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Abstract

Sierpiniski graphs S(n, k), n,k € N, can be interpreted as graphs of
a variant of the Tower of Hanoi with k > 3 pegs and n > 1 discs.
In particular, it has been proved that for k = 3 the graphs S(n, 3)
are isomorphic to the Hanoi graphs H. In this paper the chromatic
number, the diameter, the eccentricity of a vertex, the radius and
the centre of S(n,k) will be determined. Moreover, an important
invariant and a number-theoretical characterization of S(n,k) will
be derived. By means of these results the complexity of Problem 1,
that is the complexity to get from an arbitrary vertex v € S(n,k)
to the nearest and to the most distant extreme vertex, will be given.
For the Hanoi graphs HF some of these results are new.
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1 Introduction

Graphs S(n, k), n,k € N, have been introduced for the first time in [8] as
a two parametric generalization of the Hanoi graphs and named Sierpinski
graphs in [9)], since their introduction was motivated by topological studies
of certain generalizations of the Sierpinski gasket [11, 12, 13]. The graphs
S(n,k), n,k € N, are defined as follows: The vertex set is {1,2,...,k}"
and two different vertices u = wjus...up = (u1,u2,...,Uy) and v =
NV2...V, = (v1,Vq,...,u,) are adjacent if and only if there exists an
index h € {1,2,...,n} such that
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(i) wg=wv,fort=1,...,h-1,
(i) un # vn;
(iii) ue=vhanduv=uy, fort=h+1,...,n.
As an example the Sierpiriski graphs S(3,3) and S(2,4) together with
their corresponding vertex labelings, are shown in Fig. 1.

$(3,3) $(2,4)

Figure 1: Sierpinski graphs S(3,3) and 5(2,4)

For any n € N, S(n,1) is isomorphic to the one vertex graph K, and
S(n,2) is isomorphic to the path graph P. on 27 vertices. As pointed
out by Hinz [6] S(n,2) is also isomorphic to the state graph of the Chinese
rings puzzle with n rings (also known by the French word baguenaudier).
Further, it has been proved that, for any n € N, S(n, 3) is isomorphic to
the Hanoi graph H3 with three pegs and n € N discs (cf. 8, Theorem 2|)
and, more generally, that S(n, k) is isomorphic to the graph of a variant of
the Tower of Hanoi called switching Tower of Hanoi (cf. (8, Theorem 1]).
Finally, for any £ € N, S(1,k) is the complete graph K} on k vertices.
(Alternatively, the edge-sets of S(n,k), k € N, can be defined recursively
as follows:

E(S(1,K)) = {{i, 3} ind € (1,2, k}, i # 5},
and for alln € N
E(S(n+1,k)) = {{zu, w}|ie {1,2,...,k}, u,vadjacent in S(n, k)}
Vi ggi- i} {2,k e {1,2,...,k},i;éj}.)

A vertex of S(n,k) of the form ii...i, ¢ € {1,2,...,k}, will be called
an extreme vertex of S(n, k), the other vertices will be called inner. The
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degree of the extreme vertices is k — 1, while the degree of the inner vertices
is k. In S(n, k) there are exactly k extreme vertices (in S(n,3) they corre-
spond to the perfect states of the Tower of Hanoi with n discs) and, since
|S(n, k)| = |{1,2,...,k}"| = k", k™ — k inner vertices. Therefore, S(n,k)
has exactly 3 (k(k — 1) + (k" — k)k) = %(k” —1) edges. (Note that since
S(n + 1,k) consists of k copies of S(n, k) connected by only an edge each
two copies, that is the k copies of S(n, k) are connected by (’;) edges, and
since S(1, k) = K} the number of edges |E(S(n, k))| of S(n, k) can also be
derived by the recurrence relation |E(S(n + 1, k)}| = k|E(S(n, k))] + (';),
n > 1, and |E(S(1,k))| = (%) with the solution |E(S(n,k))| = &(k" — 1)
for all n,k € N))

Some properties of the graphs S(n, k) have been established in [8]. So
it has been proved that there are at most two shortest paths between any
two vertices of S(n, k) (8, Theorem 6] and a formula for the distance of
two arbitrary vertices of S(n, k) has been given ([8, Theorem 5]). Further,
it has also been shown that for any n > 1 and any & > 3 the graphs
S(n, k) are Hamiltonian [8, Proposition 3] and in a recent paper [10] Klavzar
and Mohar have studied the crossing numbers of the Sierpinski graphs
S(n,k) and their regularizations S*(n,k) and S*+(n,k). Finally, since
the Sierpiniski graphs S(n, k) are basically iterated complete graphs on &
vertices with n iterations they have been used to create a perfect one error
correcting code [2, 7).

