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Abstract

A connected graph G = (V, E) is said to be (a,d)- antimagic, for
some positive integers a and d, if its edges admit a labeling by all
the integers in the set {1,2,...,|E(G)|} such that the induced vertex
labels, obtained by adding all the labels of the edges adjacent to each
vertex, consist of an arithmetic progression with the first term e and
the common difference d. Mirka Miller and Martin Bada proved
that the generalized Petersen graph P(n,2) is (23F2, 3)-antimagic
for n =0 (mod 4), n > 8, and conjectured that P(n, k) is (3%t2,2)-
antimagic for odd n and 2 < k < % — 1. In this paper, we show
that the generalized Petersen graph P(n,2) is (2%t2, 2)-antimagic
for n=3 (mod 4),n > 7.

Keywords: (a,d)-antimagic labeling, Petersen graph, vertex la-
beling, edge labeling

1 Introduction

Hartsfield and Ringel[2l introduced the concept of arithmetic graphs. An
arithmetic graph G is a graph whose edges can be labeled with the integers
1,2,...,|E(G)| so that the sum of the labels at any given vertex is different
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from the sum of the labels at any other vertex, in other words, no two
vertices receive the same weight, where the weight of a vertex is defined
in an obvious way. Hartsfield and Ringel conjectured that every tree other
than K is antimagic and, more strongly, every connected graph other than
K, is antimagic.

Bodendiek and Walther!®! defined the concept of an (a,d)-antimagic
graph as a special case of an antimagic graph. Let G = (V, E) be a finite,
undirected and simple graph with vertex set V(G) and edge set E(G), and
let p = |V(G)| and q = |E(G)| be the numbers of vertices and edges of G,
respectively. A connected graph G = (V, E) is called (a,d)- antimagic if
there exist positive integers a,d and a bijection f : E — {1,2,...,q} such
that the induced mapping gy : V — N, defined by gs(v) =3 f(uv), uv €
E(G), is injective and gs(V) = {a,a+4d,...,a+ (p — 1)d}. In this case f
is called an (a,d)-antimagic labeling of G.

Bodendiek and Walther!4! proved that some graphs (including even cy-
cles, paths of even order, stars, C'(k) C(k), K3 3 and a tree with odd order
n 2 5 and having a vertex adJacent to at least three end vertices) are not
(a,d)-antimagic. They also proved that Pay, is (k, 1)-antimagic; Cay is
(k +2,1)-antimagic; if a tree of odd order 2k + 1(k > 1) is (a, d)-antimagic,
then d = 1 and @ = k; if K4 (k > 2) is (a,d)-antimagic, then d is odd
and d < (2k + 1)(4k — 1) + 1; if Kog+q (k > 2) is (a,d)-antimagic, then
d < (2k+1)(k—1)+1. For special graphs called parachutes, (a, d)-antimagic
labelings are described in [5, 6).

Let n and k be integers such that n > 3, 1 < k < n and n # 2k. For
such n, k, the generalized Petersen graph P(n,k) is defined by

V(P(n,k)) = {us,vi|]l <i<n},
E(P(n, k)) = {uiu,-“, Uiy, v,-v,-.,.kll S ] S n}

where and in the sequel the subscript of a vertex is computed modulo n
and taken the least positive residue of n, in other words, we take u, and
vy, instead of ug and vy, respectively.

Since P(n,k)’s form an important class of 3-regular graphs with 2n
vertices and 3n edges, it is desirable to determine which P(n, k)’s are (a, d)-
antimagic.

Bodendiek and Walther!”) conjectured that P(n,1) is (—+— 1)-antimagic
for even n and P(n,1) is (3%t2,2)-antimagic for odd n. These conjec-

tures were proved in (%, where it was also shown that P(n,1) is (3248, 3)-
antimagic for even n.

Mirka Miller and Martin Baga ) proved that P(n,2) is (32i8 3).
antimagic for n = 0 (mod 4),n > 8 and conjectured that P(n, k) is (—‘*‘— 2)-
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antimagic forodd n and 2< k< § - 1.
The main result of this paper is the following theorem.

Theorem 1 P(n,2) is (332, 2)-antimagic for n =3 (mod 4) and n > 7.

2 Proof of Theorem 1

We consider two cases:
Case 1: n=7 (mod 8), n> 7.

For n = 7, an edge labeling of P(7,2) is shown in Figure 2.1.

