp. Take a
plane A containing ly and an s-point. Setting ¢y = ¢; = 0 in Lemma 3.2,
we have to > sq — 2t > (s — 1)q. Hence every line ! (# lp) on A contains
an s-point and so ¢(l) = v; by Lemma 3.1 (2). Considering the lines on A
containing a fixed 0-point, we obtain y2 = ¢v;, a contradiction.

(2) In the case r = s we have proved in Lemma 3.1 (2).

Next we assumc that r < s. Let P be an s-point, @ be the plane
through P and {. Then c(n) = sq* — t6;. Let I be a line different
from [ in 7 with intersect ! at an r-point. Since ¢(l) < r(q + 1), then
el') > (sq* —t6;,) —rq — (g~ 1)(sq —t — 1) = sq — 2t — r. Since
2< s+t<(g+1)/2 we have c(l') > (s = 1){(g+1). Thus co(!') = s
and therefore ¢(!') = sq —t. We look at all lines in 7 through a fixed r-
point of I. It easily follows that c(l) = (sq®?—t6;)—q(sq—t—r) = rqg—t. O

Lemma 3.4 Let w be a hyperplane of ¥ with ¢g(7) =1, 1 < r < s.
Then

(1) o(m) = rg*=2 — t0)_3.

(2) For a j-flat A in 7w containing a r-point (1 < j < k —2), the
partition A = JI_o(ANGC;) gives an [rg? —t0;_1,5+1,7¢" — (r + )¢~ 1],
code.

Proof. (1) Let P be an r-point in 7. Considering the lines in 7 through
P, it follows from Lemma 3.3 (2) that ¢(7) = (rq —t — 7)0_3 + 7 =
'qu_2 — t0k—3.

(2) Let A be a j-flat in 7 containing an r-point P in 7. Considering
the lines in 7 through P, we obtain

(A)=(rq—-t— r)0,-_1 +r= qu - t0,~_1.

Similarly, ¢(A¢) = r¢7~! — t8;2 for every (j — 1)-flat Ag in A containing
a r-point. By Lemma 3.3 (2) we have ¢(Ap) < rg/~! — ¢0;_, for every
(7 — 1)-flat Af in A. Hence the partition A = [J]_,(A N C;) gives an
[rg? —t0;—1,j+1,7¢ — (r +t)g" g code. O

Lemma 3.5 For d = ¢2 — (t + 1)g, n4(3,d) > g4(3,d) holds for 1 <
t<(g-1)/2.

Proof. This is the case ¥ = 3. Let C be an [g,(3,d), 3,d], code with
d=¢q?>—(t+1)gand 1 <t < (g—1)/2. Then we have g,(3,d) = ¢ — t0,.
The columns of a generator M of C can be considered as a multiset of
q? — t6 points in ¢ = PG(2,q). From Theorem 2.1 it follows that v = 1,
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71 = q—t. Similarly as Lemma 3.3 (1) we have cg(l) > 0 for every line ! in
o. Hence cp(l) = 1 and furthermore ¢(l) = g — ¢ for every line [ in . Thus
we have (g% — t81)(g + 1) = 62(g — t), a contradiction.

Theorem 3.6 There exist no [gq(k,d), k,d]q codes with d = sq*~1 —
(s+t)g*2 fork>4,1<s<k-2,t>1and s+t<(g+1)/2.

Proof. When & = 4, we have s = 1, or 2. It follows from Lemmas
3.3 (1), 3.4 and 3.5 that there exists no hyperplane 7 of ¥ with cp(n) < s,
contracting Theorem 2.2. Hence there exist no [gq(4,d), 4, d], codes with
d = sq® — (s +t) Using induction on k we also get a contradiction for k > 5.
This completes the proof.

Andreas Klein have given the following two results of extending codes.

Lemma 3.7(see [4]) Let s+t < q and k > 4. Each [gq(k,d),k,d],
code with

qu—] _ (S + t)qk—2 _ qk-—4 S d< qu—l . ($+ t)qk—z
can be extended to a [gq(k:,d'), k, d']q code with d' = sqF=1 — (s + t)g"—2.

Lemma 3.8(see (4]) Let (s+t)2+3(s+t)+1 < q, then each [g,(k,d), k, d],
code with

5¢" 1 = (s + )¢ —¢* P+ 1< d < sgh ! — (s + t)gh 2

and k > 3 can be extended to a [gq(k, d’),k,d']q code with d = sq*~1 —
(s +t)gk2.

In fact, the condition (s+¢)2+3(s+¢)+1 < q in Lemma 3.8 can be im-
proved to (s+t+1)2 < gq. We only need to substitute (g—s—t)/(s+t+1) >
(s+1t)for (g—s—1t)/(s+t+1) > (s+t+1) in the proof of Theorem 10
in the paper [4]. Thus we have
Lemma 3.9 Let s+t < /g — 1, then each (gq(k,d), k,d], code with

sg* 1 — (s +t)gF 2 —g" 3+ 1 < d < sgh! — (s + t)gF2

and k > 3 can be extended to a [gq(k,d ), k,d |4 code with d' = sqgF~! —
(s + t)gc—2.

Togcther with Theorem 3.6, Lemmas 3.7 and 3.9 yields the following
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nonexistence theorems, which we have mentioned in the introduction.

Theorem 1.5 There exist no (gq(k,d), k,d)q codesif k > 4,1 < s < k-2,
t>1,s+t<(¢+1)/2 and

5q" 7t = (s +1)g* % — ¢t Sd < sgP7T — (s +t)gR

Theorem 1.6 There exist no [gq(k,d), k,d]q codesif k> 3,1 < s < k-2,
t>1l,s+t<,/g—1and

sqk—l - (s + t)qk”2 - qk—a +1<d< sqk—l - (s+ t)qk_2.
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