An interesting conclusion due to an observation by Danielle Arett (cf.
(1] and (3, Theorem 4]) in connection with the Hanoi graphs H withp > 3
pegs and n > 1 discs can be drawn from the vertex labeling, namely that
for two adjacent vertices u = ujus...Un and v = 1V2... Uy, it is u, # vp.
Defining the function

c:{1,2,...,k}" — {1,2,...,k}, wus...up+— up,

we obtain a vertex colouring for S(n, k). This means, that the chromatic
number of S(n, k) is equal to k, since the complete graph S(1, k) = K is
a subgraph of S(n, k).

In this paper we study several additional metric properties of the graphs
S(n,k). First of all we will determine the diameter, the eccentricity of a
vertex, the radius and the centre of S(n, k). Further, we will derive an im-
portant invariant and a number-theoretical characterization of the graphs
S(n, k). In particular, for k = 3, we will obtain some old and new prop-
erties of the Hanoi graphs HF. Finally, a finer analysis of the complexity
of Problem 1 will be given. (As for the Tower of Hanoi, Problem 1 is to
get in the least possible number of moves from an arbitrary vertex to an
extreme vertex, while Problem 0 is to get in the least possible number of
moves from an extreme vertex to another extreme vertex.)
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2 Characterization of S(n, k)

Before proceeding let’s recall some definitions from graph theory. Let G be
a simple connected graph, then for all u,v € V(G) the distance dg(u,v)
between u and v denotes the minimum number of edges for paths joining
u and v. For a fixed vertex v € V(G) the integer

ec(v) := max{dg(u,v) | v € V(G)} (2.1)

measures the distance from v to the vertex {(or the vertices) most remote
from v and is called the eccentricity of the vertex v. The integer

rad(G) := min{eg(v) | v € V(G)} (2.2)
is called the radius of the graph G and
diam(G) := max{ec(v) | v € V(G)} = max{dg(u,v) | u,v € V(G)} (2.3)

is called the diameter of the graph G. Further, a vertex is called a central
vertez of G if

ec(v) = rad(G) (2.4)
and the subgraph induced by all central vertices
C(G) := {v € V(G) | e¢(v) = rad(G)} (2.5)

is called the centre of G. In the sequel we will apply repeatedly the following
result proved in [8, Lemma 4]. (Note that from now on, v € §(n, k) stands
for v € V(S(n, k), d(u,v) for ds(n k)(u,v) and e, & (v) for egen k) (v).)

Lemma 2.1 Let v = v1v2...v, € S(n,k), n,k € Nand i € {1,2,...,k},
then

d(v,ii...%) = (Puy,iPvai - - - Pon,i)2s (2.6)
where
R B PR X 5 A
Pij = 0, i=j

and the right-hand side is a binary number, rhos representing its digits.

Using Lemma 2.1 we can determine immediately the diameter of S(n, k).
Corollary 2.2 Let v := lvy...vn, w := lwa... w, be vertices of S(n,k)
andl € {1,2,...,k}. Then

(i) d(lva...valwy ... wy) =d(ve.. . Up,wa...wy,), n> 1.
(i)
VYneN: diam(S(n,k))=2"-1, k>1. 2.7
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Proof. Obviously, d(lve...v,,lws ... wn) < d(va...Vp,wa...wy), since a
path from vy ... v, to wo ... w, is also a path from lvy ... v, to lws ... wy,.

By repeated use of this inequality the formula (2.7) can be proved by
induction on n. (Note that diam(S(n,1)) = 0, n > 1, since S(n,1) is
isomorphic to the one vertex graph K;.)