Figure 2.1 : The (233, 2)-antimagic labeling of the graph P(7,2).

According to the definition of (a,d)-antimagic labeling, it is clear that
this assignment provides a (22t2, 2)-antimagic labeling for P(7,2).

For n > 15, we define the edge labeling f of P(n,2) as follows:
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Fuimyu;)

F(uiv;)

flviovi) =

<

ifl<i<n-2andi=1 (mod 2),
ifi=mn,

i
5n2-3
Sntl i if2<i<n-1andi=0 (mod?2),

n+2-i fl<i<n—2andi=1 (mod 2),

3n—6
2n—1

Sn—1 +1i
3n-3 _I_i

3n
5"2—5+i
n+1

2 -
25 4
n+i
3n-2
In—-4
n+1—-7

ifi=n
if2<i<n-3andi=0 (mod 2),
fi=n-—1,

if15i<—andz:1(mod2),

if 22 <i<n-2andi=1 (mod 2),
ifi=n,

ifi=2,

if 6 <i< 234 (n#15) and i = 2 (mod 4),

1fz--—2-§.

if 222 <i<n-1andi=2 (mod 4),
1f4§i$”77 and ¢ =0 (mod 4),

if i = =&l

1fi="2—ﬁ,

f2ll <i<n-3(n#15)andi=

0 (mod 4).

For two integers a and b with a < b, by [a,b] we denote the set of
consecutive integers from a to b. Set

A= {f(uiu)|]l < i< n},
B = {f(uiv;) |1 < i < n},
C= {f(vi_gv,-)|1 S i S n}.

Then we have that A = A; U A; U A3, where

Ay

| | O 1 |

{f(ui—1w;)|1 £i<n—2and i=1 (mod 2)}
{i|]1<i<n-2andi=1 (mod 2)}
{1,3,...,n—
{F(uimrug)li = n} = {3572i = n} = {3873},
{f(uicaus)|2<i<n-1andi=0 (mod 2)}
{—2—1'—+z|2<z<n—1andz_0(mod2)}
{_'i'_+24‘_+4 __'.i'_.+n ]_—5“ 1}’

2},
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B = B, U By U B3 U By, where

B, = {fuw)|l<i<n-2andi=1 (mod 2)}
= {n+2-ill<i<n-2andi=1 (mod 2)}
= {n+1n-1,...,4}={4,6,8,...,n+1},
By = {f(ww)li=n}={3n-6},
By = {f(uiv;)]2<i<n-3andi=0 (mod 2)}
= {2n-i2<i<n-3andi=0 (mod 2)}
= {2n-2,2n—-4,...,n+3}={n+3,n+5,...,2n — 2},
By = {flww)li=n-1}={n},

and C = U:;l C;, where

{2n - 7+z|ﬁi<z<n 3 and i = 0 (mod 4)}
{5"“+25"‘1+6 .,3n —10}.

C = {fwiew)1 <i< 23l andi=1 (mod 2)}
= {5”"1+z|l<z<ﬁ‘—andz_1(mod2)}
— {5n—1 +1, 5n—1 +3,. 5n-1 + n—l}
C, = {f(vz—Z'Uz)l'i' <i < n— 2 and i =1 (mod 2)}
= {4+ <i<n-2andi=1 (mod 2)}
= {2n,2n+2,...,5—"2‘—7},
Cs = {f(vi-2w)li =n}={2}.
Ci = {f(vi-2w)li =2} = {3n},
Cs = {f(v, 2v3)|6 < i < 231 and 4 = 2 (mod 4)}
= {58 +z|6<z<“‘21andz-2(mod4)}
= {Sn— +4 5n—1 +8 5n-5 + a1l n—ll =3n — 8}
Co = {f(wsvili= %) = (3nfd); = 53} _ (ms1)
C: = {flu- 2v,)|-—'t—<z<n—1andz=2(mod 4)}
= {81+ <i<n-1andi=2 (mod 4)}
= {n+2n+6 L2l +n—1= 324l 2},
C: = {flviaw)|d <i < 2T andi=0 (mod 4)}
= {n+id<i<nzt andz_O(mod4)}
= {n+4,n+8,.. ,n+"' = 3nkl _ 43,
Co = {f(vicou)li=
= {3n-2i= -—'t—} {3n -2},
Cio = {Fwicaw)li = 22} = {3n — 4li = 22} = {3n — 4},
Cn = {flvi_ 2v)|1‘—'ii<z<n 3andz_0(mod4)}
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It is easy to see that