The case n = 1, k > 1, is obvious, since S(1, k) is isomorphic to the
complete graph K with diam(K;) = 1.

Let (2.7) be true for » > 1 and let v,w € S(n + 1,k). If v; = wy,
i.e. if v and w lie in the same copy of S(n,k), we obtain by induction
assumption d(v,w) < d(va...Un41,W2 ... Wny1) < 2" — 1 and, therefore,
d(v,w) <27+ — 1. If v; # wy, i.e. if v and w lie in two different copies of
S(n, k), we obtain by induction assumption

d(v,w) dv,mywy ... w1) + 1+ d(wv; ... v, w)

d(ve...vps1,wr...w1) +14+dvy...v1,We.. . Wpy1)
@ -1)+14(@2"-1)=2" —1.

INIA A

Hence, diam(S(n,k)) < 2" — 1, for all n € N and k£ > 1. Choosing for
v and w two different extreme vertices, we obtain by Lemma 2.1 that the
upper bound 2" — 1 will be attained and this proves (2.7).

It remains to prove part “>” of (i). This is a consequence of the
fact, that any path from lv,...v, to lws...w, which is not completely
inside the copy of S(n — 1,k) consisting of all vertices beginning with [,
le{1,2,...,k}, contains at least a subpath between two different extreme
vertices of a copy of S(n—1, k). By Lemma 2.1 such a subpath has a length
equal to 2"~! — 1 and, consequently, d(lva...vn, lwe ... wy) 22771 -1 2>
d(va...vy, w2 ... w,), where the last inequality follows by (2.7). m]

We shall now determine the eccentricity of an arbitrary v € S(n, k). It
turns out that it is sufficient to consider only the extreme vertices.

Lemma 2.3 Let n,k € N and v € S(n, k), then
en,k(v) = max{d(v,ii...1) | i € {1,2,...,k}}, (2.8)
where ii...1, i € {1,2,...,k}, are the k extreme vertices of S(n, k).

Proof. Let v € S(n, k), then we have to show that for all w € S(n, k) there
is an extreme vertex ii...7 € S(n, k) with d(v,w) < d(v,#...4). This will
be proved by induction on 7.

The case n = 1 is clear, since S(1,k) is isomorphic to the complete
graph K with e; x(v) =1 for each v € S(1,k).

Now let the assertion be true for n > 1 and let v,w € S(n+1, k). Then
either v and w lie in the same copy of S(n, k), i.e. v; = w,, or v and w lie
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in two different copies of S(n, k), i.e. v; # w;.

If v1 = w;, then there is by induction assumption an extreme vertex
ii...1 € S(n,k), i € {1,2,...,k}, such that by Corollary 2.2 we have
dv,w) = d(va... Unt1,Wo .. . Wn41) L d(V2... . Vny1,88...17) < d(v,ii...10),
where the last inequality follows by Lemma 2.1 and the last ii...7 is an
extreme vertex of S(n + 1, k).

If v; # w, then it is d(v,w) < d(v,vyw: ... w1) + 1 +d(wyvy ... v, w). By
Corollary 2.2 and by induction assumption we obtain

dunvy...v,w) = dvn...v,we. . Wpt1) Sd(vr. . v, Wy .. wy)
= d(uuvl...vl,untvl...un)

and, therefore, d(v,w) < d(v,viwy ... w1)+1+d(wvy... v, wywy ... w).
The right-hand side is equal to d(v, wyw; ... w:) (see (8, Lemma 4] and its
proof) and this completes the proof. o

Note that the diameter is the same for all £ > 1 and that it will be
attained not only by two extreme vertices, but also by an extreme vertex
i...1, 1 € {1,2,...,k} and the vertices v = v1v2...v, With v; # ¢, j €
{1,2,...,n}. The next corollary shows that there are in all (k—1)" vertices
with d(v,éi...1) =2" - 1.

Corollary 2.4 Let n,k € N, i € {1,2,...,k} and ! € {0,1,...,2" — 1},
then

l{v € S(n,k) | d(v,4i...i) = 1}| = (k —1)P® (2.9)
and
2"-1
(k= 1)P0 = kn, (2.10)
1=0

where (1) is the number of non-zero binary digits of L.

Proof. By (2.7) d(v,ii...1) =1 € {0,1,...,2" — 1} and by Lemma 2.1
d(v,ii...7) = (Pv,,iPus,i - - - Pua,i)2- Hence, we have exactly k — 1 possibil-
ities for each digit 1 in the binary representation of I. The total number
is therefore (k — 1)), thus proving (2.9). Statement (2.10) now follows
from (2.9) by summing up all ! from 0 to 2" — 1 and noting that S(n,k)
has exactly k™ vertices. m]

Property (2.9) is well-known for the Tower of Hanoi (k = 3) (cf. [5,
Proposition 5]) and goes back to Glaisher [4], while property (2.10) shows
that (k — 1) /k", 1 € {0,1,...,2" — 1}, is a discrete (probability) distri-
bution, which may be called in his honour Glaisher distribution.
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An interesting invariant of S(n, k) is a generalization of the invariant of
the Hanoi graphs H 2 S(n, 3), namely

Yve Hy : d(v,11...1)+d(v,22...2) +d(v,33...3)=2- (2" - 1),

where 11...1, 22...2 and 33...3 are the three perfect states of H} [14,
equation (2.1)].

Proposition 2.5 Let n,k € N, v € S(n,k) and 11...1, 22...2, ...,
kk...k be the extreme vertices, then

k
> d(w,ii...i) = (k—1)- (2" - 1). (2.11)

Proof. Since for each j € {1,2,...,n} it is v; € {1,2,...,k}, only one of
the k digits pu; 1, Pv; 2+ - - s Puj,k i 0 and the others k — 1 are equal to 1.
Hence, we have to sum &k — 1 times the binary number (11...1)2 =2" -1
and this is exactly the claimed assertion. m]

An immediate consequence of (2.11) is the determination of the aver-
age complexity of Problem 1, i.e. the determination of the mean vertexr
deviation of an extreme vertex defined for all ¢ € {1,2,...,k}

Pni(ii... 1) = |S(: vesz("k)d(v,zz

Corollary 2.6 Let n,k € N and ii...%, i € {1,2,...,k}, be an extreme
vertezx of S(n, k), then

k-1
pm i 8) = ==+ (2" 1) (2.12)
with the standard deviation
O i(ii...i) = % ko1 (4» —1). (2.13)

Proof. By Proposition 2.5 we obtain by summing up all v € S(n, k) and
noting that by symmetry the k sums are all equal

k
kY dv,ii...q) > (Zd(v,jj-nj))

vES(n,k) veS(n,k) \Jj=1
= Y (k-1 -1)=(k-1)-(2"-1)-k"
vES(n,k)
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and hence

. 1 k-1 .
P k(i . .4 ——n Z d(v,ii. 2)=T-(2 -1).
veS(n,k)
To prove (2.13) we note that the standard deviation is by definition

Onk(ti...7) = ,/Vn,k(ii...i , (2.14)
where

Vo r(it...1) = |S(n, ] Z (d(v,di...5) — pn k(i .. ))

ve€S(n,k)

= = Y P, i) = (U glii. .. i))?

vES(n,k)

is the variance of the distance to an extreme vertex. Hence, it remains to
determine the mean square vertez deviation g 3¢ 5(n k) @2 (v, 40 . .. ) of
an extreme vertex.

Let ak(n) := 3¢ s(n ) @ (v 8% . . . 3), then by (2.12)

ak(n+1) = Y. d(vii...d)
vES(n+1,k)
= a(m)+k-1) Y. (dii...i)+2")°
veS(n,k)
= ak(n)+(k—1)-( Y P(vii...i)+2-2"
veS(n,k)
Y dwii.)+ S 4")
vES(n,k) vES(n,k)