AlUB,UC3U By
={1,3,...,n-2}u{n}uU{2}U{4,6,...,n+1} = [1l,n +1],

C;UC3UCgUA3UB3UAUC,
=[{n+2,n+6, 25l 4n—1=324 2}
U{n+4,n+8,...,n+ 257 =30kl _4}
u{%ﬂ}u{a—;'—+2,3"2+1+4,. 3kl 4p - 1—°"*1}]
U[{n+3n+5 ,2n — 2}U{2n,2n+2,...,5"2'7}U{5"2“3}]
={n+2,n+4,n+6,--- , 21 u{n+3,n+5n+7,--- 33}

= [n+2 5n—1]
and
C, UC11U32UCQUC5UC10U03
={&rl 41,5251 43, 1}u{5"-l +2,57=1 4+6,...,3n - 10}
U{3n 6}u{3n 2}u{*’""l +4,...,3n - 8}U {3n— 4} U {3n}
= [22-1 4+ 1,3n).

We thus prove that f(E(G)) = [1,3n]
Recall that for a vertex v € V(G), gs(v) = ZquE(G) f(uv). We now

prove that g;(V) = {gs(v)lv € V} = {a + 2i|i =0,1,...,2n — 1}, where
a= Snis.
For convenience, define hg(v) = }[gs(v) — a] and write
W = {hs(v)lv € V(G)}.

Then, in order to prove g¢(V) = {a + 2i[i = 0,1,...,2n — 1} it suffices to
show W = [0, 2n — 1] or equivalently [0,2n — 1] C W.

By definition we see that

hy(u;) = [f(uz—luz) + f(uittivr) + f(uivi) —a], L <i<m,
hf(vz = [f(vt—2'uz) + f(vtvt'l'z) + f(ulvl) - a] 1<i<n.

(1) For i = n — 2 we have that

hf (Un—Z)

I

% [f(vn—-aVn—2) + f(Vn-2vn) + f(un—2vn-2) — a]
(B3 +n-2)+2+4-a]=0.

(2) For 1<i<n-—2andi=1 (mod 2) we have

hy(uw;) ’%‘ [f(ui1wi) + f(uivigr) + fluivi) — a

s+ +i+1)+(n+2-i)—a| =
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which and (1) imply [0, 25] C W.
3) For2£z$n—3andz=0 (mod 2) we have

hy(ui) = L[(3BEL+49)+(E+1)+(2n—i) —a] = 2571,

which and (2) imply [0,n —2] C W.
(4) For i = 257 we have

he(v)) = L[(n+id)+8E +(@n-i)-a]=n-1,
which and (3) imply [0,n — 1] C W.
(5) For 23 <i<n—4andi=1 (mod 2) we have
he(v) = L[(3B2+4)+ (352 +i+2)+ (n+2—i) —q] = 3nt2=3
which and (4) imply [0, 32574 C W.
(6) For i = n — 1 we have
hy(vi) = L[(Bt+n-1)+(8L+1)+n—qa] =27,

which and (5) imply (0, 2271] C W.
(7) For 2413 < <n—3 and i =0 (mod 2) we have

2n4i=8  if { = 2 (mod 4)
. —_ 2, 7
hy(vi) = { £iz8  if j = 0 (mod 4)

which and (6) imply [0, 3251 C W.
(8) For i = n we have
hp(ui) = 3[(3%3)+1+(3n—6)—a] = 3572,

which and (7) imply [0, 32-2] C W.
(9) For i = 2£2, 248 we have

= 3n—7, lf — nt5
hw) = { Bt i ke
7 2
which and (8) imply (0,322 CcW.
(10) For 251 < i < 241 we have
Sncl ifi =221
h‘f(vi) = { 3n—3 ifi= i
2 2

which and (9) imply [0, 3271] C W.
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11) For 4 < i < 231 and i = 0 (mod 2) we have
D)

he(v) = a3 if { =0 (mod 4)
%)= =3 if =2 (mod 4)
which and (10) imply [0, Z2717) C W.

(12) For ¢ = n we have
hy(v;) = 3[(2+3n+(3n—6)—q) = 1213

which and (11) imply [0, Z2328] C W.
(13) For i = n — 1 we have

hi(u) = F[(3%L+i)+383 4 n—q] =822

which and (12) imply 0, 7"2‘ S| Cw.