= kar(n)+2"*1. (2" -1)-(k-1)2 k" 44" (k1) k"

with the initial value a;(1) = k — 1, since S(1, k) is isomorphic to K. The
solution of this recurrence relation is given for all n,k € N by

n—1

ak(n) = Z ki{zn—i . (271-1-'1' _ 1) . (k _ 1)2 . kn—2—i +
=0
gn—1-i, (k-1)- kn-l—i}

n—1

= 2. (k.‘ _ 1)2 k2. 2211—1—1~ . (2n-—1—i 1)+
i=0
n—1 )
(k _ 1) i St 24:1—1*1’

=0
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that is,

ax(n) = k—;—1~k""2-{(3k—2)-4"—6-(k—1)-2"+3k—-4} (2.15)

and therefore by (2.12)

ak(n) k-1 on _ 2 _ k-1 .
4) = =@ -1} =@ -,
Finally, by (2.14) we obtam (2.13). o

Vo k(..

Note that in view of Corollary 2.4 formula (2.12) also gives the first
moment

2" -1

k-1 -1
ZL( kn) =@ -1, (2.16)
1=0

whereas (2.15) gives the second moment

2n -1
Z 2. (k—l)ﬂ(l) k_zl.{(3k_2).4"—6-(k—1)~2“+3k—4} (2.17)

of the Glaisher distribution.

For k = 3 formula (2.12) gives the average length of shortest paths
from an arbitrary regular state to a perfect state (cf. [5, Corollary 1]) of
the Hanoi graphs H} and (2.13) gives its standard deviation, a result that
has been given for the first time by Scarioni and Speranza [15].

By Proposition 2.5 and Corollary 2.2 we see that for each v € S(n, k)
the k—tuple (d(v,11...1),d(v,22...2),...,d(v,kk...k)) is a solution of
the linear Diophantine equation

T1+ T2+ +re=(k-1)- (2" -1)

in k > 1 variables z,,%3,...,zx € {0,1,...,2" — 1}. The converse is not
true, since for instance for k = 3 and n = 3 the triple (2, 6, 6) is a solution of
the above equation, but there is no v € S(3, 3) such that d(v,414;...4;) = 2,
d(v,i2i2...492) = 6, d(v, 313 ...93) = 6, 119213 a permutation of {1,2,3}, as
you can see in Fig. 1. Moreover, the above equation has the same number
of solutions as
th+to+--F+t=2"~1,

with 21,22,...,t € {0,1,...,2" — 1}, (consider the transformation ¢;
2" —1-1;, 1 € {1,2,...,k}), namely (2n"kl_’_*'1’°_1 = (2"""c % > k" =
|S(n, k)| for all k > 3 and n > 2.

A necessary and sufficient condition for the case k = 3, i.e. for the Tower
of Hanoi with 3 pegs and n discs, has been communicated some years ago
to the author by D. Singmaster (16]. Its formulation can be found in [14,
Theorem A8].
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Theorem 2.7 Let n,k € N and z; := d(v,8i...1) = (py,,iPvasi -+ Poa,i)2
i€ {1,2,...,k}, ve S(n,k). Then (z1,22,...,2x) € {0,1,...,2" —1}* is
a solution of
Tyt ze+- -tz =(k-1)-(2"-1) (2.18)
and
Poji + Pus2+F Py k= k=1 (2.19)
forall je {1,2,...,n}.
Conversely, let (z1,z2,...,7x) € {0,1,2,...,2" — 1}* be a solution
of (2.18) with the binary expressions z, = (1,1T2,1...Tk,1)2s o0y Tk =
(T1,kZ2k - - - Tk k)2 satisfying the condition (2.19), i.e.

Tj1+ T2+ -+ zTir=k—1

for all j € {1,2,...,n}. Then there exists exzactly one vertex v € S(n, k)
with d(v,11...1) = z1,d(v,22...2) = a3, ...,d(v,kk ... k) = x). This v is
given for each j € {1,2,...,n} byv;:=i ifx;; =0,72€ {1,2,...,k}. O

Proof. Let v € S(n, k) and z; = d(v,11...1), 25 = d(v,22...2),...,21 =
d(v,kk . ..k), then, by Proposition 2.5, (21, Z2, - . . , Tx ) is a solution of (2.18)
and since v; € {1,2,...,k} exactly k — 1 of the values py; 1, Pv;,2,- -+ Pu; k
are equal to 1 for all j € {1,2,...,n}. This means that equation (2.19) is
fullfilled.

Conversely, let (z1,z2,...,zx) € {0,1,...,2" — 1}* be a solution of
(2.18) such that writing out the binary expressions z, = (1,121 .. . Tk,1)2,
Zo = (21,2722 .. . Tk,2)2, - - +» Tk = (T1 T2,k - - - T,k )2 We have z; ) + x50 +
---+zjr =k—1forall j € {1,2,...,n}. This means that exactly one of the
digits is equal to 0. Define now for each j € {1,2,...,n} v; :=iif z;; =0,
i € {1,2,...,k}. In this way we obtain a unique v = viv2...v € S(n,k)
such that d(v,11...1) = 2,,d(v,22...2) = zo,...,d(v,kk... k) =xz,. O

Corollary 2.8 Let n,k € N, then

(i) Ezactly one value of x1,%2,. ..,z in Theorem 2.7 is even.
(i) Two of the values x1,%2, ..., Zk are equal if and only if this value
18 (11 e 1)2
(i) k — 1 of the values 1,22, ...,z are equal if and only if the re-
maining one i3 0, i.e. the vertex v € S(n, k) is equidistant from
k — 1 extreme vertices if and only if v is itself an extreme vertex.
(tv) There is no vertex v € S(n,k) equidistant to all the extreme
vertices, i.e. such that d(v,11...1) = d(v,22...2) = ..+ =
d(v, kk ... k).
(v) Lett;=2"—1-ug;,i€{1,2,...,k}, then

k
k=02 | Tt (2.20)
t=1
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Proof. (i) - (iv) follow immediately from (2.18) and (2.19). To prove
(v)let t; == 2" —1 -, ¢ € {1,2,...,k}, be the binary one’s com-
plement of z;, then by Theorem 2.7 k — 1 of the k& digits 1 — py,,1,1 —
Pu;2s---,1 — pu;ky § € {1,2,...,n}, are equal to 0. Hence, in the binary
representation of the k& numbers %,,%3,...,¢ there are in all n digits 1.
For n < k there is, by Theorem 2.7, at least an integer i € {1,2,...,k}
with ¢; = 0 and (2.20) is true. For n > k the distribution of the first
k digits 1 leading to the least power of 2 divisor of l'[f=1 t; is obviously
(-----. 1o, (...... 10)2, (...... 100)z,...,(...100...0)2, where the last bi-
nary number has k — 1 final digits 0. This means that 2! .22...2k-1 =
21+2+-+(k=1) = gk(k=1)/2 jg ag asserted, a divisor of [I5_, t;. 0

Note that from part (i) of the above corollary one can only draw the
conclusion that exactly k£ — 1 of the values ¢,ts,...,%; are even, that is
2k-1 ig a divisor of ]'[f=1 t;. Assertion (2.20) is, indeed, a stronger property.

3 The Radius and the Centre of S(n, k)

In this section we shall determine the radius and the centre of S(n, k).
Theorem 3.1 Let n,k € N and for n > k:
C(n,k):={ze€Sn,k)|z=21... 2612k ... 2k, {21, .., 2} = {1,..., K} }.
Then

rad(sn ) = (24 @ -0 = { 3k ey, nSk
(3.1)
)
csmm={ Znth n3 (3.2
The centre of S(n, k) has
c@mi={ g n5; (5.9
vertices and
k. (gn_ _
Eesmp={ f5 " 25k TN e

edges. In particular, for n > k > 1, the centre of S(n,k) is a I-regular
graph consisting of k!/2 disconnected edges.
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Proof. The case k = 1 is clear, since S(n,1) is for any n € N isomor-

phic to the complete graph K on one vertex and no edges and, therefore,

rad(S(n,1)) = 0 for any n € N. Since C(n,1) = S(n,1) = {11.. 1},
n

n € N, the centre C (S(n,1)) = S(n,1) has 1 vertex and no edges.