(14) For i = 253 we have

b

hi(vi) = 3[3BE+(Br-2)+(2n—i)—a] =25
which and (13) imply [0, Z8-3) C W.
(15) For i = 2 we have
he(vi) = 3[Bn+(n+i+2)+(2n—i)—a] = 2L

which and (11) imply [0, Z27L) C W.
(16) For 1 < i< 255 and i =1 (mod 2) we have

hy(v) = Tgisl

?

which and (15) imply [0, 2n — 1) C W. We complete the proof for Case 1.
Case 2: n =3 (mod 8) and n > 11.
For n =11, an edge labeling of P(11,2) is shown in Figure 2.2.

According to the definition of (a,d)-antimagic labeling, it is clear that
this assignment provides a (222, 2)-antimagic labeling for P(11,2).

For n > 19, we define the edge labeling f of P(n,2) as follows:

f(ui—1u;) and f(u;v;) in this case agree with that in Case 1, while
f(vi—ov;) is defined by
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f(vimav;)

<

5112—1 +2'
3n=-3 + >
g )
2
3n
Sn-5 +i,

3n2;tl

2 k]
3n—1
ool _ 3,
2=l 244,
n+1i,
3n -4,
2n— 1414,
3n—2,
3n;|_-_l__2

2 b

Similarly to Case 1, we set

A={f(uinu)|1 < i sﬁ},
B = {f(uwiv) |1 <i<n},
C = {f(viviy2)|l i < n},

if1<4i< 231 and i =1 (mod 2),

if 2 <i<n-2andi=1 (mod 2),

if it =n,

ifi =2,

?iﬁSiE"‘Tls(nyélg) and i = 2 (mod 4)
if i = 5=,

ey

if 222 <i<n-5andi=2 (mod4),
if 4 <i< 231 and i =0 (mod 4),

if i = 253,

if 2% <i<n-7andi=0 (mod 4),
ifi=n-3,

ifi=n-1.

Figure 2.2 : The (2%t2,2)-antimagic labeling of the graph P(11,2).
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and

13

A=AUAUA;, B=BiUB,UB3UB,;, andC=|JC,

i=1

where A; (i =1,2,3), B; (j =1,2,3,4) and Ci (k = 1,2,3,4) are as same
as in Case 1, that is,

| I

2 *
{3n2j;1 +2’ 31!211 +4’...’3ﬂ2i1 +n_1=5n2—1 ,
{4,6,8,...,n+1},

{3n—6}3

{n+3,n+5,...,2n -2},

{n},

{3 +1, 5"‘1+3 el 4 2al = 30— 1},

{2n 2n+2,. 5"2‘7}

{f(vt-2vz Iz = n} {2|7' = n} {2}
{3n},

while for others we have

and

Co

Cio
Cll
Ci2
Cis

[ 1 I 1

={1,3,

Cs

Ce

&

Cs

b
v_ov; )| = B2
{F(viavy)li = 251}

Vi-20;)|6 <4 < 2518 and i =2 (mod 4
{f(viavi)| ( )}
(D TS Ay
{2+ 4, +38,. + 25 =3n - 10},
{f(v,_gv,)|—+— <i < n— 5 and 7 = 2 (mod 4)}
{"'5+z|—+—<z<n 5andz:2(mod4)}
{n+2 n+6,...,255% +n—5=32kl _g}
{f(vi—av;)|4 < <. i < 2zll and i =0 (mod 4)}
{n+i4<i< ”‘211 and i =0 (mod 4)}

n=11
{n+4,n+8,...,n+ 251 —5”"— 6},
{f(v,_gv,)l—‘L <i<n-T7andi=0 (mod 4)}
{2n - 1+z|—+—<z<n 7 and i =0 (mod 4)}
{31 + 2, 5n-1 +86,...,3n — 8},

| [

I

el = 257) < (),

{(3n - 4)|z—"'3} {3'n, 4}.
{3t —4|l——+—} {3t — 43,

{f(vicgui)li=n-3} = {3n 2i=n-3}= {3n 2}.
{f(vz—-2vz)|7f—n_1} {3n slz—n—l} {_+_ 2}