Let £ > 2 and assume n < k — 1, then since the label of a vertex has
length n and & > n values are available, there is always an extreme ver-
tex éi...4, ¢ € {1,2,...k}, with d(v,4...4) = (11...1) = 2" — 1 for any
v € S(n,k). Hence, by Lemma 2.3, rad(S(n,k)) = 2" — 1. Forn > k
we have by Lemma 2.1 that for any v € S(n,k) at least one value of
d(v,11...1),d(v,22...2),...,d(v,kk... k) begins with (llk...l...)z and

-1
by Lemma 2.3 the same is true for the eccentricity of ». The least eccen-
tricity one can realize is

(11...10...0)2 = 2" 14 2n"2 ... 4 on k!
k-1 n—k+1
= 2n Rt (k=2 4 ok=2 4 ... 1241)
2n—k+1 . (2k—1 _ 1)’

that is rad (S(n, k)) = 2"~%+1. (2¥=1 — 1) and this proves (3.1).

To prove (3.2) assume n < k — 1, then by Corollary 2.2 and by (3.1)
we have rad(S(n,k)) = 2" — 1 = diam (S(n, k)) and this relation means
that for any v € S(n, k) the eccentricity of v is equal to the diameter and
C (S(n,k)) = S(n, k).

Now let n > k, then we have to solve the equation enk(v) = 2nk+1.
(2k-1 —1). By Lemma 2.1 it is for any z € C(n,k): d(z,zrzk...2c) =
(11...100...0)p = (2%~ — 1) - 2"*+! and d(z,ii...i) < d(2, 2k2k... 2x)

k=1 n-k+l
for i € {1,2,...,k}\{2«}, since at least one position of z1z3...2x_; is
equal to 7 and thus p;; ; =0 < p;; ;, = 1,7 € {1,2,...,k—1}. This means
that C(n,k) € C(S(n,k)). To show the converse inclusion C(S(n,k)) C
C(n,k), let 2 := z125...2k-12k2k+1... 2n € C(S(n,k)), then by defini-
tion and by (3.1) we have enk(z) = rad(S(n k)) = (11 .100...0)o, i.e.

k 1 n-k+1

by Lemma 2.1 max{d(z,ii...7)|i € {1,2,...,k}} = (11 .100.. 0)
k 1 n—k+1
Hence, 2y = 241 = -+ = 2z,. From p;, , = 1 we have z; # 2z for

l e {1,2,...,k = 1}. Moreover, {21,22,...,2x} = {1,2,...,k}, since
otherwise we would have d(z,jj...j) > 2" -1 > rad(S(n, k)) for j €
{1,2,...,k1\{21, 22, ..., z}. This means C(n,k) = C(S(n, k)), thus prov-
ing assertion (3.2).

Statement (3.3) follows immediately from (3.2).
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Finally, for n > k, 2 = 2122... 25—12k2k . . . 2 € C(S(n, k)) has exactly
one adjacent vertex in C(S(n, k)), namely 2122... 2x25—12k-1 . . - Zk—1, and
since by (3.2) C(S(n,k)) = S(n,k) the centre of S(n,k) has, for n < k,
k(k™ — 1)/2 edges, thus proving (3.4). O

An immediate consequence of Theorem 3.1 and Corollary 2.2 is the
following
Corollary 3.2 For allk > 2

rad(S(n,k)) 1
A, Gam (S, k) LT BT 39)

In particular, for k =2,3,

rad(S(n,2)) 1 rad(Hy) 3
. Giam (S(n,2)) ~ 2'  nveo diam (HP) — 4 (36)
Moreover,
. . rad(S(n,k)) . . rad(S(n,k)) _
dm i am B k) — e A Tam Sk~ D
Theorem 3.1 asserts that the greatest value of zi1,xzs,...,Zx, where

(z1, %2, ..., xr) satisfies the conditions (2.18) and (2.19), is at least equal
to [2n~k+1. (2k=1 _1}|. For the least value of z,,zo, ...,z we have the
dual statement

Corollary 3.3 The least value of z1,%2,. .., Zr, where (z1,Z2,...,Tk) sat-
isfies (2.18) and (2.19) is at most equal to (011...1); =2""1 — 1.

Proof. The least number must begin with 0 and in order to get the great-
est value we must have (011...1); = 2"~! — 1. (Note that this value is
indipendent of k.) m|

Corollaries 2.2, 2.6 and 3.3 as well as Theorem 3.1 give a complete
account of the complexity of Problem 1, i.e. the complexity of the distance
of an arbitrary v € S(n, k) to the nearest extreme vertex and to the most
distant extreme vertex as well as the average distance of v € S(n,k) to a
prescribed extreme vertex and can be formulated as follows.

Corollary 3.4 Let v € S(n,k), n,k € N, be given. Then to reach from v
the nearest extreme vertex one needs at least 0 moves and at most 2"~ —1
moves, whereas to reach the most distant extreme vertex one needs at least
|27—*+1. (2k=1 — 1}| moves and at most 2" — 1. Moreover, one needs in

average "’% (2™ — 1) moves to reach a preassigned extreme vertex from v.
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4 The Special Cases S(n,2) and S(n,3)
In this section we shall have a closer look at the special cases k = 2, 3.

Case k=2
For any n € N, S(n,2) is isomorphic to the path graph Ps». By Theo-
rem 3.1itisforalln € N

rad (S(n,2)) = 2"t (4.1)
and
C(S(n,2)) = {122...2,211...1} (4.2)
n—-1 n-1

with 2 vertices and 1 edge.
Corollary 3.4 now reads as follows:

Let v € S(n,2) & Pyn, n € N, be given, then to reach the nearest
extreme vertex one needs at least 0 moves and at most 2"~! — 1, while to
reach the most distant extreme vertex one needs at least 2*~! moves and
at most 2" — 1 moves. In average one needs § - (2" — 1) moves to reach a
preassigned extreme vertex from v.

ase k = 3
For any n € N the Sierpiiiski graphs S(n, 3) are isomorphic to the Hanoi
graphs H} with 3 pegs and n discs. By Theorem 3.1 it is for all n € N

n - 2""1, n<3
rad (i) = 322 = { T 05 RS
HE, n<3
., {2311...1,3211...1,1322...2,
C(Hé)= n—-2 n-2 n—

2
3122...2,1233...3,2133...3}, n=>3

n—2 n—2 n-2

(4.3)

with gn 3
ny| , n<
capn={§ 53
vertices and

d(qn _
|E(C(H§’))l={ 367D, ned

edges, namely {2311...1,2133...3}, {3211...1,3122...2} and
{1322...2,1233...3} for n > 3 and E(H}) for n =1, 2.
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Using the standard Hanoi notation, where the pegs are denoted by 0,1,2,
the discs by 1,2,...,n and where for instance the state 10210 means that
disc 1 is on peg 1, disc 2 on peg 0, disc 3 on peg 2, disc 4 on peg 1 and disc
5 on peg 0 we have

Corollary 4.1 Foralln € N

n n— 2" — 1, n<3
rad (HY) = |3-2"7%| = { 3.972 >3 (4.4)
HE, n<3
{00...010,00...020,11...101,
n e A e Nt
C(H3) = n-2 n—2 n—-2 (4-5)
11...121,22...202,22...212}, n>3
n—2 n-2 n-2
with gn
| _ , n<3
capi={ 5 753 (46)
vertices and 3 (3% — 1) 3
n - 3" —-1), n<
B =1 1 - (@7)

edges, i.e. C(HY) consists of those states, where discs 1 to n — 2 all stay
on disc n in an arbitrary peg, while disc n — 1 is threaded on another
peg, and the edges are {00...010,00...020}, {11...121,11...101} and
{22...202,22...212} for n > 3 and E(HZ) forn=1,2.

Proof. This is a direct consequence of [5, Theorem 3]. o
Corollary 3.4 now reads as follows:

Let v € HE, n € N, be given, then to reach the nearest perfect state one
needs at least 0 moves and at most 2%~ ! —1, while to reach the most distant
perfect state one needs at least [3-2"~2| moves and at most 2" — 1 moves.
Finally, one needs in average % - (2™ — 1) moves to reach a preassigned
perfect state from v.
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