Then we have that
A, UB4UC3U By

on—=2}u{n}u{2}U{4,6,...,n+1} =[1,n+1],
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CeUCrUC1 1 UC13UCUA3UB3UCU Ay
={n+2,n+6,..., "'1+n—1——%L 8}
U{n+4n+8 n+"; i 6}
U35l - gy u (3 o} u (28
u{4+2—+—+4 —*—+n 1=>52-1
u{n+3,n+5,...,2n- 2}U{2n 2n+2,. 5"“7}u{5"‘3}
={n+2,n+4,n+6 5"“}u{n+3n+5n+7 ,2n=2)
= [n+2, 821,

and
CiUCsUCsUBUC1gUCi2UCy
={m=l 1,2l 43, 3n—1}uU {38t 42,8851 46,...,3n - 10}
u{s"' +4, 5"‘1+8 »3n—8}u{3n—-6}U{3n—4}U{3n -2}
= [:m—l +1 3n] U {3n}

Hence,

AUBUC=[l,n+1)U[n+2,3 U281 +1,3n) = [1,3n).

Therefore, f is a bijection from E(G) onto {1,2,...,3n}.

Similarly to Case 1, we define W = {hs(v)|v € V(G)} and prove (0, 2n—
1) C W. From definition we see that hy(u;)’s here agree with that in Case
1 because f(u;ui+1)’s and f(u;vi)'s do.

(a) For ¢ = n — 2 we have that

hf(Un—-z) = % [f(vn_4v,,_2) + f(vn—2v,) + f(un—Z”n—Z) - a]
= $[(32+n-2)+2+4-q| =0

(b) From (2) and (3) in Case 1 we see that

H#l  jf1<i<n-2andi=1 (mod 2),
hf(ui)_{ ﬁ%-";;l if2<i<n-—3andi=0 (mod 2),
which and (a) imply that [0,n — 2] CW.

(C) n-éll

hi(v) = L[(n+d)+3L +(2n—-i)—a]=n-1,

which and (b) imply [0,n ~ 1] C W.
(d) For 22 <i<n-—4andi=1(mod 2) we have

hy(v) = L[R2 +4)+ (B2 +i+2)+ (n+2—1i)~a] = =1,

from which and (c) it follows that [0, 32711] C W.

171



(e) For i = n — 1 we have

he(vi) = 3[R +n-1)+ (&L +1)+n—q] = 27T,

from which and (d) it follows that [0, 32=7] C W.
(f) For 222 <i<n—7andi=0 (mod 2) we have
2nti-4 " if { = 0 (mod 4)
) = 2 >
hi(w) = { ntizd ifi=1 (mod 4)
from which and (e) it follows that [0, 3251 C W.

: 3(g) 9Ii‘or z“-/—- n we have hs(u;) = 2272, from which and (f) it follows that
0,*=]| CW.

(h) For i =n -5, %, n — 3, 251 we have

-l ifi=n-5
3n—5 if’i=nil
hi(vi) = 33 e 2
s e 1fz=n—;3
e p s me
e, ifi= 232

from which and (g) it follows that [0, 3%71] C W.
(i) For 4 <i < 25! and ¢ = 0 (mod 2) we have
3n=3+i if i = 0 (mod 4)
) = 3, .0
he(v) = { $n-34i  ifi=1 (mod 4)
from which and (h) it follows that [0, Z252) C W.

(j) For i = 252, n we have

S
S
|
=

—i e n=3
N lfl—nT

IG|

hy(vi) = {711,—:

from which and (i) it follows that [0, 2713) C W.

(k) For i =n — 1 we have

hyu) =} 40+ 552 4 n—a] = 52,

from which and (j) it follows that [0, 22] C W.

(1) For i = 257,2,1 we have

s fi=n-7
hi(vi) = ol ifi=2
i3 jfi=1
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from which and (k) it follows that [0, Z%3] C W.
(m) For 3<i < 23 and i =1 (mod 2) we have

hi(wi) = [ +0)+ (3B +i+2)+(n+2—i) —a] = 2L

from which and (1) it follows that [0,2n — 1] C W.
We thus prove that P(n,2) is (332, 2)-antimagic for n = 3 (mod 4)
and n > 7. The proof is complete.

In Figure 2.3 and Figure 2.4, we give (243, 2)-antimagic labeling for
P(19,2) and P(23,2).
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Figure 2.4 : The (3%£2, 2)-antimagic labeling of the graph P(23,2).
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